第4章

線型リー群に付随する線型リー代数

第 3 章では、線型リー群 G に対して、付随する線型空間 $\mathrm{Lie}(G)$ を定義し、指数写像 $\mathrm{exp}:\mathrm{Lie}(G)\to G$ が局所的には同相写像を与えることを示した。この章では、これらの結果を用いて、次の二つの定理を示す:

- \circ G が線型リー群ならば $\mathrm{Lie}(G)$ は線型リー代数である $(4.1\ \mathfrak{D})$,
- 二つの線型リー群が局所同型であるための必要十分条件は、付随する線型リー代数が同型となることである (4.2 節).

後者は、線型リー群と線型リー代数の対応における基本定理とも言うべき重要な定理である。次の章からは、一般のリー群とリー代数に関する話に移行するが、その場合にも上記の「基本定理」と全く同様の性質が成り立つ。また、一般の場合の方が当然ながら議論は複雑になるが、基本的な筋道は本章までのものと同じである。

この章では、第1章「線型リー群」、第2章「線型リー代数」、第3章「線型リー群の 指数写像」の内容を全て仮定して議論を進める。この章までの内容が、線型リー群と線型 リー代数に関する基本的な事柄である。

4.1 線型リー群に付随する線型リー代数

前章の $\S 3.2$ において, $\operatorname{GL}_n(\mathbb{R})$ 内の線型リー群 G に対して,

$$\operatorname{Lie}(G) := \{ X \in M_n(\mathbb{R}) \mid \exp(sX) \in G \ (\forall s \in \mathbb{R}) \}$$

$$\tag{4.1}$$

が線型部分空間であることを示した. ここでは、次を示す:

定理 4.1.1~G を $\mathrm{GL}_n(\mathbb{R})$ 内の線型リー群とすると, $\mathrm{Lie}(G)$ は $\mathfrak{gl}_n(\mathbb{R})$ 内の線型リー代数 である (この $\mathrm{Lie}(G)$ を G に付随する線型リー代数 と呼ぶ).

 $\S4.1.1$ では、線型リー群の 1 変数部分群を定義する。 $\S4.1.2$ では、1 変数部分群を用いて、随伴作用と括弧積の関係を調べる。 $\S4.1.3$ では、線型リー群の随伴作用を定義する。 $\S4.1.4$ では、これらを用いて、定理 4.1.1 を証明する.

4.1.1 1 变数部分群

ここでは、線型リー群 G 内の 1 変数部分群を定義し、その微分に関する性質を調べる.

命題 4.1.2 G を $\mathrm{GL}_n(\mathbb{R})$ 内の線型リー群とする. 任意の $X \in M_n(\mathbb{R})$ に対して、写像

$$c_X : \mathbb{R} \to G : s \mapsto \exp(sX)$$
 (4.2)

は C^{∞} -級写像であり、 さらに群準同型である (この c_X を X から決まる 1 変数部分群 *1 と呼ぶ).

証明. C^{∞} -級写像であることを示す. 写像 c_X は, 写像

$$i_X: \mathbb{R} \to M_n(\mathbb{R}): s \mapsto sX$$
 (4.3)

と指数写像 $\exp: M_n(\mathbb{R}) \to G$ の合成に他ならない. すなわち $c_X = \exp \circ i_X$. 写像 i_X は明らかに C^∞ -級であり、また \exp も定理 3.1.8 から C^∞ -級であるので、これらの合成も C^∞ -級である.群準同型であること、すなわち

$$c_X(s_1 + s_2) = c_X(s_1)c_X(s_2) \quad (\forall s_1, s_2 \in \mathbb{R})$$
(4.4)

が成り立つことは、補題 3.1.5 から直ちに従う.

次に,1 変数部分群の微分に関する性質を調べる.指数写像 exp の微分に関する性質から,次が従う.

補題 4.1.3 線型リー群 G の 1 変数部分群 $c_X(s) = \exp(sX)$ に対して、次が成り立つ:

$$c_X'(0) := \frac{d}{ds}c_X(s)|_{s=0} = X.$$
 (4.5)

証明. 1 変数部分群は, (4.3) で定義した記号を用いると $c_X=\exp\circ i_X$ と表される. 指数写像の全微分 $d\exp$ は, 補題 3.1.7 より

$$(d\exp)_0(Y) = Y \quad (\forall Y \in M_n(\mathbb{R})) \tag{4.6}$$

をみたすので、合成写像の微分の公式より題意は従う、実際、

$$c_X'(0) = d(c_X)_0(1) = d(\exp \circ i_X)_0(1) = d(\exp)_{i_X(0)} \circ d(i_X)_0(1) = X$$
(4.7)

^{*1} one-parameter subgroup

4.1.2 随伴作用と括弧積

ここでは、線型リー代数の括弧積が、1変数部分群と随伴作用 Ad を用いて表すことができることを示す。 各 $a\in \operatorname{GL}_n(\mathbb{R})$ に対して、随伴作用 Ad_a は

$$Ad_a: \mathfrak{gl}_n(\mathbb{R}) \to \mathfrak{gl}_n(\mathbb{R}): X \mapsto aXa^{-1}$$
(4.8)

で定義される写像であった (定義 2.5.1).

命題 4.1.4~G を線型リー群とする. 任意の $X,Y \in \text{Lie}(G)$ に対して、次が成り立つ:

$$\frac{d}{ds} Ad_{c_X(s)}(Y)|_{s=0} = [X, Y]. \tag{4.9}$$

証明. 任意に $X,Y\in \mathrm{Lie}(G)$ をとる. 積の微分の公式と, c_X の微分の性質 (補題 4.1.3) を用いると、

$$\frac{d}{ds} \operatorname{Ad}_{c_X(s)}(Y)|_{s=0} = \frac{d}{ds} c_X(s) Y(c_X(s))^{-1}|_{s=0}
= c'_X(0) Y(c_X(0))^{-1} - c_X(0) Y c'_X(0) (c_X(0))^{-2}
= XY - YX
= [X, Y]$$

となる. 以上で題意は示された.

証明から分かるように, c_X を, c(0)=e かつ c'(0)=X をみたす任意の C^∞ -級曲線に置き換えても, 式 (4.9) は成立する.

4.1.3 線型リー群の随伴作用

ここでは、線型リー群 G の随伴作用を定義する。まず初めに、指数写像 \exp と内部自己同型 I の関係を調べる。各 $a\in \mathrm{GL}_n(\mathbb{R})$ に対して、内部自己同型 I_a は

$$I_a: \mathrm{GL}_n(\mathbb{R}) \to \mathrm{GL}_n(\mathbb{R}): g \mapsto aga^{-1}$$
 (4.10)

で定義される写像であった (定義 1.5.1).

命題 4.1.5 任意の $a \in GL_n(\mathbb{R})$ に対して、次が成り立つ: $\exp \circ Ad_a = I_a \circ \exp$.

証明. これは補題 3.2.7 の言い換え.

これを用いて、線型リー群 G の $\mathrm{Lie}(G)$ への随伴作用を定義する.

命題 $\bf 4.1.6~G$ を線型リー群とし、 $a\in G$ とする.このとき,任意の $X\in {\rm Lie}(G)$ に対して, ${\rm Ad}_a(X)\in {\rm Lie}(G)$ が成り立つ.これによって得られる次の写像を G の随伴作用 *2 と呼ぶ:

$$Ad_a : Lie(G) \to Lie(G) : X \mapsto aXa^{-1}$$
.

証明. 任意に $a \in G$ と $X \in \text{Lie}(G)$ をとる. 示すことは $\operatorname{Ad}_a(X) \in \operatorname{Lie}(G)$ である. 任意に $s \in \mathbb{R}$ をとる. すると、 命題 4.1.5 および G が群であることから、

$$\exp(s\mathrm{Ad}_a(X)) = \exp(\mathrm{Ad}_a(sX)) = I_a(\exp(sX)) = a\exp(sX)a^{-1} \in G$$

が成り立つ. よって $Ad_a(X) \in Lie(G)$ が示された.

4.1.4 付陥する線型リー代数

ここでは、定理 4.1.1 を示す。証明には、線型リー群 G の随伴作用を用いる。定理 3.2.4 より、G が線型リー群ならば、 $\mathrm{Lie}(G)$ は線型部分空間になる。そこで、以下では仮定を少しだけ弱くして、G は線型リー群ではなく、G は部分群であり $\mathrm{Lie}(G)$ が線型部分空間になるようなもの、として証明を行う。

命題 4.1.7~G を $\mathrm{GL}_n(\mathbb{R})$ 内の部分群とし、 $\mathrm{Lie}(G)$ が $M_n(\mathbb{R})$ 内の線型部分空間であるとする。このとき、 $\mathrm{Lie}(G)$ は線型リー代数である。

証明. 仮定より $\mathrm{Lie}(G)$ は $M_n(\mathbb{R})$ 内の線型部分空間なので, $\mathrm{Lie}(G)$ が括弧積に関して閉じていることを示せば良い. 任意に $X,Y\in\mathrm{Lie}(G)$ をとる. X から決まる 1 変数部分群は $c_X(s)=\exp(sX)\in G$ をみたすので, 命題 4.1.6 より,

$$\gamma(s) := \mathrm{Ad}_{c_X(s)}(Y) \in \mathrm{Lie}(G)$$

が成り立つ. この $\gamma(s)$ は s をパラメータとする $\mathrm{Lie}(G)$ 内の C^∞ -級曲線になる. ここで $\mathrm{Lie}(G)$ は線型部分空間であったので、

$$\gamma'(0) = \lim_{s=0} (1/s)(\gamma(s) - \gamma(0)) \in \text{Lie}(G)$$

が成り立つ. 命題 4.1.4 より、

$$\operatorname{Lie}(G) \ni \gamma'(0) = \frac{d}{dt} \operatorname{Ad}_{c_X(s)}(Y)|_{s=0} = [X, Y]$$

となる. よって $\mathrm{Lie}(G)$ は括弧積に関して閉じている. すなわち $\mathrm{Lie}(G)$ は線型リー代数である.

線型リー群に付随する線型リー代数の具体例については§3.2.2 を参照.

^{*2} adjoint action of G

4.2 線型リー群と線型リー代数の対応の基本定理

この節では、次の定理を証明する.

定理 $4.2.1~G_1, G_2$ を $\mathrm{GL}_n(\mathbb{R})$ 内の線型リー群とする. このとき, G_1 と G_2 が局所同型であるための必要十分条件は, それぞれに付随する線型リー代数 $\mathrm{Lie}(G_1)$ と $\mathrm{Lie}(G_2)$ が同型となることである.

十分性の証明を $\S 4.2.1$ で、必要性の証明を $\S 4.2.2$ で、それぞれ行う。線型リー群の局所同型は I_a によって定義され、線型リー代数の同型は Ad_a によって定義されていた。これらが指数写像を通して関係する (命題 4.1.5) ことが、証明の鍵である。

4.2.1 十分性の証明

ここでは定理 4.2.1 の十分性の証明を行う. まず初めに, 線型リー群 G に対応する線型リー代数 $\mathrm{Lie}(G)$ は, G の単位元の近傍だけで決まることを見ておく.

補題 **4.2.2** G を $\mathrm{GL}_n(\mathbb{R})$ 内の線型リー群とする. このとき, 任意の $\varepsilon>0$ に対して, 次が成り立つ:

$$\operatorname{Lie}(G) = \{ X \in M_n(\mathbb{R}) \mid \forall s \in (0, \varepsilon), \ \exp(sX) \in G \}.$$

証明. 定義より (\subset) が成り立つことは明らか. (\supset) を示す. 右辺から任意に X をとる. 任意に $s\in\mathbb{R}$ をとる. 示すことは $\exp(sX)\in G$ である. これは s=0 のときは明らかなので, $s\neq 0$ の場合のみを考える. このとき $m\in\mathbb{Z}$ を上手く選べば $s/m\in(0,\varepsilon)$ となる. 仮定から $\exp((s/m)X)\in G$ である. 補題 3.1.5 および G が群であることから,

$$\exp(sX) = \exp(m(s/m)X) = (\exp((s/m)X))^m \in G.$$

よって $X \in \text{Lie}(G)$ が成り立つ.

これを用いて, 定理 4.2.1 の十分性を示す.

命題 $4.2.3~G_1, G_2$ を $\mathrm{GL}_n(\mathbb{R})$ 内の線型リー群とする. このとき, G_1 と G_2 が局所同型ならば、付随する線型リー代数 $\mathrm{Lie}(G_1)$ と $\mathrm{Lie}(G_2)$ は同型である.

証明. 直感的に言うと, G_1 と G_2 が局所同型ならば, それぞれの単位元の近傍は同型になり, $\mathrm{Lie}(G_1)$ と $\mathrm{Lie}(G_2)$ は単位元の近傍だけで決まる (補題 4.2.2) ので, それらは同型になる. この方針に従って, 証明を行う.

仮定より G_1 と G_2 が局所同型なので、定義より、 G_1 の単位元の近傍 U_1 、 G_2 の単位元の近傍 U_2 、および $a\in \mathrm{GL}_n(\mathbb{R})$ を上手く選ぶと、 $I_a(U_1)=U_2$ が成り立つ、示すことは $\mathrm{Lie}(G_1)$ と $\mathrm{Lie}(G_2)$ が同型であることなので、次を示せば良い:

$$Ad_a(Lie(G_1)) = Lie(G_2). \tag{4.11}$$

まずは次を示す:

$$\operatorname{Ad}_a(\operatorname{Lie}(G_1)) \subset \operatorname{Lie}(G_2).$$
 (4.12)

任意に $X \in \mathrm{Ad}_a(\mathrm{Lie}(G_1))$ をとる。定義より $Y \in \mathrm{Lie}(G_1)$ を用いて $X = \mathrm{Ad}_a(Y)$ と書くことができる。示すことは $X \in \mathrm{Lie}(G_2)$ である。ここで、写像

$$i_Y: \mathbb{R} \to G_1: s \mapsto \exp(sY)$$
 (4.13)

は連続であり、 U_1 は G_1 内の開集合なので、

$$\exists \varepsilon > 0 : \forall s \in (-\varepsilon, \varepsilon), \ \exp(sY) \in U_1$$
 (4.14)

が成り立つ. この $\varepsilon > 0$ に対して, 補題 4.2.2 より,

$$\operatorname{Lie}(G_2) = \{ X \in M_n(\mathbb{R}) \mid \forall s \in (0, \varepsilon), \ \exp(sX) \in G \}$$
(4.15)

である. 任意に $s \in (0, \varepsilon)$ をとる. すると命題 4.1.5 と ε の決め方から

$$\exp(sX) = \exp(sAd_a(Y)) = \exp(Ad_a(sY)) = I_a(\exp(sY)) \in I_a(U_1) = U_2$$
 (4.16)

が成り立つ. よって $X \in \text{Lie}(G_2)$ が示された. 以上より (4.12) が成り立つ.

仮定から $I_{a^{-1}}(U_2)=U_1$ が成り立つことに注意して、これに (4.12) の結果を適用すると、

$$Ad_{a^{-1}}(Lie(G_2)) \subset Lie(G_1) \tag{4.17}$$

が成り立つ. (4.12) と (4.17) によって, (4.11) が示された.

4.2.2 必要性の証明

ここでは定理 4.2.1 の必要性の証明を行う. 証明には、線型リー群の指数写像 \exp が局所的な同相写像である (定理 3.3.4) ことを用いる.

命題 4.2.4 G_1 , G_2 を $\mathrm{GL}_n(\mathbb{R})$ 内の線型リー群とする. このとき, 付随する線型リー代数 $\mathrm{Lie}(G_1)$ と $\mathrm{Lie}(G_2)$ が同型ならば, G_1 と G_2 は局所同型である.

証明. 直感的に言うと、 $\mathrm{Lie}(G_1)$ と $\mathrm{Lie}(G_2)$ が同型ならば、当然ながら局所同型でもあり、 G_1 と $\mathrm{Lie}(G_1)$ および G_2 と $\mathrm{Lie}(G_2)$ はそれぞれ局所同型(定理 3.3.4)なので、これらを繋げれば G_1 と G_2 が局所同型であることが示される.この方針に従って、証明を行う.

仮定より $\mathrm{Lie}(G_1)$ と $\mathrm{Lie}(G_2)$ が同型なので, $a \in \mathrm{GL}_n(\mathbb{R})$ を上手く選ぶと,

$$Ad_a(Lie(G_1)) = Lie(G_2) \tag{4.18}$$

が成り立つ、示すことは、 I_a によって G_1 と G_2 の間の局所同型が与えられることである。定理 3.3.4 より、 G_1 の単位元の近傍 U_1' 、 $\mathrm{Lie}(G_1)$ の 0 の近傍 V_1' 、 G_2 の単位元の近傍 U_2' 、 $\mathrm{Lie}(G_2)$ の 0 の近傍 V_2' を上手くとると、

$$\exp: V_1' \to U_1', \quad \exp: V_2' \to U_2'$$
 (4.19)

は共に同相写像になる.ここで、

$$V_1 := V_1' \cap \operatorname{Ad}_{a^{-1}}(V_2'), \quad V_2 := \operatorname{Ad}_a(V_1') \cap V_2'$$
 (4.20)

とおく. このとき V_1 と V_2 は, それぞれ $\mathrm{Lie}(G_1)$ と $\mathrm{Lie}(G_2)$ の 0 の近傍である. また定義から

$$Ad_a(V_1) = Ad_a(V_1' \cap Ad_{a^{-1}}(V_2')) = Ad_a(V_1') \cap V_2' = V_2$$
(4.21)

となることに注意する. ここで

$$U_1 := \exp(V_1), \quad U_2 := \exp(V_2)$$
 (4.22)

とおくと, U_1 , U_2 はそれぞれ G_1 , G_2 の単位元の近傍である. すると, 命題 4.1.5 および (4.21) から,

$$I_a(U_1) = I_a \circ \exp(V_1) = \exp \circ \operatorname{Ad}_a(V_1) = \exp(V_2) = U_2$$
 (4.23)

となる. 以上により, G_1 と G_2 は局所同型である.