数理解析学 A・数理解析基礎講義 A 補足プリント No.4 (2025.5.29 配布)

プリントは http://www.math.sci.hiroshima-u.ac.jp/~takimoto/R7SuurikaisekiA.html にも置いてあります。

定義. $m \in \mathbb{N} \cup \{0\}, 1 \leq p < \infty$ に対し,

$$W^{m,p}(\mathbb{R}^N) = \{ f \in L^p(\mathbb{R}^N) \mid |\alpha| \le m \implies D^{\alpha} f \in L^p(\mathbb{R}^N) \}.$$

ただし $D^{\alpha}f$ は f の α 階超関数微分を表す.

また, $f \in W^{m,p}(\mathbb{R}^N)$ に対し,

$$||f||_{W^{m,p}} = \left(\sum_{|\alpha| \le m} ||D^{\alpha}f||_p^p\right)^{\frac{1}{p}}$$

と定義する(すると $\|\cdot\|_{W^{m,p}}$ は $W^{m,p}(\mathbb{R}^N)$ 上のノルムである.).

注意. 本当は $p=\infty$ のときも Sobolev 空間 $W^{m,\infty}(\mathbb{R}^N)$ が考えられます.

<u>注意</u>. m は微分の階数, p は Lebesgue 指数を表しています. $W^{0,p}(\mathbb{R}^N) = L^p(\mathbb{R}^N)$ です.

定理. $W^{m,p}(\mathbb{R}^N)$ は Banach 空間である.

[証明] 完備性のみを示す. $\left(f_k\right)_{k=1}^{\infty}\subset W^{m,p}(\mathbb{R}^N)$ を 任意の Cauchy 列とする.

目標 $f_k \to f$ in $W^{m,p}(\mathbb{R}^N)$ となる $f \in W^{m,p}(\mathbb{R}^N)$ が存在することを示す. まずは f を決めねば!

 $|\alpha| < m$ となる各 α に対し、

$$||D^{\alpha} f_k - D^{\alpha} f_l||_p \le \left(\sum_{|\alpha| \le m} ||D^{\alpha} (f_k - f_l)||_p^p \right)^{\frac{1}{p}} = ||f_k - f_l||_{W^{m,p}} \to 0 \ (k, l \to \infty)$$

であるから, $\left(D^{\alpha}f_{k}\right)_{k=1}^{\infty}$ は $L^{p}(\mathbb{R}^{N})$ の Cauchy 列である. 従って, $L^{p}(\mathbb{R}^{N})$ の完備性から

$$\exists f^{\alpha} \in L^{p}(\mathbb{R}^{N}) \text{ s.t. } D^{\alpha}f_{k} \to f^{\alpha} \text{ in } L^{p}(\mathbb{R}^{N})$$

が成立する. (各 α ごとに f^{α} が定まることに注意)

 $\alpha = (0, \dots, 0)$ のときの f^{α} を f と書く. (← f が決まった!)

<u>Claim.</u> $|\alpha| \leq m$ を満たす任意の α に対して, f の α 階超関数微分は f^{α} である. 即ち、

$$D^{\alpha}f = f^{\alpha} \quad \text{in } \mathcal{D}'(\mathbb{R}^N)$$

が成立する.

この Claim. が証明できれば、任意の $|\alpha| \leq m$ に対して $D^{\alpha}f = f^{\alpha} \in L^p(\mathbb{R}^N)$ より $f \in W^{m,p}(\mathbb{R}^N)$ であり、また $D^{\alpha}f_k \to D^{\alpha}f$ in $L^p(\mathbb{R}^N)$ より

$$||f_k - f||_{W^{m,p}} = \left(\sum_{|\alpha| \le m} ||D^{\alpha} f_k - D^{\alpha} f||_p^p\right)^{\frac{1}{p}} \to 0 \quad (k \to \infty)$$

が言える.

Claim. の証明

任意の $\varphi \in \mathcal{D}(\mathbb{R}^N)$ をとると,

$$\int_{\mathbb{R}^N} (D^{\alpha} f_k)(x) \varphi(x) dx = \langle D^{\alpha} f_k, \varphi \rangle$$

$$= (-1)^{|\alpha|} \langle f_k, D^{\alpha} \varphi \rangle \quad (超関数微分の定義)$$

$$= (-1)^{|\alpha|} \int_{\mathbb{R}^N} f_k(x) (D^{\alpha} \varphi)(x) dx. \quad (*)$$

左辺の $k \to \infty$ の極限は $\int_{\mathbb{R}^N} f^{\alpha}(x) \varphi(x) dx$ である. 実際,

$$\left| \int_{\mathbb{R}^{N}} (D^{\alpha} f_{k})(x) \varphi(x) dx - \int_{\mathbb{R}^{N}} f^{\alpha}(x) \varphi(x) dx \right| \leq \int_{\mathbb{R}^{N}} \left| (D^{\alpha} f_{k})(x) - f^{\alpha}(x) \right| \left| \varphi(x) \right| dx$$

$$= \int_{\text{supp } \varphi} \left| (D^{\alpha} f_{k})(x) - f^{\alpha}(x) \right| \left| \varphi(x) \right| dx$$

$$\leq \sup_{x \in \text{supp } \varphi} \left| \varphi(x) \right| \int_{\text{supp } \varphi} \left| (D^{\alpha} f_{k})(x) - f^{\alpha}(x) \right| dx.$$

p=1 のときは, $D^{\alpha}f_k$ は f^{α} に L^1 収束しているので,最右辺 $\to 0$ $(k\to\infty)$ である. p>1 のときは Hölder の不等式より

(最右辺)
$$\leq C \|D^{\alpha} f_k - f^{\alpha}\|_p \cdot |\operatorname{supp} \varphi|^{\frac{1}{q}} \to 0 \quad (k \to \infty)$$

が成立する.ここで C はある正定数, $\frac{1}{p}+\frac{1}{q}=1$, $|\mathrm{supp}\,\varphi|$ は $\mathrm{supp}\,\varphi$ の N 次元測度である.従って (*) の左辺は $k\to\infty$ のとき $\int_{\mathbb{R}^N} f^\alpha(x)\varphi(x)\,dx$ に収束する.

同様にして、(*) の右辺は $k \to \infty$ のとき $(-1)^{|\alpha|} \int_{\mathbb{R}^N} f(x) D^{\alpha} \varphi(x) dx$ に収束する. 故に

$$\int_{\mathbb{R}^N} f^{\alpha}(x)\varphi(x) \, dx = (-1)^{|\alpha|} \int_{\mathbb{R}^N} f(x) D^{\alpha}\varphi(x) \, dx$$

を得る. この等式は任意の $\varphi \in \mathcal{D}(\mathbb{R}^N)$ に対して成立するので,

$$D^{\alpha}f = f^{\alpha} \quad \text{in } \mathcal{D}'(\mathbb{R}^N)$$

が成立する.