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Historical introduction

• 1964 Letter from Grothendieck to Serre (“motifs”)

• 1974 Letter from Grothendieck to Illusie (“motifs mixtes”)
• 1995 Preprints detailing the construction of the triangulated

category of motives DM
−
eff (k, Z).

• 1996 Preprint on the proof of Milnor’s conjecture.
• 1998 Preprint on the homotopy theory of schemes.
• 2000 Publication of the book “Cycles, Transfers, and

Motivic Cohomology Theories”
• 2003 Preprint on the proof of Bloch-Kato conjecture

(modulo results by Rost).
• 2003 Publication of “Motivic cohomology with

Z/2-coefficients”.
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Correspondences

Let X and Y be two smooth schemes. Then an elementary
correspondence from X (connected) to Y is an irreducible
closed subset of X × Y which is finite and surjective over X.
A correspondence is an element of the free abelian group
Cor(X, Y ) generated by the elementary correspondences.

X

Y

Y

X

In a formula: Hom(S,
∐∞

d=0
Sd(X))+ ' Corr(S, X).
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The category Corrk

Let Corrk be the category of smooth schemes and
correspondences as morphism.
What is the composition?

X Y

Z

X Y

Z
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Presheaves with transfers

A presheaf with transfers (PST) is a presheaf on Corrk, i.e.,
a presheaf on Smk such that for every correspondence from
X to Y , there is a map F (Y ) → F (X).

Examples:
• O, O∗.
• Hecke functors for the absolute Galois group (say, Galois

modules)
• (higher) Chow groups (on smooth projective varieties).
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Nisnevich topology

The Nisnevich topology is between the Zariski and the étale
topology. A map f : Y → X is a Nisnevich covering if it is an
étale covering and for all x ∈ X there is a y ∈ Y such that
f(y) = x and f induces an isomorphism on the residue fields.

Features:
• Let F be a presheaf with transfers. Then FNis is a presheaf

with transfers too. (étale)
• A presheaf F is a Nisnevich sheaf if and only if F (Q) is a

pull-back square for all upper distinguished squares Q.
(Zariski)

• Let F be a homotopy invariant Nisnevich sheaf with
transfers. Then Hn

Zar(−, F ) ' Hn
Nis(−, F ) for all n ≥ 0.

(Zariski)
• Let F be an étale sheaf of Q-modules, then

Hn
Nis(−, F ) = Hn

ét(−, F ) for all n ≥ 0. (étale)
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The category DM
−(k)

The category DM
−
eff (k) is the A1-localization of the derived

category of bounded above Nisnevich sheaves with transfers.

SmProjk
- M(k)

Smk

?

- D
−(ShvNis(Cork)) - DM

−
eff (k)

?

- DM
−(k)

In DM
−(k), the higher Chow groups, motivic cohomology,

Suslin homology and bivariant cycle cohomology are all
representable.
Let X be a smooth scheme and let Z be a smooth
subscheme of codimension c. Then we have an exact
triangle:

M(X − Z) - M(X) - M(Z)(c)[2c].
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Homotopy category of sheaves

Let Spc = ∆op(ShNis(Smk)) be the category of spaces, i.e.,
simplicial Nisnevich sheaves (no transfers!).

Then let WA1 be
the class of A1-weak equivalences. We define

H(k) = ∆op(ShNis(Smk))[W−1

A1 ].

Homotopy purity (Thom isomorphism) Let i : X → Y be a
closed immersion of smooth k-schemes, with complement
U .Then X/U ∼= Th(νi), where νi is the normal vector bundle,
and Th(νi) = E(νi)/E(νi)

×.
In particular, if X is a smooth scheme of dimension n, then:

X/(X − {x}) ' An/(An − {0}).

We have two different circles

S1
s = ∆1/∂∆1 and S1

t = A1 − 0.

Let T = S1
s ∧ S1

t . Then the formalism of T -spectra provides a
stable homotopy category SH(k).
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Homotopy category of sheaves

Let Spc = ∆op(ShNis(Smk)) be the category of spaces, i.e.,
simplicial Nisnevich sheaves (no transfers!). Then let WA1

be the class of A1-weak equivalences. We define

H(k) = ∆op(ShNis(Smk))[W−1

A1 ].

Homotopy purity (Thom isomorphism) Let i : X → Y be a
closed immersion of smooth k-schemes, with complement
U .Then X/U ∼= Th(νi), where νi is the normal vector bundle,
and Th(νi) = E(νi)/E(νi)

×.
In particular, if X is a smooth scheme of dimension n, then:

X/(X − {x}) ' An/(An − {0}).

We have two different circles

S1
s = ∆1/∂∆1 and S1

t = A1 − 0.

Let T = S1
s ∧ S1

t . Then the formalism of T -spectra provides a
stable homotopy category SH(k).



Historical introduction

Ingredients and definitions
•Correspondences
•The category Corrk

•Presheaves with transfers
•Nisnevich topology
•The category

DM
−(k)

•Homotopy category of
sheaves

•What happened to
transfers?

•Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

- p. 11/26

Homotopy category of sheaves

Let Spc = ∆op(ShNis(Smk)) be the category of spaces, i.e.,
simplicial Nisnevich sheaves (no transfers!). Then let WA1

be the class of A1-weak equivalences. We define

H(k) = ∆op(ShNis(Smk))[W−1

A1 ].

Homotopy purity (Thom isomorphism) Let i : X → Y be a
closed immersion of smooth k-schemes, with complement
U .Then X/U ∼= Th(νi), where νi is the normal vector bundle,
and Th(νi) = E(νi)/E(νi)

×.

In particular, if X is a smooth scheme of dimension n, then:

X/(X − {x}) ' An/(An − {0}).

We have two different circles

S1
s = ∆1/∂∆1 and S1

t = A1 − 0.

Let T = S1
s ∧ S1

t . Then the formalism of T -spectra provides a
stable homotopy category SH(k).



Historical introduction

Ingredients and definitions
•Correspondences
•The category Corrk

•Presheaves with transfers
•Nisnevich topology
•The category

DM
−(k)

•Homotopy category of
sheaves

•What happened to
transfers?

•Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

- p. 11/26

Homotopy category of sheaves

Let Spc = ∆op(ShNis(Smk)) be the category of spaces, i.e.,
simplicial Nisnevich sheaves (no transfers!). Then let WA1

be the class of A1-weak equivalences. We define

H(k) = ∆op(ShNis(Smk))[W−1

A1 ].

Homotopy purity (Thom isomorphism) Let i : X → Y be a
closed immersion of smooth k-schemes, with complement
U .Then X/U ∼= Th(νi), where νi is the normal vector bundle,
and Th(νi) = E(νi)/E(νi)

×.
In particular, if X is a smooth scheme of dimension n, then:

X/(X − {x}) ' An/(An − {0}).

We have two different circles

S1
s = ∆1/∂∆1 and S1

t = A1 − 0.

Let T = S1
s ∧ S1

t . Then the formalism of T -spectra provides a
stable homotopy category SH(k).



Historical introduction

Ingredients and definitions
•Correspondences
•The category Corrk

•Presheaves with transfers
•Nisnevich topology
•The category

DM
−(k)

•Homotopy category of
sheaves

•What happened to
transfers?

•Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

- p. 11/26

Homotopy category of sheaves

Let Spc = ∆op(ShNis(Smk)) be the category of spaces, i.e.,
simplicial Nisnevich sheaves (no transfers!). Then let WA1

be the class of A1-weak equivalences. We define

H(k) = ∆op(ShNis(Smk))[W−1

A1 ].

Homotopy purity (Thom isomorphism) Let i : X → Y be a
closed immersion of smooth k-schemes, with complement
U .Then X/U ∼= Th(νi), where νi is the normal vector bundle,
and Th(νi) = E(νi)/E(νi)

×.
In particular, if X is a smooth scheme of dimension n, then:

X/(X − {x}) ' An/(An − {0}).

We have two different circles

S1
s = ∆1/∂∆1 and S1

t = A1 − 0.

Let T = S1
s ∧ S1

t . Then the formalism of T -spectra provides a
stable homotopy category SH(k).



Historical introduction

Ingredients and definitions
•Correspondences
•The category Corrk

•Presheaves with transfers
•Nisnevich topology
•The category

DM
−(k)

•Homotopy category of
sheaves

•What happened to
transfers?

•Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

- p. 12/26

What happened to transfers?

Let k ⊂ L be a finite separable field extension and consider
x : SpecL → A1

k. Then the Thom isomorphism gives

P1 − (SpecL) → P1 → Th(νi) ∼= T ∧ (SpecL).

But

A1 − 0 - A1 - T

A1

?

- P1

?

- P1/A1

?

and therefore T ∼= (P1,∞) and this yields a map:

T → T ∧ [SpecL],

which is the “transfer” (after inverting T ).
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Comparisons

Hs(k) - SHS1

s (k)

H(k)
?

- SHS1

(k)

?

SH(k)
?

Let chark = 0. Then SH(k) ⊗ Q ∼= DM(k, Q) when −1 is a
sum of squares. In general DM(k) is a summand in SH(k).



Historical introduction

Ingredients and definitions
•Correspondences
•The category Corrk

•Presheaves with transfers
•Nisnevich topology
•The category

DM
−(k)

•Homotopy category of
sheaves

•What happened to
transfers?

•Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

- p. 13/26

Comparisons

Hs(k) - SHS1

s (k) - D(ShNis(Sm/k))

H(k)
?

- SHS1

(k)

?

- DMeff (k)

?

SH(k)
?

- DM(k)
?

Let chark = 0. Then SH(k) ⊗ Q ∼= DM(k, Q) when −1 is a
sum of squares. In general DM(k) is a summand in SH(k).



Historical introduction

Ingredients and definitions
•Correspondences
•The category Corrk

•Presheaves with transfers
•Nisnevich topology
•The category

DM
−(k)

•Homotopy category of
sheaves

•What happened to
transfers?

•Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

- p. 13/26

Comparisons

Hs(k) - SHS1

s (k) - D(ShNis(Sm/k)) - D(ShNis(Cork))

H(k)
?

- SHS1

(k)

?

- DMeff (k)

?

- DM
eff (k)

?

SH(k)
?

- DM(k)
?

- DM(k)
?

Let chark = 0. Then SH(k) ⊗ Q ∼= DM(k, Q) when −1 is a
sum of squares. In general DM(k) is a summand in SH(k).



Historical introduction

Ingredients and definitions
•Correspondences
•The category Corrk

•Presheaves with transfers
•Nisnevich topology
•The category

DM
−(k)

•Homotopy category of
sheaves

•What happened to
transfers?

•Comparisons

À quoi servent-ils?

À quoi ne servent-ils pas?

- p. 13/26

Comparisons

Hs(k) - SHS1

s (k) - D(ShNis(Sm/k)) - D(ShNis(Cork))

H(k)
?

- SHS1

(k)

?

- DMeff (k)

?

- DM
eff (k)

?

SH(k)
?

- DM(k)
?

- DM(k)
?

Let chark = 0. Then SH(k) ⊗ Q ∼= DM(k, Q) when −1 is a
sum of squares. In general DM(k) is a summand in SH(k).



- p. 14/26

À quoi servent-ils?



Historical introduction

Ingredients and definitions

À quoi servent-ils?
•Milnor conjecture
•Bloch-Kato conjecture
•Applications to K-theory
•Other applications

À quoi ne servent-ils pas?

- p. 15/26

Milnor conjecture

Let F be a field of characteristic different from 2. Let T ∗(F )
be the tensor algebra, i.e., ⊕n∈N(F×)⊗n. Let I be the ideal
generated by {a ⊗ (1 − a) : a ∈ F× \ {1}}.
Then Milnor’s K-theory is the quotient:

K∗
M (F ) = T ∗(F )/I.

The Galois symbol induces a map

K∗
M (F ) ⊗ Z/2Z → H∗(F, Z/2Z).

Theorem (Voevodsky) The map above is an isomorphism of
graded rings.
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Bloch-Kato conjecture

Conjecture The map

K∗
M (F ) ⊗ Z/`Z → H∗(F, Z/`Z)

is an isomorphism of graded rings for ` 6= 2.

Now, let X be a smooth scheme and let α be the projection
(Sm/k)ét → (Sm/k)Zar. Let z(−, ∗) be Bloch’s complex,
then zn(−, ∗)ét ⊗ Z/m ∼= µ⊗n

m .

The Bloch-Kato conjecture is equivalent to the
Beilinson-Lichtenbaum conjecture: the induced map

zn(−, ∗) ⊗ Z/m → τ≤nRα∗µ
⊗n
m

is an isomorphism.
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Applications to K-theory

• Weibel has almost completely determined the K-theory of
Z.

almost means calculated Kn(Z) for n < 20000 and
n 6= 4m(m ≥ 2) . The groups K4m(Z) are conjecturally zero
(equivalent to Vandiver’s conjecture).

• Weibel and Pedrini on the K-theory of surfaces and curves.
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Other applications

• Kahn and Sujatha constructed (several) categories of
birational motives (assuming resolution of singularities).
From these, they construct new birational invariants which
generalize in particular nonramified cohomology.

• Vishik (with Orlov, Voevodsky, Rost) studied the motive of
quadrics to produce new invariants and provide new
information about the Witt ring of quadratic forms.
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Beilinson-Soulé conjecture

Conjecture Let X be a regular scheme. Then

Hi(X, Z(n)) = 0

{

n > 0 and i ≤ 0,
n = 0 and i < 0.

From the definition, if X is smooth then H i(X, Z(n)) = 0 if
i > n + dim X. Also when i > 2n, because of the
isomorphism with higher Chow groups.
Under Beilinson-Lichtenbaum conjecture, the
Beilinson-Soulé conjecture equivalent to its counterpart with
Q coefficients.

Lemma The Beilinson-Soulé conjecture is true for dim X ≤ 1
and Hi(X, Z(n)) = 0 for i ≥ dimX + 2 (modulo some
technical conditions).
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Standard conjectures

(Grothendieck, 1962) “...the proof of the standard conjectures
seems to me to be the most urgent task in algebraic
geometry.”

Let H be a Weil cohomology over a smooth projective variety
X. If Y is an hyperplane section of X, let L be the morphism
induced on H∗(X).
A L an isomorphism.
B The morphism ∗ associated to L is algebraic.
C The components of the diagonal are algebraic.
I < −, ∗− > is positive definite on algebraic cycles.

D Numerical equivalence is the same as homological
equivalence.
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Bloch-Beilinson Filtration

All with Q coefficients. Then there is a descending filtration
CH∗(X) = F 0 ⊃ F 1 ⊃ . . . such that
1. F 1 = {z|z ∼h 0}

2. F r · F s ⊂ F r+s

3. F ∗ is respected by pullbacks and pushforwards
4. F rCHj/F r+1CHj only depends on h2j−r.
5. F r = 0 for r >> 0.
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Mixed motives

There is an abelian category MM of mixed motives with the
following properties:
1. Tannakian
2. the semisimple part is given by numerical motives
3. admits a weight filtration
4. every variety admits an associated motive and one with

compact supports
5. blow-up sequences, localization and Mayer-Vietoris
6. homotopy invariant
7. dual description
8. spectral sequence for X smooth

Extp(I, hq(X)(n)) ⇒ Hp+q(X, Q(n))

The last condition implies the Beilinson-Soulé conjecture.
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Bloch-Beilinson Filtration and MM

All with Q coefficients. Then there is a descending filtration
CH∗(X) = F 0 ⊃ F1 ⊃ . . . such that
1. F 1 = {z|z ∼h 0}

2. F r · F s ⊂ F r+s

3. F ∗ is respected by pullbacks and pushforwards
4. Assume there is a an abelian category MM and a

functorial isomorphism:

F rCHj/F r+1CHj ' Extr
MM(1, h2j−r(X)(j)).

5. F r = 0 for r >> 0.
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Bloch-Beilinson Filtration and DM

For any k-scheme X there is a triangulated Q-linear tensor
category DM(X) with a t-structure which satisfies:
1. six-functors formalism
2. the heart has a weight filtration
3. Tate objects
4. the subcategory of semisimple objects in M(k) should be

the Grothendieck motives.
5. There are canonical isomorphisms

Hi
M(X, Q(j)) ' HomDM(QM, QM(j)[i]).

6. realization functors to Eckedahl motives and mixed Hodge
structures.

Candidates: Voevodsky, Hanamura, Levine and Nori.
Application to filtrations of Chow groups.
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Murre conjecture

Let X be a smooth projective variety. Then Murre
conjectured that:
1. the decomposition of the diagonal is algebraic.
2. the correspondences π2j+1, . . . , π2d act as zero on

CHj(X)Q.
3. Let F rCHj(X)Q = Kerπ2j ∩ . . . ∩ Kerπ2j−r+1. Then F is

independent of the choice of the πj .
4. F 1CHj(X)Q = CHj(X)h.

Theorem Murre’s conjecture is equivalent to the existence of
the Beilinson’s filtration on Chow groups, and the two
filtrations coincide.
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