On Voevodsky's work

Symposium on Algebraic Geometry at Hiroshima

Carlo Mazza

Jussieu

Université Paris 7

• Historical introduction

- Historical introduction
- Ingredients and definitions

- Historical introduction
- Ingredients and definitions
- À quoi servent-ils?

- Historical introduction
- Ingredients and definitions
- À quoi servent-ils?
- À quoi ne servent-ils pas?

╋

Historical introduction • 1964 Letter from Grothendieck to Serre ("motifs") Historical introduction Ingredients and definitions À quoi servent-ils? À quoi ne servent-ils pas?

• 1964 Letter from Grothendieck to Serre ("motifs")

Historical introduction

Ingredients and definitions

À quoi servent-ils?

À quoi ne servent-ils pas?

• 1974 Letter from Grothendieck to Illusie ("motifs mixtes")

Histor	rical	introd	luction
1 113101	icai	111100	luction

Ingredients and definitions

À quoi servent-ils?

- 1964 Letter from Grothendieck to Serre ("motifs")
- 1974 Letter from Grothendieck to Illusie ("motifs mixtes")
- 1995 Preprints detailing the construction of the triangulated category of motives $\mathbf{DM}_{eff}^{-}(k,\mathbb{Z})$.

Historical introduction	• 1974
Ingredients and definitions	• 199
À quoi servent-ils?	cate
	100

- 1964 Letter from Grothendieck to Serre ("motifs")
 - 1974 Letter from Grothendieck to Illusie ("motifs mixtes")
- 1995 Preprints detailing the construction of the triangulated category of motives $\mathbf{DM}_{eff}^{-}(k,\mathbb{Z})$.
- 1996 Preprint on the proof of Milnor's conjecture.

Historical	introduction

Ingredients and definitions

À quoi servent-ils?

- 1964 Letter from Grothendieck to Serre ("motifs")
- 1974 Letter from Grothendieck to Illusie ("motifs mixtes")
- 1995 Preprints detailing the construction of the triangulated category of motives $\mathbf{DM}_{eff}^{-}(k,\mathbb{Z})$.
- 1996 Preprint on the proof of Milnor's conjecture.
- 1998 Preprint on the homotopy theory of schemes.

Histori	cal int	trodu	ction

Ingredients and definitions

À quoi servent-ils?

- 1964 Letter from Grothendieck to Serre ("motifs")
- 1974 Letter from Grothendieck to Illusie ("motifs mixtes")
- 1995 Preprints detailing the construction of the triangulated category of motives $\mathbf{DM}_{eff}^{-}(k,\mathbb{Z})$.
- 1996 Preprint on the proof of Milnor's conjecture.
- 1998 Preprint on the homotopy theory of schemes.
- 2000 Publication of the book "Cycles, Transfers, and Motivic Cohomology Theories"

1.11.11.11.1				2. C.
Histo	rical	intro	nduc	tion
1 11010	iloui	mux	Juuo	

Ingredients and definitions

À quoi servent-ils?

- 1964 Letter from Grothendieck to Serre ("motifs")
- 1974 Letter from Grothendieck to Illusie ("motifs mixtes")
- 1995 Preprints detailing the construction of the triangulated category of motives $\mathbf{DM}_{eff}^{-}(k,\mathbb{Z})$.
- 1996 Preprint on the proof of Milnor's conjecture.
- 1998 Preprint on the homotopy theory of schemes.
- 2000 Publication of the book "Cycles, Transfers, and Motivic Cohomology Theories"
- 2003 Preprint on the proof of Bloch-Kato conjecture (modulo results by Rost).

Histori	cal	introc	duction

Ingredients and definitions

À quoi servent-ils?

- 1964 Letter from Grothendieck to Serre ("motifs")
- 1974 Letter from Grothendieck to Illusie ("motifs mixtes")
- 1995 Preprints detailing the construction of the triangulated category of motives $\mathbf{DM}_{eff}^{-}(k,\mathbb{Z})$.
- 1996 Preprint on the proof of Milnor's conjecture.
- 1998 Preprint on the homotopy theory of schemes.
- 2000 Publication of the book "Cycles, Transfers, and Motivic Cohomology Theories"
- 2003 Preprint on the proof of Bloch-Kato conjecture (modulo results by Rost).
- 2003 Publication of "Motivic cohomology with $\mathbb{Z}/2$ -coefficients".

Ingredients and definitions

Correspondences

Historical introduction

Ingredients and definitions

- Correspondences
- \bullet The category $Corr_k$
- Presheaves with transfers

Y

- Nisnevich topology
- The category
- $\mathbf{DM}^{-}(k)$
- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

Let *X* and *Y* be two smooth schemes. Then an elementary correspondence from *X* (connected) to *Y* is an irreducible closed subset of $X \times Y$ which is finite and surjective over *X*. A correspondence is an element of the free abelian group Cor(X, Y) generated by the elementary correspondences.

Correspondences

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers

Y

- Nisnevich topology
- The category

$\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi ne servent-ils pas?

Let *X* and *Y* be two smooth schemes. Then an elementary correspondence from *X* (connected) to *Y* is an irreducible closed subset of $X \times Y$ which is finite and surjective over *X*. A correspondence is an element of the free abelian group Cor(X, Y) generated by the elementary correspondences.

Correspondences

Historical introduction

Ingredients and definitions

- Correspondences
- \bullet The category $Corr_k$
- Presheaves with transfers

Y

- Nisnevich topology
- The category

$\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi ne servent-ils pas?

Let *X* and *Y* be two smooth schemes. Then an elementary correspondence from *X* (connected) to *Y* is an irreducible closed subset of $X \times Y$ which is finite and surjective over *X*. A correspondence is an element of the free abelian group Cor(X, Y) generated by the elementary correspondences.

Let $Corr_k$ be the category of smooth schemes and correspondences as morphism. What is the composition?

 Correspondences Ζ • The category $Corr_k$ • Presheaves with transfers • Nisnevich topology • The category $\mathbf{DM}^{-}(k)$ • Homotopy category of sheaves • What happened to transfers? Comparisons À quoi servent-ils? À quoi ne servent-ils pas? Х Υ

Historical introduction

Let $Corr_k$ be the category of smooth schemes and correspondences as morphism. What is the composition?

Ζ Х Υ

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

 $\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

Let $Corr_k$ be the category of smooth schemes and correspondences as morphism. What is the composition?

Historical introduction

Ingredients and definitions

- Correspondences
- The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

 $\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

Let $Corr_k$ be the category of smooth schemes and correspondences as morphism. What is the composition?

Ζ Х Υ

Historical introduction

- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

 $\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

Let $Corr_k$ be the category of smooth schemes and correspondences as morphism. What is the composition?

Ζ Х Υ

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

$\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

 $\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

A presheaf with transfers (PST) is a presheaf on $Corr_k$, i.e., a presheaf on Sm_k such that for every correspondence from X to Y, there is a map $F(Y) \rightarrow F(X)$.

Historical introduction

Ingredients and definitions

- Correspondences
- The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

 $\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

A presheaf with transfers (PST) is a presheaf on $Corr_k$, i.e., a presheaf on Sm_k such that for every correspondence from X to Y, there is a map $F(Y) \rightarrow F(X)$.

Examples:

• *O*, *O**.

- p. 8/26

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category
- $\mathbf{DM}^{-}(k)$
- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

A presheaf with transfers (PST) is a presheaf on $Corr_k$, i.e., a presheaf on Sm_k such that for every correspondence from X to Y, there is a map $F(Y) \rightarrow F(X)$.

Examples:

- *O*, *O**.
- Hecke functors for the absolute Galois group (say, Galois modules)

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

$\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

A presheaf with transfers (PST) is a presheaf on $Corr_k$, i.e., a presheaf on Sm_k such that for every correspondence from X to Y, there is a map $F(Y) \rightarrow F(X)$.

Examples:

- *O*, *O**.
- Hecke functors for the absolute Galois group (say, Galois modules)
- (higher) Chow groups (on smooth projective varieties).

Historical introduction

Ingredients and definitions

- Correspondences
- \bullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

 $\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

The Nisnevich topology is between the Zariski and the étale topology. A map $f: Y \to X$ is a Nisnevich covering if it is an étale covering and for all $x \in X$ there is a $y \in Y$ such that f(y) = x and f induces an isomorphism on the residue fields.

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

 $\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

The Nisnevich topology is between the Zariski and the étale topology. A map $f: Y \to X$ is a Nisnevich covering if it is an étale covering and for all $x \in X$ there is a $y \in Y$ such that f(y) = x and f induces an isomorphism on the residue fields.

Features:

• Let *F* be a presheaf with transfers. Then F_{Nis} is a presheaf with transfers too. (étale)

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

 $\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

The Nisnevich topology is between the Zariski and the étale topology. A map $f: Y \to X$ is a Nisnevich covering if it is an étale covering and for all $x \in X$ there is a $y \in Y$ such that f(y) = x and f induces an isomorphism on the residue fields.

Features:

- Let F be a presheaf with transfers. Then F_{Nis} is a presheaf with transfers too. (étale)
- A presheaf F is a Nisnevich sheaf if and only if F(Q) is a pull-back square for all upper distinguished squares Q. (Zariski)

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

 $\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

The Nisnevich topology is between the Zariski and the étale topology. A map $f: Y \to X$ is a Nisnevich covering if it is an étale covering and for all $x \in X$ there is a $y \in Y$ such that f(y) = x and f induces an isomorphism on the residue fields.

Features:

- Let F be a presheaf with transfers. Then F_{Nis} is a presheaf with transfers too. (étale)
- A presheaf F is a Nisnevich sheaf if and only if F(Q) is a pull-back square for all upper distinguished squares Q. (Zariski)
- Let F be a homotopy invariant Nisnevich sheaf with transfers. Then $H^n_{Zar}(-,F) \simeq H^n_{Nis}(-,F)$ for all $n \ge 0$. (Zariski)

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

 $\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

The Nisnevich topology is between the Zariski and the étale topology. A map $f: Y \to X$ is a Nisnevich covering if it is an étale covering and for all $x \in X$ there is a $y \in Y$ such that f(y) = x and f induces an isomorphism on the residue fields.

Features:

- Let F be a presheaf with transfers. Then F_{Nis} is a presheaf with transfers too. (étale)
- A presheaf F is a Nisnevich sheaf if and only if F(Q) is a pull-back square for all upper distinguished squares Q. (Zariski)
- Let F be a homotopy invariant Nisnevich sheaf with transfers. Then $H^n_{Zar}(-,F) \simeq H^n_{Nis}(-,F)$ for all $n \ge 0$. (Zariski)
- Let F be an étale sheaf of Q-modules, then $H^n_{Nis}(-,F) = H^n_{\acute{e}t}(-,F)$ for all $n \ge 0$. (étale)

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

$\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

The category $\mathbf{DM}_{eff}^{-}(k)$ is the \mathbb{A}^{1} -localization of the derived category of bounded above Nisnevich sheaves with transfers.

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

$\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

The category $\mathbf{DM}_{eff}^{-}(k)$ is the \mathbb{A}^{1} -localization of the derived category of bounded above Nisnevich sheaves with transfers.

Historical introduction

Ingredients and definitions

- Correspondences
- \bullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

$\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

The category $\mathbf{DM}_{eff}^{-}(k)$ is the \mathbb{A}^{1} -localization of the derived category of bounded above Nisnevich sheaves with transfers.

In $DM^{-}(k)$, the higher Chow groups, motivic cohomology, Suslin homology and bivariant cycle cohomology are all representable.

Historical introduction

Ingredients and definitions

- Correspondences
- \bullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

$\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

The category $\mathbf{DM}_{eff}^{-}(k)$ is the \mathbb{A}^{1} -localization of the derived category of bounded above Nisnevich sheaves with transfers.

In $DM^{-}(k)$, the higher Chow groups, motivic cohomology, Suslin homology and bivariant cycle cohomology are all representable.

Let *X* be a smooth scheme and let *Z* be a smooth subscheme of codimension c. Then we have an exact triangle:

$$M(X-Z) \longrightarrow M(X) \longrightarrow M(Z)(c)[2c].$$

Let $Spc = \Delta^{op}(Sh_{Nis}(Sm_k))$ be the category of spaces, i.e., simplicial Nisnevich sheaves (no transfers!).

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

 $\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

Historical introduction

Ingredients and definitions

- Correspondences
- \bullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

 $\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

Let $Spc = \Delta^{op}(Sh_{Nis}(Sm_k))$ be the category of spaces, i.e., simplicial Nisnevich sheaves (no transfers!). Then let $W_{\mathbb{A}^1}$ be the class of \mathbb{A}^1 -weak equivalences. We define

 $\mathcal{H}(k) = \Delta^{op}(Sh_{Nis}(Sm_k))[W_{\mathbb{A}^1}^{-1}].$

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

 $\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

Let $Spc = \Delta^{op}(Sh_{Nis}(Sm_k))$ be the category of spaces, i.e., simplicial Nisnevich sheaves (no transfers!). Then let $W_{\mathbb{A}^1}$ be the class of \mathbb{A}^1 -weak equivalences. We define

 $\mathcal{H}(k) = \Delta^{op}(Sh_{Nis}(Sm_k))[W_{\mathbb{A}^1}^{-1}].$

Homotopy purity (Thom isomorphism) Let $i : X \to Y$ be a closed immersion of smooth *k*-schemes, with complement *U*.Then $X/U \cong Th(\nu_i)$, where ν_i is the normal vector bundle, and $Th(\nu_i) = E(\nu_i)/E(\nu_i)^{\times}$.

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

$\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

Let $Spc = \Delta^{op}(Sh_{Nis}(Sm_k))$ be the category of spaces, i.e., simplicial Nisnevich sheaves (no transfers!). Then let $W_{\mathbb{A}^1}$ be the class of \mathbb{A}^1 -weak equivalences. We define

 $\mathcal{H}(k) = \Delta^{op}(Sh_{Nis}(Sm_k))[W_{\mathbb{A}^1}^{-1}].$

Homotopy purity (Thom isomorphism) Let $i : X \to Y$ be a closed immersion of smooth *k*-schemes, with complement *U*.Then $X/U \cong Th(\nu_i)$, where ν_i is the normal vector bundle, and $Th(\nu_i) = E(\nu_i)/E(\nu_i)^{\times}$.

In particular, if X is a smooth scheme of dimension n, then:

 $X/(X - \{x\}) \simeq \mathbb{A}^n/(\mathbb{A}^n - \{0\}).$

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

$\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

Let $Spc = \Delta^{op}(Sh_{Nis}(Sm_k))$ be the category of spaces, i.e., simplicial Nisnevich sheaves (no transfers!). Then let $W_{\mathbb{A}^1}$ be the class of \mathbb{A}^1 -weak equivalences. We define

 $\mathcal{H}(k) = \Delta^{op}(Sh_{Nis}(Sm_k))[W_{\mathbb{A}^1}^{-1}].$

Homotopy purity (Thom isomorphism) Let $i : X \to Y$ be a closed immersion of smooth k-schemes, with complement U. Then $X/U \cong Th(\nu_i)$, where ν_i is the normal vector bundle, and $Th(\nu_i) = E(\nu_i)/E(\nu_i)^{\times}$.

In particular, if X is a smooth scheme of dimension n, then:

$$X/(X - \{x\}) \simeq \mathbb{A}^n / (\mathbb{A}^n - \{0\}).$$

We have two different circles

$$S_s^1 = \Delta^1 / \partial \Delta^1$$
 and $S_t^1 = \mathbb{A}^1 - 0.$

Let $T = S_s^1 \wedge S_t^1$. Then the formalism of *T*-spectra provides a stable homotopy category $\mathcal{SH}(k)$.

What happened to transfers?

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

$\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

Let $k \subset L$ be a finite separable field extension and consider $x : \operatorname{Spec} L \to \mathbb{A}^1_k$. Then the Thom isomorphism gives

$$\mathbb{P}^1 - (\operatorname{Spec} L) \to \mathbb{P}^1 \to Th(\nu_i) \cong T \land (\operatorname{Spec} L).$$

What happened to transfers?

Let $k \subset L$ be a finite separable field extension and consider $x : \operatorname{Spec} L \to \mathbb{A}^1_k$. Then the Thom isomorphism gives

$$\mathbb{P}^1 - (\operatorname{Spec} L) \to \mathbb{P}^1 \to Th(\nu_i) \cong T \land (\operatorname{Spec} L)$$

But

 $\mathbf{DM}^{-}(k)$

Nisnevich topology

Historical introduction

Ingredients and definitions
Correspondences
The category $Corr_k$ Presheaves with transfers

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

and therefore $T \cong (\mathbb{P}^1, \infty)$ and this yields a map:

 $T \to T \land [\operatorname{Spec} L],$

which is the "transfer" (after inverting T).

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category
- $\mathbf{DM}^{-}(k)$
- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

Historical introduction

Ingredients and definitions

- Correspondences
- ullet The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category

$\mathbf{DM}^{-}(k)$

- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

Historical introduction

Ingredients and definitions

- Correspondences
- The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category
- $\mathbf{DM}^{-}(k)$
- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

Historical introduction

Ingredients and definitions

- Correspondences
- The category $Corr_k$
- Presheaves with transfers
- Nisnevich topology
- The category
- $\mathbf{DM}^{-}(k)$
- Homotopy category of sheaves
- What happened to transfers?
- Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

Let $\operatorname{char} k = 0$. Then $\mathcal{SH}(k) \otimes \mathbb{Q} \cong \mathbf{DM}(k, \mathbb{Q})$ when -1 is a sum of squares. In general $\mathbf{DM}(k)$ is a summand in $\mathcal{SH}(k)$.

Milnor conjecture

Historical introduction

Ingredients and definitions

À quoi servent-ils?

Milnor conjecture

Bloch-Kato conjecture

• Applications to K-theory

• Other applications

À quoi ne servent-ils pas?

Let *F* be a field of characteristic different from 2. Let $T^*(F)$ be the tensor algebra, i.e., $\bigoplus_{n \in \mathbb{N}} (F^{\times})^{\otimes n}$. Let *I* be the ideal generated by $\{a \otimes (1-a) : a \in F^{\times} \setminus \{1\}\}$. Then Milnor's K-theory is the quotient:

 $K_M^*(F) = T^*(F)/I.$

The Galois symbol induces a map

 $K_M^*(F) \otimes \mathbb{Z}/2\mathbb{Z} \to H^*(F, \mathbb{Z}/2\mathbb{Z}).$

Theorem (Voevodsky) The map above is an isomorphism of graded rings.

Bloch-Kato conjecture

Conjecture The map

Historical introduction

Ingredients and definitions

À quoi servent-ils?

• Milnor conjecture

Bloch-Kato conjecture

ullet Applications to K-theory

• Other applications

À quoi ne servent-ils pas?

 $K_M^*(F)\otimes \mathbb{Z}/\ell\mathbb{Z} \to H^*(F,\mathbb{Z}/\ell\mathbb{Z})$

is an isomorphism of graded rings for $\ell \neq 2$.

Bloch-Kato conjecture

Conjecture The map

Historical introduction

Ingredients and definitions

À quoi servent-ils?

- Milnor conjecture
- Bloch-Kato conjecture
- ullet Applications to K-theory
- Other applications

À quoi ne servent-ils pas?

 $K_M^*(F) \otimes \mathbb{Z}/\ell\mathbb{Z} \to H^*(F,\mathbb{Z}/\ell\mathbb{Z})$

is an isomorphism of graded rings for $\ell \neq 2$.

Now, let X be a smooth scheme and let α be the projection $(Sm/k)_{\acute{e}t} \rightarrow (Sm/k)_{Zar}$. Let $\underline{z}(-,*)$ be Bloch's complex, then $\underline{z}_n(-,*)_{\acute{e}t} \otimes \mathbb{Z}/m \cong \mu_m^{\otimes n}$.

The Bloch-Kato conjecture is equivalent to the Beilinson-Lichtenbaum conjecture: the induced map

$$\underline{z}_n(-,*) \otimes \mathbb{Z}/m \to \tau_{\leq n} R\alpha_* \mu_m^{\otimes n}$$

is an isomorphism.

Applications to *K***-theory** • Weibel has *almost* completely determined the *K*-theory of \mathbb{Z} . Historical introduction Ingredients and definitions À quoi servent-ils? Milnor conjecture Bloch-Kato conjecture • Applications to K-theory • Other applications À quoi ne servent-ils pas?

Applications to *K***-theory**

Historical introduction

Ingredients and definitions

À quoi servent-ils?

• Milnor conjecture

Bloch-Kato conjecture

• Applications to K-theory

• Other applications

À quoi ne servent-ils pas?

• Weibel has *almost* completely determined the K-theory of \mathbb{Z} .

almost means calculated $K_n(\mathbb{Z})$ for n < 20000 and $n \neq 4m (m \ge 2)$. The groups $K_{4m}(\mathbb{Z})$ are conjecturally zero (equivalent to Vandiver's conjecture).

Applications to *K***-theory**

Historical introduction

Ingredients and definitions

À quoi servent-ils?

- Milnor conjecture
- Bloch-Kato conjecture
- Applications to K-theory
- Other applications

À quoi ne servent-ils pas?

• Weibel has *almost* completely determined the K-theory of \mathbb{Z} .

almost means calculated $K_n(\mathbb{Z})$ for n < 20000 and $n \neq 4m (m \ge 2)$. The groups $K_{4m}(\mathbb{Z})$ are conjecturally zero (equivalent to Vandiver's conjecture).

• Weibel and Pedrini on the *K*-theory of surfaces and curves.

Other applications

Historical introduction

Ingredients and definitions

À quoi servent-ils?

- Milnor conjecture
- Bloch-Kato conjecture
- ullet Applications to K-theory
- Other applications

À quoi ne servent-ils pas?

 Kahn and Sujatha constructed (several) categories of birational motives (assuming resolution of singularities).
From these, they construct new birational invariants which generalize in particular nonramified cohomology.

Other applications

Historical introduction

Ingredients and definitions

À quoi servent-ils?

- Milnor conjecture
- Bloch-Kato conjecture
- ullet Applications to K-theory
- Other applications

- Kahn and Sujatha constructed (several) categories of birational motives (assuming resolution of singularities).
 From these, they construct new birational invariants which generalize in particular nonramified cohomology.
- Vishik (with Orlov, Voevodsky, Rost) studied the motive of quadrics to produce new invariants and provide new information about the Witt ring of quadratic forms.

À quoi ne servent-ils pas?

Beilinson-Soulé conjecture

Conjecture Let X be a regular scheme. Then

Historical introduction

Ingredients and definitions

À quoi servent-ils?

À quoi ne servent-ils pas?

- Beilinson-Soulé conjecture
- Standard conjectures
- Bloch-Beilinson Filtration
- Mixed motives
- Bloch-Beilinson Filtration and *M M*Bloch-Beilinson Filtration
- and \mathcal{DM}

Murre conjecture

 $H^i(X,\mathbb{Z}(n)) = 0 \begin{cases} n > 0 \text{ and } i \leq 0, \\ n = 0 \text{ and } i < 0. \end{cases}$

From the definition, if X is smooth then $H^i(X, \mathbb{Z}(n)) = 0$ if $i > n + \dim X$. Also when i > 2n, because of the isomorphism with higher Chow groups. Under Beilinson-Lichtenbaum conjecture, the Beilinson-Soulé conjecture equivalent to its counterpart with \mathbb{Q} coefficients.

Lemma The Beilinson-Soulé conjecture is true for $\dim X \leq 1$ and $H^i(X, \mathbb{Z}(n)) = 0$ for $i \geq \dim X + 2$ (modulo some technical conditions).

Standard conjectures

Historical introduction

Ingredients and definitions

À quoi servent-ils?

À quoi ne servent-ils pas?

- Beilinson-Soulé conjecture
- Standard conjectures
- Bloch-Beilinson Filtration
- Mixed motives
- Bloch-Beilinson Filtration and $\mathcal{M}\mathcal{M}$
- ullet Bloch-Beilinson Filtration and \mathcal{DM}
- Murre conjecture

(Grothendieck, 1962) "...the proof of the standard conjectures seems to me to be the most urgent task in algebraic geometry."

Standard conjectures

Historical introduction

Ingredients and definitions

À quoi servent-ils?

À quoi ne servent-ils pas?

- Beilinson-Soulé conjecture
- Standard conjectures
- Bloch-Beilinson Filtration
- Mixed motives
- Bloch-Beilinson Filtration and *MM*Bloch-Beilinson Filtration
- and \mathcal{DM}
- Murre conjecture

(Grothendieck, 1962) "...the proof of the standard conjectures seems to me to be the most urgent task in algebraic geometry."

Let *H* be a Weil cohomology over a smooth projective variety *X*. If *Y* is an hyperplane section of *X*, let *L* be the morphism induced on $H^*(X)$.

A L an isomorphism.

B The morphism * associated to L is algebraic.

- C The components of the diagonal are algebraic.
 - I < -, *-> is positive definite on algebraic cycles.
- D Numerical equivalence is the same as homological equivalence.

Bloch-Beilinson Filtration

Historical introduction

Ingredients and definitions

À quoi servent-ils?

À quoi ne servent-ils pas?

- Beilinson-Soulé conjecture
- Standard conjectures
- Bloch-Beilinson Filtration
- Mixed motives
- \bullet Bloch-Beilinson Filtration and $\mathcal{M}\mathcal{M}$
- \bullet Bloch-Beilinson Filtration and $\mathcal{D}\mathcal{M}$
- Murre conjecture

All with \mathbb{Q} coefficients. Then there is a descending filtration $CH^*(X) = F^0 \supset F^1 \supset \ldots$ such that 1. $F^1 = \{z | z \sim_h 0\}$ 2. $F^r \cdot F^s \subset F^{r+s}$

3. F^* is respected by pullbacks and pushforwards 4. $F^r C H^j / F^{r+1} C H^j$ only depends on h^{2j-r} .

5.
$$F^r = 0$$
 for $r >> 0$

Mixed motives

There is an abelian category $\mathcal{M}\mathcal{M}$ of mixed motives with the following properties:

- 1. Tannakian
- 2. the semisimple part is given by numerical motives
- 3. admits a weight filtration
- 4. every variety admits an associated motive and one with compact supports
- 5. blow-up sequences, localization and Mayer-Vietoris
- 6. homotopy invariant
 - 7. dual description
- 8. spectral sequence for X smooth

 $\operatorname{Ext}^{p}(\mathbb{I}, h^{q}(X)(n)) \Rightarrow H^{p+q}(X, \mathbb{Q}(n))$

The last condition implies the Beilinson-Soulé conjecture.

Historical introduction

Ingredients and definitions

À quoi servent-ils?

- Beilinson-Soulé conjecture
- Standard conjectures
- Bloch-Beilinson Filtration
- Mixed motives
- Bloch-Beilinson Filtration and *M M*Bloch-Beilinson Filtration
- and \mathcal{DM}
- Murre conjecture

Bloch-Beilinson Filtration and \mathcal{M}\mathcal{M}

Historical introduction

Ingredients and definitions

À quoi servent-ils?

À quoi ne servent-ils pas?

- Beilinson-Soulé conjecture
- Standard conjectures
- Bloch-Beilinson Filtration
- Mixed motives
- Bloch-Beilinson Filtration
- and $\mathcal{M}\mathcal{M}$ • Bloch-Beilinson Filtration and $\mathcal{D}\mathcal{M}$
- Murre conjecture

All with \mathbb{Q} coefficients. Then there is a descending filtration $CH^*(X) = F^0 \supset F_1 \supset \ldots$ such that 1. $F^1 = \{z | z \sim_h 0\}$ 2. $F^r \cdot F^s \subset F^{r+s}$

3. F^* is respected by pullbacks and pushforwards

4. Assume there is a an abelian category $\mathcal{M}\mathcal{M}$ and a functorial isomorphism:

 $F^r C H^j / F^{r+1} C H^j \simeq \operatorname{Ext}^r_{\mathcal{M}\mathcal{M}}(1, h^{2j-r}(X)(j)).$

5. $F^r = 0$ for r >> 0.

Bloch-Beilinson Filtration and \mathcal{D}\mathcal{M}

Historical introduction

Ingredients and definitions

À quoi servent-ils?

À quoi ne servent-ils pas?

- Beilinson-Soulé conjecture
- Standard conjectures
- Bloch-Beilinson Filtration
- Mixed motives
- Bloch-Beilinson Filtration and *M M* Bloch Beilinson Filtration
- \bullet Bloch-Beilinson Filtration and $\mathcal{D}\mathcal{M}$
- Murre conjecture

For any *k*-scheme *X* there is a triangulated \mathbb{Q} -linear tensor category $\mathcal{DM}(X)$ with a t-structure which satisfies:

- 1. six-functors formalism
- 2. the heart has a weight filtration
- 3. Tate objects
- 4. the subcategory of semisimple objects in $\mathcal{M}(k)$ should be the Grothendieck motives.
- 5. There are canonical isomorphisms

 $H^{i}_{\mathcal{M}}(X, \mathbb{Q}(j)) \simeq \operatorname{Hom}_{\mathcal{D}\mathcal{M}}(\mathbb{Q}_{\mathcal{M}}, \mathbb{Q}_{\mathcal{M}}(j)[i]).$

6. realization functors to Eckedahl motives and mixed Hodge structures.

Candidates: Voevodsky, Hanamura, Levine and Nori. Application to filtrations of Chow groups.

Murre conjecture

Historical introduction

Ingredients and definitions

À quoi servent-ils?

À quoi ne servent-ils pas?

- Beilinson-Soulé conjecture
- Standard conjectures
- Bloch-Beilinson Filtration
- Mixed motives
- \bullet Bloch-Beilinson Filtration and $\mathcal{M}\,\mathcal{M}$
- \bullet Bloch-Beilinson Filtration and $\mathcal{D}\mathcal{M}$
- Murre conjecture

Let X be a smooth projective variety. Then Murre conjectured that:

- 1. the decomposition of the diagonal is algebraic.
- 2. the correspondences $\pi_{2j+1}, \ldots, \pi_{2d}$ act as zero on $CH^j(X)_{\mathbb{Q}}$.
- 3. Let $F^r CH^j(X)_{\mathbb{Q}} = \operatorname{Ker} \pi_{2j} \cap \ldots \cap \operatorname{Ker} \pi_{2j-r+1}$. Then *F* is independent of the choice of the π_j .

4. $F^1 C H^j(X)_{\mathbb{Q}} = C H^j(X)_h$.

Theorem Murre's conjecture is equivalent to the existence of the Beilinson's filtration on Chow groups, and the two filtrations coincide.