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Abstract. We propose a new scheme Dynamic Creation (DC) of pseudorandom
number generators (PRNG) for large scale Monte Carlo simulations in parallel or
distributed systems. DC receives user’s specification such as word size, period, size
of working area, together with a process ID (or a set of IDs). Then DC creates a
PRNG (or a set of PRNGs, respectively) satisfying the specification, so that ID
number is encoded in the characteristic polynomial of PRNG. Thus, different IDs
assure highly independent PRNGs. Each PRNG is a small Mersenne Twister, which
we proposed previously.

1 Introduction

Nowadays, large scale Monte Carlo simulations like those in nuclear physics or
financial management become popular, and the necessity of random number
generation in the parallel machines or distributed systems is increasing. A
question is how to generate random numbers in such machines. The usual
scheme for PRNG in parallel machines is to use one and the same PRNG for
every process, with different initial seeds. However this procedure may yield
bad collision, in particular if the generator is based on a linear recurrence,
because in this case the sum of two pseudorandom sequences satisfies the same
linear recurrence and may appear in the third sequence. The danger becomes
non-negligible if the number of parallel streams becomes large compared to
the size of the state space.

Here we propose a new scheme named Dynamic Creation (DC) of PRNGs.
DC receives processor ID or process ID or machine ID, according to the ap-
plication, and creates a PRNG with the ID encoded in the characteristic
polynomial of the PRNG, so that different ID assures relatively prime char-
acteristic polynomial. Thus, different IDs imply highly independent PRNGs.
For example, in a parallel machine, each processor has its ID, and we assign
different PRNG to each processor by DC with its ID. Similar method can be
applied for process ID, too.

DC has another merit, i.e., user specification is possible. We proposed
Mersenne Twister (MT) random number generator in [5], and it is now widely
used. Many users sent emails with various requirements on MT, like 31-bit
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version, 8-bit version, smaller working area, etc. DC automatically answers
to these requirements, since it receives word size, memory size, and creates a
MT with that specification.

2 Mersenne Twister

Here we shall briefly explain about MT. MT is a pseudorandom number
generating algorithm with following properties;

— long period

— good k-distribution property
— efficient use of memory

high speed.

An implementation in C language mt19937.c ! has the following records.

period 219937 — 1

623-dimensionally equidistributed to 32-bit accuracy
— consumes 624 words of 32 bits.
about four times faster than rand() in usual C.

MT generates the vectors of word size by the recurrence
Xk+n = Xkt+m + (Xg|X2+1)Aa (k = 07 ]-5 o ) (1)

Here, n > m are fixed positive integers, (xk)kzo,l,,,, is a sequence of w-
dimensional row vectors over the two element field Fo = {0,1}, (x}|x} )
is the w-dimensional vector obtained by concatenating the left w — r bits of
x; and the right r bits of xx41 (u for upper, [ for lower). By multiplying a
matrix A (called twister) from right, we get (x}|x},)A. Every arithmetic
operation is modulo 2, i.e., this is a linear recurrence of vectors in the two
element field IF5. Since A should be chosen to be quickly computable, we
proposed the form called companion matriz:

For such A, xA can be calculated by

<A — if (the least significant bit of x) = 0 then x <« shiftright(x),
N else x < shiftright(x) ® a,

where a = (ag, a1, .-, AQw—_1)-

! This code is available via http://wuw.math.keio.ac.jp/matumoto/emt .html



DC embeds the given ID into a part of this vector a. DC searches for a
so that the period attains the maximal value 2"*~" — 1, where this number
should be a prime (i.e. so-called Mersenne prime). Then, search for a matrix T
(called tempering[4]) such that the sequence x, T has good higher dimensional
distribution for most significant bits.

3 Dynamic Creation

3.1 What is Dynamic Creator?
DC is a program which

1. receives users’ specification, i.e., word size, period, etc.
2. receives ID (process ID, machine ID, etc)
3. creates a (set of parameters for) MT such that
(a) satisfying users’ specification,
(b) ID is encoded in a parameter of MT so that different ID assures
essentially different? PRNG (i.e., the characteristic polynomial of the
recurring sequence is irreducible and distinct to each other).

3.2 A Hypothesis on Independence of PRNGs

We used a hypothesis that a set of PRNGs based on linear recurrences is
mutually “independent” if the characteristic polynomials are relatively prime
to each other.

There is no mathematically rigorous proof on this hypothesis, but many
researchers on PRNG would agree with this. For example if (z;)iew has
characteristic polynomial f(t), (y;)iew has g(t), and if f and g are coprime,
then (z; + y;) has characteristic polynomial f(t)g(¢t). Thus an immediate
correlation like x; + y; = x;41 can never happen.

An ideal method is to select a different theory of random number gen-
eration for each process, (e.g. LCG for one, MT for another, etc), but it is
difficult since we have only a few theories.

Second best strategy would be PRNGs with relatively prime periods, but
is still difficult by the same reason. So we compromise by listing relatively
prime characteristic polynomials. At least, this strategy seems to be safer
than the merely changing initial values, or merely changing ¢ in the LCG
Tn = Tn—1 + cmod M for each generator, since if ¥, = ay, + ¢ mod M
then (z, + ¥n) = a(®n + yn) + (¢ + ¢’) mod M may coincide with a third
generator.

2 under the hypothesis in §3.2



3.3 Encoding ID in the Parameter

Recall that MT has a vector parameter a. One can prove that the character-
istic polynomial @, (t) of the linear recurrence of MT is distinct if a is distinct
[5, 8A.1] (i.e. a — pa(t) is injective, for fixed w,n,m).

DC embeds ID into a. A problem is that not all a satisfy the maximal pe-
riod 2"*~" — 1. Those a with irreducible pa(t) attain the maximal period. So
we use half of the word a as ID, and search for a maximal periodic parameter
by changing the rest part of a. DC receives w/2-bit integer as an ID, then
searches for a giving irreducible , with lower half word fixed to that ID.
We change the higher half word of a deterministically (i.e. pseudorandomly)
and search for an irreducible pa(t) until we find one. Note that this will not
work for small w.

ﬁ w/2 bitﬁﬁ w/2 bit ﬁ
a = # ID Number
L

randomly searched

Fig. 1. Encoding ID in the parameter

After finding a, DC searches for a tempering matrix 7. For the tempering
matrix x — z = xT', we choose the following successive transformations [4]

yi=x® (X >>u) (2)
y =y @ ((y << s) AND b) (3)
y =y ® ((y << t) AND c) (4)
z:=y®(y>>1I), (5)

where [, s, t, and u are integers, b and c are suitable bitmasks of word size,
and (x >> u) denotes the u-bit shiftright ( (x << u) the u-bit shiftleft ).

Usually wu, s, t,1 are fixed, and b, ¢ are searched so that they optimize the
k-distribution property. Here, k-distribution is one of the strongest measures
of the quality of PRNGs defined as follows.

Definition 1. A periodic sequence g, Z1, Z2, ... € [0, 1] of period P is said to
be k-distributed to v-bit accuracy if the points (z;, Tiy1,...,Titk_1) € [0,1]*
(i=0,1,..., P — 1) are uniformly dense in [0, 1]* up to v-bit accuracy.

By k(v), we denote the maximum such k for a given v. Note the trivial upper
bound k(v) < |log,(P)/v]|. Tempering parameters b, ¢ are searched so that
k(v) comes near to this bound for every v.



3.4 Experiments on Dynamic Creation

We implemented the idea of DC in a C-code, and measured the speed using
Sun Ultra 1 (Solaris 2.5, gce-2.7.2).

Distribution of Time for Finding One MT Fix p = 521,n = 17,m =
9,r = 23,w = 32. We have 65536 = 2!¢ different IDs, and DC finds a
corresponding a with maximal periodicity for each ID. We measured the time
to find a parameter for each ID, and made a distribution table. (We didn’t
temper here.) Figure 2 shows that the distribution seems to be exponential,
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Fig. 2. Distribution of CPU time for finding one MT (p=521)

and it would be difficult to expect exactly how much time will be necessary to
create one MT in advance. Same data are listed in Table 1. At worst, it takes
28 seconds to find one MT. Average time is 2.56 seconds. For tempering, it
takes about 5 seconds independently of a.

Average Time for Different Periods Figure 3 shows the average CPU
time to find a MT of period 27 — 1, for p = 127,521,...,4423, i.e. all the
Mersenne exponents between 100 and 5000. (We didn’t temper here.) Same
data are in Table 2.



time(sec.)

0 1 2 3 4 5 6 7 8 9

observed {20495 14055 9649 7227 4356 3156 2190 1350 943 745
thne(sec) 10 11 12 13 14 15 16 17 18 19
observed | 429 297 216 115 105 74 43 26 20 12
time(sec.)| 20 21 22 23 24 25 26 27 28
observed | 10 10 7 2 1 0 0 2 1

Table 1. Distribution of CPU time for finding one MT (p=>521
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Fig. 3. Average CPU time to find one MT(various p)

p 127 [521]607]1279] 2203 | 2281 | 3217 | 4253 | 4423
average(sec.)  [0.045]2.56|4.37|44.96/198.86]258.09(453.91]2760.72|2666.74
number of searched| 100 [100[100] 100 [ 50 | 50 10 10 | 10

Table 2. Average CPU time to find one MT(various p)




Gap between the Realized k-Distribution and the Theoretical Up-
per Bound We chose 1000 different a for p = 521 randomly. After temper-
ing3, we measure its k-distribution k(v) and show the gap from the theoretical
upper bound. For each v, we show the worst (i.e. smallest k(v)) among 1000
MT. A tendency is that for v = 4,8,11,15, k(v) is not close to the bound.
Same data are in Table 3.

Gap of k-distribution fromthe upperbound (p=521)
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Fig. 4. Maximum gap of k(v) from the bound (p = 521)

101112131415 16

v 1234561789

defect|0 1 1018 6 5 6 9 7 4 1310 7 5 1615
v |17 18 19 20 21 22 23 24 26 25 27 28 29 30 31 32

defect{14121110 8 7 6 5 4 4 3 2 1 1 0 0

Table 3. Table of maximum gap of k(v) from the bound (p = 521)

3 In [4][5], our tempering strategy is back-tracking to obtain nearly optimal k(v),
but here in DC, we adopted more a greedy algorithm, i.e. we obtain tempering
parameter from v = 1,2, ..., 4, then v = ¢ + 1 tempering parameter is searched so
that k(¢ + 1) attains the maximal for the possible tempering parameters, with
fixed parameter for v = 1,...,4. Thus, in DC, tempering is faster but more coarse
than that of [5].



4 Why we could do this? ...Due to Mathematics on IF,

There is a slogan in number theory :
Z and IF,[t] are alike, but the latter is much easier.

4.1 LCG-type and IF,-type Generators

There are two classes in linear recurrence for PRNG. Linear Congruential
Generator (LCG-type) generates an integer sequence x1, Z3,. .., by a recur-
rence

Tn =a-Tn_1 mod M.

For a fixed M, we search for a large order a in the multiplicative group
modulo M. LCG-type generators including SWB use integer arithmetic.

IFso-type Generator (e.g. MT, GFSR, Tausworthe) generates a sequence
of polynomials (), z2(t), ..., € IF5[t] by a recurrence

ZTn(t) =t p_1(t) mod M(t)

with high degree (=: p) M(t). For fixed p , we search for M (t) making the
order of t large. IF5-type Generators use polynomial arithmetic.

4.2 Transforming the Lattice Structure

Both LCG-type and IF;-type generators have “lattice structure” in higher
dimension. Strongest tests on PRNGs seem to be those which measure defects
in the lattice structure in k-dimension (for k¥ = 1,2,3,---). For LCG-type, it
is the spectral test[2]. For IFo-type, it is the k-distribution test [8].

To improve the lattice structure, we may transform the output by a func-
tion f, i.e, if @y, xs,--- are the original outputs, then use f(z1), f(z2),---
instead. But to apply these tests, f must preserve the algebraic structure.
Thus, for LCG-type, the test requires f to be

fe Aut (Z/MZ) = (Z/MZ)*,

but in this case f does not change the lattice structure. So, this transforma-
tion is meaningless. Thus, even if we found an a with large order, we must
discard it if the lattice structure is not good. For IFs-type, the test requires

f e Aut w, (F2[t]/(M (1)) = GLy(F2),

where p is degree of M (t), and f may and do change the lattice structure.
For each M (t), we can select an f which nearly optimizes the lattice struc-
ture, i.e., tempering[4]. Thus, we can obtain MT with good k-distribution for
every irreducible M (t), by selecting f. Note that tempering does not change
the characteristic polynomial of the recurrence. This is why we can encode



ID in M(t). (If we try to encode ID in a in LCG, the probability to find a
with large order and good lattice structure would be too small.)

Also, k-distribution test is faster than spectral test. k-distribution test for
MT is fast because of Couture-Tezuka-L’Ecuyer’s lattice method [1] [6] [7]
using Lenstra’s algorithm [3] (c.f. spectral tests in > 500 dimension is nearly
impossible).

5 Remark

A referee commented the following questions about DC.

In [9], it is claimed that, for shift register-type pseudorandom number
generators, the decimated sequence (z;4);ev With d fixed should also have
good k-distribution property for up to some large d. In this respect, there
arise the following questions about DC:

— How is the k-distribution of the decimated sequence obtained from DC?

— How to guarantee that decimated sequences do not follow trinomial re-
currence relation for, say, d < 1000.

— Denote two different sequences produced from DC by (z;)ien and (¥;)icN-
How to avoid the danger that the decimated sequence (x4;) has the same
linear recurrence as (y;)?

Presently, we have not checked k-distribution of the decimated sequence,
and actually we don’t have an efficient scheme to check it. There are possible
collisions among decimated sequences and trinomials, but we consider the
probability is negligibly low when we use irreducible polynomials of degree,
say, 521.

6 Conclusion

We proposed Dynamic Creator (DC) of PRNGs, for

1. admitting user’s specification (word-size, period, etc...)
2. multi-processor or distributed systems.

DC receives ID-number, and encodes it in PRNG, so that different-ID PRNGs
are essentially different. Creation of PRNGs is deterministic and reproducible.
Simplicity of the number theory in IF3[t] makes this method possible.

A TImplementation of DC and its Usage

This section explains an implementation of DC in a C-code and its usage.



A.1 Implementation of DC

The struct mt_struct (Table 4) has all the information to reconstruct a MT,
including the state vector. The parameters for an MT are stored in the struct.
Since the state vector is an array of variable size, mt_struct stores a pointer
to an array, namely mt_struct->state.

typedef unsigned int uint32;
typedef struct {
uint32 aaa;
int mm,nn,rr,ww;
uint32 wmask,umask,lmask;
int shiftO, shiftl, shiftB, shiftC;
uint32 maskB, maskC;
int i;
uint32 *state;
Imt_struct;

Table 4. Definition of mt_struct

Main ingredients in this package are the following five functions.

— mt_struct *get_mt_parameter(int w, int p)

— mt_struct *get_mt_parameter_id(int w, int p, int id)

— mt_struct **get_mt_parameters(int w, int p, int max_id)
— void sgenrand_mt(uint32 seed, mt_struct *mts)

— uint32 genrand_mt (mt_struct *mts)

get_mt_parameter(w, p) gets two arguments; w is the word size of PRNG’s

output, and p is a Mersenne exponent, i.e, a prime number such that 27 — 1
is a prime. The created PRNG has period 2P — 1. This function determinis-
tically randomly searches for a set of parameters for each call, and if it finds
one, allocates the working area for the created MT, makes a mt_struct, and
returns the pointer to the created struct. This pointer is used to generate a
random number by genrand_mt (mts), where mts is a pointer to a mt_struct,
and genrand_mt (mts) returns a pseudorandom integer in [0,2% — 1], where
w is specified word size in mts. Thus, for example,

mt_struct *mts;

long int x,y;

mts = get_mt_parameter(31,521);
x = genrand_mt (mts) ;

y = genrand_mt (mts) ;

stores a set of data of one MT in mts, then assigns two different random inte-
gers of 31-bit in x and y. To be precise, we need to call sgenrand_dc(seed)



once, which initializes a pseudorandom number generator used internally in
the dynamic creator, before calling get_mt_parameter (). Also, we need to
call sgenrand_mt(seed, mts) once before calling genrand_mt (mts) to ini-
tialize the MT associated with mts. The seed is unsigned 32-bit integer, which
is not zero. In an application one may want to have more variety for the ini-
tial seed. In this case, one may use the whole array mts->state[0..n-1]
as the (non zero) initial value, expect that the least significant r bits of
mts->state[0] is neglected.

The crux of DC is its deterministic nature, i.e, if we use the same seeds, the
result of computation is independent of the machine, parallelism, etc. That
is, if mts1 and mts2 are two different parameters, then genrand_mt (mts1)
and genrand_mt (mts2) can run in parallel. In particular,

x = genrand_mt(mtsl);
y = genrand_mt(mts2);

will give the same result with

genrand_mt (mts2) ;
genrand_mt (mts1);

y
X

Thus DC sustains the reproducibility of PRNG even in parallel machines.
get_mt_parameter_id(w, p, id) gets one more argument id, which is
a 16-bit integer, so that different id assures different irreducible characteristic
polynomial.
get_mt_parameters(w, p, max_id) gets another argument max id and
creates a bunch of MTs, i.e, an array of mt_struct of size max_id. It returns
a pointer to the array of mt_struct. So, if we execute

mt_struct **mtss;
mtss = get_mt_parameters(31,521,255) ;

then each of mtss[0], ..., mtss[255] becomes a pointer to an mt_struct, and
genrand_mt (mtss[0]), ..., genrand_mt (mtss[255]) give 256 independent
pseudorandom number streams.

Note The functions get_mt_parameter(), get_mt_parameter_id() and
get_mt_parameters() will return the value NULL if it could not find an ap-
propriate set of parameters.

A.2 Simple Example for Usage

An Example Code for get mt_parameter () Table 5 shows a C-code using
get_mt_parameter(). It creates an MT of word size 31 and period 22! — 1,
and then prints the first 100 outputs. The header file dc.h included there
contains the definition of struct and functions for the dynamic creation pack-
age.



#include <stdio.h>

#include "dc.h"

int main()

{
int i;
mt_struct *mts;
sgenrand_dc(1111);
mts = get_mt_parameter(31,521);
if (mts == NULL) exit(1);
sgenrand_mt (32437, mts);
for (i=0; i<100; i++) {

printf ("%8x\n", genrand_mt(mts));

}
return 0;

}

Table 5. A simple example for usage of get_mt_parameter ()

An Example Code for get mt_parameters() Table 6 shows a C-code
which finds 256 different MTs of word size 31 and period 252! —1. mtss[i] has
distinct parameters and state vector fori = 0, - - -, 255. Then genrand_mt (mtss [i])
generates a pseudorandom integers for each call, and prints first 100 outputs

for each generator. genrand_mt (mtss[i]) for distinct i can run completely

in parallel.

Remark This package will be delivered in the Mersenne Twister home page,
when it is ready.
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#include <stdio.h>
#include "dc.h"

int main()

{

int i,j;
unsigned long seed;
mt_struct **mtss;

sgenrand_dc(1111);
mtss = get_mt_parameters(31,521,0xff);
if (mtss == NULL) exit(1);

for (i=0; i<=0xff; i++) {
do { seed = genrand_dc();} while(seed == 0);
sgenrand_mt ( (uint32)seed,mtss[i]) ;
for (j=0; j<100; j++) {
printf ("%8x ", genrand_mt(mtss[il));
if (j45 == 4) printf("\n");

return O;

Table 6. A simple example for usage of get_mt_parameters()
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