Tamaru's WEB PAGE >
RESEARCH >
TALK >
講演アブストラクト
講演情報
アブストラクト
Left-invariant Riemannian metrics on Lie groups have provided examples of
distinguished metrics, such as Einstein and Ricci soliton.
One of central questions in this area is to examine
whether given Lie groups admit distinguished left-invariant metrics or not.
The answer is well understood for three-dimensional unimodular Lie groups,
for which the Milnor frames play fundamental roles.
Recently, we have developed a general procedure
to obtain a generalization of Milnor frames for any Lie groups,
not only in dimension three.
The method is based on the study of the space of left-invariant metrics
on a Lie group,
which is relevant to submanifold geometry in noncompact symmetric spaces.
In this talk, we explain the procedure we have developed,
and describe some explicit examples.
We will also mention that our procedure can also be applied to
left-invariant pseudo-Riemannian metrics.
This talk is based on several joint works with
Takahiro Hashinaga, Akira Kubo, Kensuke Onda, Yuichiro Taketomi, and Kazuhiro Terada.
参考資料