Tamaru's WEB PAGE (English) >
Tamaru's WEB PAGE (Japanese) > RESEARCH >

Tamaru's PUBLICATION

Preprints

Accepted Papers

Published Papers

2017

  1. Jong Taek Cho, Takahiro Hashinaga, Akira Kubo, Yuichiro Taketomi, Hiroshi Tamaru,
    The solvable models of noncompact real two-plane Grassmannians and some applications.
    In: Hermitian-Grassmannian Submanifolds, Springer Proc. Math. Stat. 203 (2017), 311--321.
    DOI: 10.1007/978-981-10-5556-0_26 (refereed, 2016/10/04 accepted). [ Google scholar ]
  2. Takahiro Hashinaga, Hiroshi Tamaru,
    Three-dimensional solvsolitons and the minimality of the corresponding submanifolds.
    Internat. J. Math. 28 (2017), 1750048 [31 pages].
    DOI: 10.1142/S0129167X17500483 (refereed, 2017/04/07 accepted). [ Google scholar ]

2016

  1. Akira Kubo, Kensuke Onda, Yuichiro Taketomi, Hiroshi Tamaru,
    On the moduli spaces of left-invariant pseudo-Riemannian metrics on Lie groups.
    Hiroshima Math. J. 46 (2016), 357--374.
    DOI: TBA (refereed, 2016/08/02 accepted) [ Google scholar ]
  2. Takahiro Hashinaga, Akira Kubo, Hiroshi Tamaru,
    Homogeneous Ricci soliton hypersurfaces in the complex hyperbolic spaces.
    Tohoku Math. J. (2) 68 (2016), 559--568.
    DOI: 10.2748/tmj/1486177215 (refereed, 2015/02/17 accepted) [ Google scholar | MR3605447 ]
  3. Yoshitaka Ishihara, Hiroshi Tamaru,
    Flat connected finite quandles.
    Proc. Amer. Math. Soc. 144 (2016), 4959--4971.
    DOI: 10.1090/proc/13095 (refereed, 2016/01/13 accepted) [ Google scholar | MR3544543 ]
  4. Hiroshi Tamaru,
    The space of left-invariant Riemannian metrics.
    In: Geometry and Topology of Manifolds, Springer Proc. Math. Stat. 154 (2016), 315--326.
    DOI: 10.1007/978-4-431-56021-0_17 (refereed, 2015/04/01 accepted) [ Google scholar | MR3555990 ]
  5. Seiichi Kamada, Hiroshi Tamaru, Koshiro Wada,
    On classification of quandles of cyclic type.
    Tokyo J. Math. 39 (2016), 157--171.
    DOI: 10.3836/tjm/1459367262 (refereed, 2015/06/16 accepted) [ Google scholar | MR3543136 ]
  6. Takahiro Hashinaga, Hiroshi Tamaru, Kazuhiro Terada,
    Milnor-type theorems for left-invariant Riemannian metrics on Lie groups.
    J. Math. Soc. Japan 68 (2016), 669--684.
    DOI: 10.2969/jmsj/06820669 (refereed, 2014/12/15 accepted) [ Google scholar | MR3488140 ]

2015

  1. Sadahiro Maeda, Hiroshi Tamaru,
    Naturally reductive homogeneous real hypersurfaces in a nonflat complex space form.
    In: Topology Appl. 196, Part B (2015), 675--683.
    DOI: 10.1016/j.topol.2014.01.020 (refereed, 2014/01/14 accepted) [ Google scholar | Zbl 1329.53075 | MR3431006 ]
  2. Hiroshi Tamaru,
    対称空間論の離散化とカンドル代数, Part II.
    In: 研究集会「部分多様体論・湯沢 2014」記録集, 55--60 (2015).
    DOI: unkown (not refereed, 2015/02/20 submitted) [ Link ]
  3. Shinobu Fujii, Hiroshi Tamaru,
    Moment maps and isoparametric hypersurfaces in spheres --- Hermitian cases.
    Transf. Groups 20 (2015), 417--436.
    DOI: 10.1007/s00031-015-9305-1 (refereed, 2014/11/14 accepted) [ Google scholar | Zbl 1330.53111 | MR3348562 ]
  4. Hiroshi Tamaru,
    対称空間論の離散化とカンドル代数, Part I.
    In: Geometry and Analysis (福岡大学微分幾何研究会 2014 記録集), 99--107 (2015).
    DOI: unkown (not refereed, 2014/12/15 submitted) [ pdf (218KB) ]

2014

  1. Hiroshi Tamaru,
    Group actions on symmetric spaces related to left-invariant geometric structures.
    In: Development of group actions and submanifold theory, RIMS Kokyuroku 1929 (2014), 1--12.
    DOI: unkown (not refereed, 2014/10/08 submitted) [ Google scholar ]
  2. Takuya Fujimaru, Akira Kubo, Hiroshi Tamaru,
    On totally geodesic surfaces in symmetric spaces of type AI.
    In: Real and Complex Submanifolds, Springer Proc. Math. Stat. 106 (2014), 211--227.
    DOI: 10.1007/978-4-431-55215-4_19 (refereed, 2014/06/08 accepted) [ Google scholar | Zbl 1321.53060 | MR3333381 ]
  3. Carlos Olmos, Silvio Reggiani, Hiroshi Tamaru,
    The index of symmetry of compact naturally reductive spaces.
    Math. Z. 277 (2014), Issue 3--4, 611--628.
    DOI: 10.1007/s00209-013-1268-0 (refereed, 2013/10/29 accepted) [ Google scholar | Zbl 1302.53056 | MR3229956 ]

2013

  1. Akira Kubo, Hiroshi Tamaru,
    A sufficient condition for congruency of orbits of Lie groups and some applications.
    Geom. Dedicata 167 (2013), no. 1, 233--238.
    DOI: 10.1007/s10711-012-9811-4 (refereed, 2012/12/01 accepted) [ Google scholar | MR3128778 | Zbl 1284.57031 ]
  2. Jurgen Berndt, Hiroshi Tamaru,
    Cohomogeneity one actions on symmetric spaces of noncompact type.
    J. Reine Angew. Math. 683 (2013), 129--159.
    DOI: 10.1515/crelle-2012-0002 (refereed, 2012/03/13 accepted) [ Google scholar | Zbl 1280.53049 | MR3181551 ]
  3. Hiroshi Tamaru,
    Two-point homogeneous quandles with prime cardinality.
    J. Math. Soc. Japan 65 (2013), no. 4, 1117--1134.
    DOI: 10.2969/jmsj/06541117 (refereed, 2012/09 accepted) [ Google scholar | MR3127819 | Zbl 1295.57011 ]
  4. Hiroshi Tamaru,
    The space of left-invariant metrics --- on a generalization of Milnor frames.
    In: Proceedings of The Seventeenth International Workshop on Diff. Geom. 17 (2013), 55--65.
    DOI: none (not refereed, 2013/07 submitted) [ Google scholar | Zbl 1295.53047 | MR3203382 ]
  5. Takahiro Hashinaga, Akira Kubo, Hiroshi Tamaru,
    Some topics of homogeneous submanifolds in complex hyperbolic spaces.
    In: Differential Geometry of Submanifolds and its Related Topics, 230--244, World Scientific, 2013.
    DOI: 10.1142/9789814566285_0020 (refereed, 2013/04/01 accepted) [ Google scholar | Zbl 1300.53056 | MR3203486 ]

2012

  1. Tatsuyoshi Hamada, Yuji Hoshikawa, Hiroshi Tamaru,
    Curvatures properties of Lie hypersurfaces in the complex hyperbolic space.
    J. Geom. 103 (2012), no. 2, 247--261.
    DOI: 10.1007/s00022-012-0127-1 (refereed, 2012/07/10 accepted) [ Google scholar | MR2995128 | Zbl 1266.53057 ]

Until 2011

  1. Parabolic subgroups of semisimple Lie groups and Einstein solvmanifolds,
    Math. Ann. 351 (2011), no. 1, 51--66. [ DOI | Google scholar | MR2824845 | Zbl 1227.53062 ]
  2. The space of left-invariant metrics on a Lie group up to isometry and scaling (with Hiroshi Kodama, Atsushi Takahara),
    Manuscripta Math. 135 (2011), no. 1--2, 229--243. [ DOI | Google scholar | MR2783396 | Zbl 1230.53048 ]
  3. Parabolic subgroups and submanifold geometry of noncompact symmetric spaces,
    In: Proceedings of The Fifteenth International Workshop on Diff. Geom. 15 (2011), 29--38. [ Google scholar | Zbl 1237.53041 | MR2894276 ]
  4. Moment maps and isoparametric hypersurfaces in spheres --- an introduction (with Shinobu Fujii),
    In: Proceedings of The Fifteenth International Workshop on Diff. Geom. 15 (2011), 19--27. [ Google scholar | Zbl 1251.53033 | MR2894275 ]
  5. Hyperpolar homogeneous foliations on symmetric spaces of noncompact type (with Jurgen Berndt, Jose Carlos Diaz-Ramos),
    J. Differential Geom. 86 (2010), no. 2, 191--235. [ Project Euclid | Google scholar | MR2772550 | Zbl 1218.53030 ]
  6. Homogeneous submanifolds in noncompact symmetric spaces,
    In: Proceedings of The Fourteenth International Workshop on Diff. Geom. 14 (2010), 111--144. [ Google scholar | Zbl 1218.53059 | MR2757813 ]
  7. 非コンパクト対称空間への良い作用の構成法,
    In: 部分多様体幾何とリー群作用 2010 記録集, pp39--48 (2010). [ Google scholar ]
  8. Lie groups locally isomorphic to generalized Heisenberg groups (with Hisashi Yoshida),
    Proc. Amer. Math. Soc. 136 (2008), no. 9, 3247--3254. [ DOI | Google scholar | MR2407090 | Zbl 1155.53028 ]
  9. Noncompact homogeneous Einstein manifolds attached to graded Lie algebras,
    Math. Z. 259 (2008), no. 1, 171--186. [ DOI | Google scholar | MR2377747 | Zbl 1151.53044 ]
  10. 複素双曲空間内の等質超曲面の分類,
    In: 部分多様体論・湯沢2007 報告集, pp5--15 (2008). [ Google scholar ]
  11. Cohomogeneity one actions on noncompact symmetric spaces of rank one (with Jurgen Berndt),
    Trans. Amer. Math. Soc. 359 (2007), no. 7, 3425--3438. [ DOI | Google scholar | MR2299462 | Zbl 1117.53041 ]
  12. Parabolic subgroups and Einstein solvmanifolds (in Japanese),
    In: 大阪大学微分幾何研究集会 (坂根先生還暦記念), pp75--85 (2006). [ pdf (155KB) | Google scholar ]
  13. A class of noncompact homogeneous Einstein manifolds (refereed),
    In: Differential Geometry and its Applications, 119--127, Matfyzpress, Prague, 2005. [ Google scholar | Zbl 1112.53035 | MR2268926 ]
  14. Cohomogeneity one actions on noncompact symmetric spaces with a totally geodesic singular orbit (with Jurgen Berndt),
    Tohoku Math. J. 56 (2004), no. 2, 163--177. [ DOI | Google scholar | Zbl 1066.53097 | MR2053317 ]
  15. Cohomogeneity one actions on noncompact symmetric spaces of rank one (in Japanese, with English abstract),
    In: 部分多様体論・湯沢2003 報告集, pp43--48 (2004).
  16. Cohomogeneity one actions on symmetric spaces (refereed),
    In: Theory of Lie groups and manifolds. Sophia Kokyuroku in Mathematics 45 (2003), 105--120. [ pdf (205KB) | Zbl 1038.53052 ]
  17. Homogeneous codimension one foliations on noncompact symmetric spaces (with Jurgen Berndt),
    J. Differential Geom. 63 (2003), no. 1, 1--40. [ Project Euclid | Google scholar | Zbl 1070.53011 | MR2015258 ]
  18. Two-step nilpotent Lie groups and homogeneous fiber bundles,
    Ann. Global Anal. Geom. 24 (2003), no. 1, 53--66. [ DOI | Google scholar | Zbl 1038.53049 | MR1990085 ]
  19. Cohomogeneity one actions on symmetric spaces with a totally geodesic singular orbit (in Japanese),
    RIMS Kokyuroku 1292 (2002), 106--114. [ Google scholar | table of contents | MR1981790 ]
  20. Two-step nilpotent Lie groups (in Japanese, with English abstract),
    In: 部分多様体論・湯沢1999 報告集, pp3--8 (2000). [ Google scholar ]
  21. On certain subalgebras of graded Lie algebras,
    Yokohama Math. J. 46 (1999), no. 2, 127--138. [ YNU-Repository | Google scholar | Zbl 1121.17302 | MR1697854 ]
  22. Riemannian g.o. spaces fibered over irreducible symmetric spaces,
    Osaka J. Math. 36 (1999), no. 4, 835--851. [ Project Euclid | Google scholar | Zbl 0963.53026 | MR1745654 ]
  23. The local orbit types of symmetric spaces under the actions of the isotropy subgroups
    Differential Geom. Appl. 11 (1999), no. 1, 29--38. [ DOI | Google scholar | Zbl 0941.53035 | MR1702475 ]
  24. Weakly symmetric spaces and Riemannian g.o. spaces (in Japanese),
    RIMS Kokyuroku 1069 (1998), 43--52. [ Google scholar | table of contents | Zbl 0952.53026 | MR1701999 ]
  25. Riemannian geodesic orbit metrics on fiber bundles,
    Algebras, Groups Geom. 15 (1998), no. 1, 55--67. [ Google scholar | Zbl 1055.53503 | MR1674790 ]