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Abstract

This study proposes a new test for vector correlation in a high-dimensional
framework, while accommodating a low-dimensional latent factor model. Our
test, built under low-dimensional factor models, distinguishes from previous
normal approximation- based tests, which are valid under a weak spike struc-
ture. We propose a modified RV coefficient for high-dimensional data, and show
that its null-limiting distributions follow a weighted mixture of chi-square dis-
tributions under a high-dimensional asymptotic regime integrated with weak
technical conditions. By applying this asymptotic result and estimation theory
of the number of factors in a low-dimensional factor model, we propose a new
approximation test for vector correlations. We also derive the asymptotic power
function for the proposed test. Lastly, we examine the finite sample and dimen-
sional performance of this test using Monte Carlo simulations.

AMS 2000 subject classification: Primary 62H15; secondary 62F05.

Key words:
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1. Introduction

We let x1, . . . ,xn be p-dimensional random sample with a population mean
vector µ and population covariance matrix Σ. We further partition xi, µ, and
Σ into 2 components:

xi =

(
x1i

x2i

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where xgi and µg are pg × 1 vectors, and Σgh is a pg × ph matrix, g, h ∈ {1, 2}.
Note that p = p1 + p2. The test for assessing the vector correlation can be
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fomulated as

H : Σ12 = O vs. A : Σ12 ̸= O. (1.1)

To construct test (1.1), we introduce the ρV coefficient introduced in [4]. The
ρV coefficient is defined as

ρV12 =
∥Σ12∥2F

∥Σ11∥F ∥Σ22∥F
,

where ∥ · ∥F denotes the Frobenius norm. The ρV -coefficient measures the
correlation between two probability vectors. Particularly , if p1 = p2 = 1, it
corresponds to the square of Pearson’s correlation coefficient. Because Σ12 = O
and ρV12 = 0 are equivalent, the estimator of ρV12 can be used to hypothesize
testing (1.1). The RV coefficient introduced by [9] can be interpreted as a naive
estimator of ρV -coefficient. [10] verifies the accuracy of several permutation
tests for (1.1). [10] introduced an RV coefficient based test, assumes a situation
where the dimensions are not very large, and compares several permutation
tests by simulation. [7] states that the RV coefficient takes high values when
the sample size n is small, and when both p1 and p2 are large. Further, they
corrected the RV coefficient so that it is consistent even in high-dimensional
settings, and showed the asymptotic normality of the corrected RV under a high-
dimensional framework with a multivariate normal population and the following
covariance structure: (hereafter referred to as weak-spike structure).

∥Σ2
gg∥2F

∥Σgg∥4F
= o(1) (p→ ∞). (1.2)

A sufficient condition for condition (1.2) is that the largest eigenvalue of Σgg

grows at a rate o(p
1/4
g ) or O(1). [13] proposed an approximate test for deducing

the block-diagonal covariance structure of a covariance matrix under a popu-
lation distribution with relaxed normality assumptions. When the number of
blocks is 2, it matches test (1.1). Their test is based on the asymptotic nor-
mality of the unbiased estimator of the L2 squared norm of the off-diagonal
block matrix, Σ12. This asymptotic normality is justified under the weak spik-
ing condition (1.2). Recentry, [1] also proposed a modified RV coefficient under
a population distribution with relaxed normality assumptions, and construct
a normal approximation-based test for (1.1). Surprisingly, their study shows
the asymptotic normality of the modified RV coefficient under the assumption
that tr(Σgg) grows at rate O(pg). Note that this assumption holds, even if the
largest eigenvalue of Σgg grows at rate O(pg). Therefore, they indicate that
the asymptotic normality holds under fairly relaxed conditions. However, this
study indicates that their results are incorrect, and derive the correct asymp-
totic distribution of the modified RV coefficient under the condition that some
eigenvalues of Σgg grow at rate O(pg) (See Theorems 1 and Remark 1). In
these studies, normal approximation-based tests for high-dimesnional data are
justified under the weak spiking condition (1.2), for example [11], [12], [5], [6].
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In other words, there is a concern that the normal approximation-based test for
L2 statistic will not work properly if the condition (1.2) does not hold. This was
also noted by [8]. This study provides ρV -based test for (1.1) without the nor-
mality assumption and weak spike structure (1.2), while allowing the dimension
p to be much larger than the sample size n.

This paper proceeds as follows. Section 2 lays out the high-dimensional
asymptotic framework, presents the modified RV coefficients and their asymp-
totic properties, and provides data-driven test procedures. Section 3 evaluates
the finite-sample performance of the proposed test. Lastly, Section 4 presents
the conclusions. The Appendix further presents all proofs and auxiliary techni-
cal results.

2. Main results

2.1. Data generation model and asymptotic framework

The data generation model is assumed to be a latent factor model expressed
as

x = µ+Bf + ϵ. (2.1)

Here, µ ∈ Rp is the population mean vector B is the p× d non-random matrix
B = (b1, . . . ,bp)

⊤ that satisfies rank(B) = d, and elements b1, . . . ,bp are
referred to as factor loadings. f ∈ Rd and ϵ ∈ Rp are random vectors for common
and specific factors, respectively. We assume that f and ϵ are independent. We
let f = (f1, . . . , fd) and ϵ = (ϵ1, . . . , ϵp)

⊤. Furthermore, we assume that fi is
iid with E(fi) = 0, E(f2i ) = 1, and E(f4i ) = κ + 3 < ∞. and ϵj are iid with
E(ϵj) = 0, 0 < E(ϵ2j ) = ψj < ∞, E(ϵ4j ) = ψ2

j (κ+ 3) < ∞ for i ∈ {1, . . . , d}, and
j ∈ {1, . . . , p}. Under these assumptions, E(f) = 0, E(ϵ) = 0, cov(f) = Id and
cov(ϵ) = Ψ = diag(ψ1, . . . , ψp).

We further partition B, Ψ, and ϵ into 2 components:

B =

(
B1

B2

)
, Ψ =

(
Ψ1 O
O Ψ2

)
, ϵ =

(
ϵ1
ϵ2

)
,

where Bg is pg × d nonrandom matrix that satisfies rank(Bg) = dg > 0, Ψg

is pg × pg diagonal matrix, and ϵg is pg-dimensional random vector. These
assumptions, along with Equation (3.1), imply that

µ =

(
µ1

µ2

)
, Σ = BB⊤ +Ψ =

(
B1B

⊤
1 +Ψ1 B1B

⊤
2

B2B
⊤
1 B2B

⊤
2 +Ψ2

)
.

For the asymptotic evaluation, we impose the following regularity conditions:

(A1) pg = pg(n) (g ∈ {1, 2}) is a function of n such that pg tends to infinity
along with n→ ∞, n/pg → θg ∈ (0,∞), and positive integer d is fixed.

(A2) ψmax = max{ψ1, ψ2, . . . , ψp} is bounded.
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(A3) There are two positive semidefinite matricesB∗
11 andB∗

22 such that rank(B∗
11) =

d1 > 0, rank(B∗
22) = d2 > 0, and ∥(1/pg)B⊤

g Bg −B∗
gg∥F → 0 (pg → ∞)

for g ∈ {1, 2}.

(A4) f ∼ Nd(0, Id).

Remark 1. Under (A1)–(A3), tr(Σ2
gg) ≍ p2gtr(B

∗2
gg) ≍ p2g and tr(Σ4

gg) ≍
p4gtr(B

∗4
gg) ≍ p4g. Therefore, the weak-spike structure (1.2) does not hold. This

unique feature distinguishes the weak spike structure in our study from that in
other studies (1.2) considered in the test for (1.1), for example [13], [7].

2.2. Consistent estimator of ρV and its sampling distribution

We let ρV12 denote the vector correlation coefficients between the two com-
ponents x, x1 and x2, defined as (see [4])

ρV12 =
∥Σ12∥2F

∥Σ11∥F ∥Σ22∥F
.

It is clear that the Pearson’s product-moment correlation coefficient is a special
case, ρV12 when p = 1. Furthermore, ρV12 = ρV21, and ρV12 = 0 if and only
if Σ12 = O. Therefore, the natural criterion for testing H must be based on a
suitable statistic for ρV12.

The sample counterpart of ρV12 is obtained as

RV12 =
∥S12∥2F

∥S11∥F ∥S22∥F
,

where the sample covariance matrix of xg and the cross-sample covariance ma-
trix of x1 and x2 are constructed as

∀g ∈ {1, 2}, Sgg =
1

n− 1

n∑
i=1

(xgi − xg)(xgi − xg)
⊤,

S12 =
1

n− 1

n∑
i=1

(x1i − x1)(x2i − x2)
⊤, S21 = S⊤

12

with xg = n−1
∑n

i=1 xgi for g ∈ {1, 2}. The invariance of RV12 was confirmed
by [9]. RV12 is a consistent estimator of ρV12 when n → ∞ and p are fixed;
however, it is not a consistent estimator of ρV12 when n→ ∞ and p→ ∞.

Based on these arguments, the crucial step while constructing the test statis-
tic for testing (1.1) is obtaining an estimator of ρVgh suitable for high-dimensional
settings. Note that Sgh is an unbiased estimator of Σgh, but ∥Sgh∥2F is not an
unbiased estimator of ∥Σgh∥2F . In particular, in high dimensions, ∥Sgh∥2F has
a large bias. Therefore, it is better to use an unbiased estimator of ∥Σgh∥2F .
Therefore, we first consider the following unbiased estimators of ∥Σgh∥2F .

̂∥Σgh∥2F =
n− 1

n(n− 2)(n− 3)
[(n− 1)(n− 2)tr(SghShg) + tr(Sgg)tr(Shh)− nKgh]

4



for g, h ∈ {1, 2}. Here,

Kgh =
1

n− 1

n∑
i=1

∥xgi − xg∥2∥xhi − xh∥2.

̂∥Σ12∥2F is an unbiased estimator of ∥Σ12∥2F obtained from [13]. Additionally,
̂∥Σgg∥2F (g ∈ {1, 2}) is an unbiased estimator of ∥Σgg∥2F derived by [13]. Using
̂∥Σ11∥2F , ̂∥Σ22∥2F , and ̂∥Σ12∥2F , we define the estimator of ρV12 with a high-

dimensionality adjustment as

MRV12 =
̂∥Σ12∥2F

̂∥Σ11∥F ̂∥Σ22∥F
. (2.2)

Estimator (2.2) is the same as that proposed by [1]. Our essential contribution
is not to propose an estimator (2.2), rather to clarify the asymptotic properties
of this estimator in situations where the weak spike condition (1.2) does not
hold. The following theorem lists the asymptotic properties of the proposed
modified estimator (2.2).

Theorem 1. Under (A1)–(A3), MRV12 = ρV12 + op(1) as n, p1, p2 → ∞.

Proof. See Appendix A.

To construct a hypothesis test (1.1), we consider the null distribution of
MRV12. The following theorem provides an asymptotic null distribution of the
adjusted MRV12 under (A1)–(A4):

Theorem 2. Suppose the null hypothesis H in (1.1) is true. Under (A1)–(A4),

nMRV12 +
tr(Λ1)tr(Λ2)√
tr(Λ2

1)tr(Λ
2
2)
⇝

d1∑
i=1

d2∑
j=1

λ1iλ2j√
tr(Λ2

1)tr(Λ
2
2)
χ2
ij (n, p1, p2 → ∞),

(2.3)

where χ2
11, . . . , χ

2
1d1
, χ2

21, . . . , χ
2
2d2

are mutually independent chi-squared distributed
random variables with one degree of freedom, Λ1 = diag(λ11, . . . , λ1d1

) is d1×d1
diagonal matrix whose diagonal components are the nonzero eigenvalues of B∗

11,
and Λ2 = diag(λ21, . . . , λ2d2) is d2 × d2-diagonal matrix whose diagonal compo-
nents are the nonzero eigenvalues of B∗

22.

Proof. See, Appendix B.

The following remark argues that the sufficient condition tr(Σgg)/pg =
O(1) (g ∈ {1, 2}) for the asymptotic normality of MRV12 in [1] is incorrect.

Remark 2. [1] show the asymptotic normality of nMRV12/
√
2 under tr(Σgg)/pg =

O(1) (g ∈ {1, 2}) and other regularity conditions. Note that under Assump-
tions (A2) and (A3), tr(Σgg)/pg = O(1) (g ∈ {1, 2}) holds. In Theorem 2, if
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d1 = d2 = 1, nMRV12+1 converges to a chi-square distribution with one degree
of freedom. Therefore, this example is a counterexample in which the asymptotic
normality of nMRV12/

√
2 does not hold, even though tr(Σgg)/pg = O(1) (g ∈

{1, 2}) holds.

We further examine the behavior of nMRV12/
√
2 when condition (1.2) holds

and when it does not, using a toy example. We set p1 = p2 = 500, n = 100, and
d = 2. The data generation model is as follows.

x =

(
σ11p1

0
0 σ11p2

)
f + ϵ, (2.4)

where f ∼ N2(0, I2), ϵ ∼ Np(0, σ
2Ip), and f and ϵ are independet. Then,

Σgg = σ2
11pg

1⊤
pg

+ σ2Ip and Σ12. We consider two cases: (a) σ1 = 0 and (b)
σ1 = 1. Note that (a) is the case when condition (1.2) holds, and (b) is the case
when condition (1.2) does not hold. We generated independent pseudorandom
observations from model (2.4) and calculated nMRV12/

√
2 100,000 times. Fig.

1 shows histograms for (a) and (b). nMRV12/
√
2 converges to N (0, 1) in (a).

However, it does not converge in (b). In case (b), as mentioned in the remark,
it is almost the same as the density function of (χ2

1 − 1)/
√
2. Remark 1 and the

numerical results show that the sufficient condition for the asymptotic normality
of nMRV12/

√
2 is (1.2) and not tr(Σgg)/pg = O(1) (g ∈ {1, 2}).

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

(a) When σ1 = 0

-4 -2 0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

(b) When σ2 = 1

Figure 1: The histograms of nMRV12/
√
2 for the case when condition (1.2) holds

(in the left panel) and for the case when condition (1.2) does not hold (in
the right panel). The dashed line denotes the density function of N (0, 1).
The solid line denotes the density function of (χ2

1 − 1)/
√
2.

2.3. Approximation test and its asymptotic properties

By estimating the unknown parameters in the random variable on the left-
hand side of (2.3), we construct a test statistic for (1.1).

First, by applying the idea in [2], we estimate dg. We focus on the criterion
function originally proposed by [2]:

ERg(i) =
λi(Sgg)

λi+1(Sgg)
,
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where λi(·) is the i-th largest eigenvalue and ERg is the eigenvalue ratio. The
estimator of dg is given by the number i that minimizes ERg(i), that is,

d̂g = argmax
1≤i≤ig,max

ERg(i), (2.5)

where ig,max denotes the prespecified upper bound of i.
We further estimate the unknown parameters tr(Λg) and tr(Λ2

g) in (2.3)
using

t̂r(Λg) =

d̂g∑
i=1

λ̂gi and t̂r(Λ2
g) =

d̂g∑
i=1

λ̂2gi,

respectively. Here, λ̂gi = λi(Sgg)/pg for i ∈ {1, 2, . . . , d̂g} and g ∈ {1, 2}.
Using these estimators, we propose a test statistic, defined as

T = nMRV12 +
t̂r(Λ1)t̂r(Λ2)√
t̂r(Λ2

1)t̂r(Λ
2
2)

.

The following theorem further shows that T has the same limiting null distri-
bution as the random variable on the left side of (2.3).

Theorem 3. Suppose the null hypothesis H in (1.1) is true. In (A1)–(A4),

T ⇝
d1∑
i=1

d2∑
j=1

λ1iλ2j√
tr(Λ2

1)tr(Λ
2
2)
χ2
ij (n, p1, p2 → ∞).

Proof. See, Appendix C.

Based on the results of Theorem 3, we provide an approximate test for (1.1).
The test involves four steps.

1. We draw n observations from the population and calculate d̂g, λ̂gi for

i ∈ {1, . . . , d̂g}, t̂r(Λg), and t̂r(Λ2
g) for g ∈ {1, 2}. Using these estimators,

we construct T .

2. We further draw a sample of d̂1 × d̂2 independently and χ2
ij-distributed

random variables to obtain

T̃ =

d̂1∑
i=1

d̂2∑
j=1

λ̂1iλ̂2j√
t̂r(Λ2

1)t̂r(Λ
2
2)

χ2
ij .

3. We then repeat step 2 until we obtain a Monte Carlo estimate of the
distribution for the random variable T̃ and its (1− α)-quantile t̂α.

4. We further realized an approximate test with the nominal size α as follows:

Reject H def⇐⇒ T > t̂α. (2.6)
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To examine the power of test (2.6), we consider the following fixed alterna-
tive:

AF : ∥Σ12∥2F /(p1p2) convergence to some δ ∈ (0, ∥B∗
11∥F ∥B

∗
22∥F ) as p1, p2 →

∞.

Under the fixed alternatives AF , (A2), and (A3), ρV12 converges to ρV ∗
12 =

δ/(∥B∗
11∥F ∥B

∗
11∥F ) ∈ (0, 1) as p1, p2 → ∞. The following theorem provides

the asymptotic distribution of the MRV coefficient under the fixed alternative
hypothesis:

Theorem 4. Under fixed alternatives AF and (A1)–(A4),
√
n(MRV12 − ρV12)

σ
⇝ N (0, 1) (n, p1, p2 → ∞),

where

σ2 =2ρV 2
12

[
p41∥B

∗2
11∥2F

∥Σ11∥4F
+
p42∥B

∗2
22∥2F

∥Σ22∥4F
+ 2p21p

2
2

tr{(B∗
11B

∗
22)

2}+ tr(B2∗
11B

2∗
22)

∥Σ12∥4F

+
2p21p

2
2tr(B

∗2
11B

∗2
22)

∥Σ11∥2F ∥Σ22∥2F
− 4p31p2tr(B

∗3
11B

∗
22)

∥Σ11∥2F ∥Σ12∥2F
− 4p1p

3
2tr(B

∗3
22B

∗
11)

∥Σ22∥2F ∥Σ21∥2F

]
. (2.7)

Proof. See, Appendix D.

Applying this theorem, we obtain the following corollary of the asymptotic
power under the fixed alternative AF .

Corollary 1. Under fixed alternatives AF and (A1)–(A4), the asymptotic power
function converges to 1 as n, p1, p2 → ∞.

Proof. See, Appendix E.

Note that the asymptotic power function is equal to one for all values un-
der a fixed alternative AF . This is the notion of consistency for a test: it has
asymptotic power 1 under every fixed alternative AF . Accordingly, the asymp-
totic power vs. fixed alternative AF is not a sufficiently discerning asymptotic
criterion for distinguishing between the tests. This problem can be addressed
by considering the following local alternatives:

AL: Let η be a constant greater than or equal to 1/2. There exists a d × d
matrix Ξ such that all diagonal elements are 0 and at least one off-diagonal
element is not 0 such that the following condition is met:∥∥∥∥ nη

p1p2
B⊤

1 B1B
⊤
2 B2 −Ξ

∥∥∥∥
F

→ 0 (n, p1, p2 → ∞).

Furthermore, there exists a positive real number ∆ such that the following
condition is met:

n2η

p1p2
∥Σ12∥2F =

n2η

p1p2
tr(B⊤

1 B1B
⊤
2 B2) → ∆ (n, p1, p2 → ∞).
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Note that ρV12 ≍ n−2η under (A1)–(A3) and AL.

Theorem 5. Under the local alternatives AL and (A1)–(A4),

nMRV12 +
tr(Λ1)tr(Λ2)

∥Λ1∥F ∥Λ2∥F
⇝
{

∆/(∥Λ1∥F ∥Λ2∥F ) + z⊤C∗z+ c∗⊤z η = 1/2,
z⊤C∗z η > 1/2.

where z has a d2-variate normal distribution with a mean vector 0 and covari-
ance matrix Id2 +Kd2 and

C∗ =
1

∥Λ1∥F ∥Λ2∥F
(B∗

11 ⊗B∗
22), c∗ =

1

∥Λ1∥F ∥Λ2∥F
vec(Ξ+Ξ⊤).

Here, Kd2 denotes the commutation matrix.

Proof. See Appendix F.

Applying the theorem, we obtain the following corollary of the asymptotic
power under local alternative (L).

Corollary 2. Under (A1)–(A4), the asymptotic power function is

Pr(T > t̂α|AL) =

{
G{tα −∆/(∥Λ1∥F ∥Λ2∥F )}+ o(1) η = 1/2,
α+ o(1) η > 1/2,

where G(·) denotes the cumulative distribution function of z⊤C∗z+ c∗⊤z.

Proof. See Appendix G.

3. A simulation study

In this section, we examine the size and power of test (2.6) in a finite sample.
Throughout this section, the sample size n is n ∈ {p/2, p, 2p}, the dimension
p1 and p2 are (p1, p2) = (100ℓ, 150ℓ) for ℓ ∈ {1, 2, 4, 8}, the number of factors
d is d ∈ {2, 4}, and the nominal size α is α = 0.05. We assume that the data
xi = (xi1, . . . , xip)

⊤ follow the model

xij = b⊤
j fi + ϵij i ∈ {1, . . . , n}, j ∈ {1, . . . , p}. (3.1)

The specific factors were drawn from the following three distribution scenarios:.

(D1): ϵij
iid∼ N (0, 1).

(D2): Let eij
iid∼ χ2

1, then ϵij = (eij − 1)/
√
2.

(D3): Let eij
iid∼ LN (0, 1), then ϵij = (eij − e1/2)/

√
e(e− 1).

The common factors fi
iid∼ Nd(0, Id).

For each fixed p1, p2, and n, we repeat the following steps 10, 000 times, and
calculate the empirical size or power of the proposed test (2.6) by recording the
number of times the null hypothesis H is rejected.
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1. Generate independently {bj}pj=1 and set B.

2. Generate independently {ϵi}ni=1.

3. Generate independently {fi}ni=1.

4. Calculate {xi}ni=1 from xi = Bfi + ϵi.

5. Set prespecified upper bound in (2.5) to 10, estimate d̂1 and d̂2. Execute
test steps 1 to 4 in Section 2.3 and record 1 if the null hypothesis H is
rejected.

3.1. Size comparison with previous research

To ascertain the size of the test (2.6), we set the factor loadings bj =
(bj1, . . . , bjd)

⊤ as follows for each d = 2 and d = 4 so that the null hypoth-
esis H holds.

• d = 2:For j ∈ {1, . . . , p1}, bj1
iid∼ N (1, 1), bj2 = 0. For j ∈ {p1 + 1, . . . , p},

bj1 = 0, bj2
iid∼ N (1/2, 1).

• d = 4:For j ∈ {1, . . . , p1}, bj1, bj2
iid∼ N (1, 1), bj3 = bj4 = 0. For j ∈

{p1 + 1, . . . , p}, bj1 = bj2 = 0, bj3, bj4
iid∼ N (1/2, 1).

We also compared the proposed test (2.6) with the test procedures in [3] and [1]
in terms of size control. These tests are denoted by Cor, and Ahm, respectively,
and our proposed test is denoted by HNN throughout this section.

The covariance structure in this simulation setting satisfies assumptions (A2)
and (A3). Therefore, Theorem 3 shows that the size of our test converges to
the nominal size for large p and n. Tables 1 and 2 indicate that our proposed
test HNN provides a valid asymptotic test with an accurate size control for
most simulation settings. The test sizes for HNN are close to the nominal levels
even for (p1, p2, n) = (100, 150, 125) in Table 1, indicating that the asymptotic
condition described by Theorem 3 occurs even with relatively small dimensions.
Furthermore, HNN systematically outperforms both Cor and Ahm in terms of
size control across different distributions. However , the sizes of Cor and Ahm
are larger than the nominal size in all cases considered in this simulation. Cor
is theoretically valid in large-sample settings; therefore, it is likely that it does
not work in high dimensions. Additionally, as mentioned in Remark 2, Ahm
has no theoretical validity under the covariance structures in this simulation
settings. Therefore, the approximation accuracy may deteriorate. As expected,
Ahm exhibits an inflated size in almost all simulation settings. Additionally,
the size does not converge to the nominal level because both p and ng increase.
This is likely because the asymptotic normality of the test statistic does not
hold under the covariance structures in the simulation settings.

10



Table 1: This table presents the case where the number of factors d is d = 2. The sizes
of the proposed tests (HNN), approximate permutation test by [3] (Cor),
and tests based on normal approximation by [1] (Ahm) are evaluated under
three different distribution scenarios for specific factors at a significance
level of 5%. The average size in each column is listed in the “mean” row,
and the standard deviation of size in each column is listed in the “sd” row.

n = p/2 n = p n = 2p
(p1, p2) ϵij HNN Ahm Cor HNN Ahm Cor HNN Ahm Cor

(D1) 4.88 6.81 6.67 5.44 7.43 7.25 5.10 6.68 6.24
(100, 150) (D2) 5.36 7.11 7.08 5.17 6.86 6.70 5.02 6.72 6.21

(D3) 5.17 6.94 6.79 5.04 6.82 6.69 4.88 6.77 6.24
(D1) 5.02 6.83 6.78 4.90 6.80 6.79 5.25 6.91 6.37

(200, 300) (D2) 5.18 6.79 6.87 4.78 6.41 6.26 5.33 7.30 6.75
(D3) 5.35 7.37 7.34 4.76 6.80 6.70 4.93 7.10 6.49
(D1) 4.98 6.85 6.71 5.40 7.15 7.19 4.91 6.87 6.66

(400, 600) (D2) 5.14 6.88 6.81 5.17 6.99 6.91 5.09 6.88 6.69
(D3) 4.87 6.96 6.83 5.28 6.83 6.78 5.27 7.12 6.88
(D1) 4.87 6.61 6.58 4.97 6.84 6.81 4.74 6.37 6.23

(800, 1200) (D2) 5.19 6.87 6.89 4.77 6.60 6.60 5.26 7.07 6.91
(D3) 4.93 7.04 7.08 4.93 6.52 6.56 5.01 6.77 6.62

mean 5.08 6.92 6.87 5.05 6.84 6.77 5.07 6.88 6.52
sd 0.17 0.18 0.20 0.23 0.26 0.25 0.18 0.24 0.25

Table 2: This table presents the case where the number of factors d is d = 4. The sizes
of the proposed tests (HNN), the approximate permutation test by [3] (Cor),
and tests based on normal approximation by [1] (Ahm) are evaluated under
three different distribution scenarios for specific factors at a significance
level of 5%. The average size in each column is listed in the “mean” row,
and the standard deviation of size in each column is listed in the “sd” row.

n = p/2 n = p n = 2p
(p1, p2) ϵij HNN Ahm Cor HNN Ahm Cor HNN Ahm Cor

(D1) 4.36 6.06 6.15 5.10 7.16 6.94 5.18 7.07 6.20
(100, 150) (D2) 5.14 6.98 6.99 5.48 7.23 7.07 4.81 6.60 5.79

(D3) 5.46 7.15 7.04 5.07 6.48 6.31 4.93 6.60 5.77
(D1) 5.20 7.29 7.16 4.66 6.51 6.37 4.92 7.04 6.37

(200, 300) (D2) 5.06 7.09 7.03 5.06 6.79 6.67 5.34 7.24 6.68
(D3) 4.69 6.51 6.44 5.19 7.16 7.03 5.18 6.96 6.29
(D1) 5.08 7.10 7.10 4.72 6.68 6.62 4.88 6.60 6.35

(400, 600) (D2) 5.21 7.43 7.34 5.22 7.08 7.06 4.67 6.52 6.33
(D3) 5.02 6.89 6.82 5.07 7.19 7.16 4.87 6.88 6.51
(D1) 5.35 7.33 7.27 4.74 6.86 6.86 4.87 6.67 6.53

(800, 1200) (D2) 4.74 6.70 6.63 5.13 7.05 6.97 4.83 6.77 6.65
(D3) 4.95 6.75 6.83 5.47 7.39 7.32 5.31 6.98 6.98

mean 5.02 6.94 6.90 5.08 6.97 6.87 4.98 6.83 6.37
sd 0.29 0.37 0.33 0.25 0.28 0.30 0.21 0.22 0.33

3.2. Accuracy of approximate power function

Because the discrepancies in the size and nominal size for Cor and Ahm are
large, we consider only the power of the proposed test in this section. We verify
the finite-sample accuracy of the asymptotic power function when η = 1/2 in
Corollary 2. To investigate the power of test (2.6), we set the factor loadings
bj = (bj1, . . . , bjd)

⊤ as follows for each d = 2 and d = 4 so that the local
alternative AL (η = 1/2) holds.

• d = 2:For j ∈ {1, . . . , p1}, bj1
iid∼ N (1, 1), bj2 = 3n−1/2. For j ∈ {p1 +
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1, . . . , p}, bj1 = 0, bj2
iid∼ N (1/2, 1).

• d = 4:For j ∈ {1, . . . , p1}, bj1, bj2
iid∼ N (1, 1), bj3 = bj4 = 3n−1/2. For

j ∈ {p1 + 1, . . . , p}, bj1 = bj2 = 0, bj3, bj4
iid∼ N (1/2, 1).

The following steps are followed to calculate the approximate power based
on the results in Corollary 2:

1. For η = 1/2, we caluclate B̃
∗
gg = (1/pg)B

⊤
g Bg, λ̃gi = λi(B̃

∗
gg), Λ̃g =

diag(λ̃g1, . . . , λ̃gdg ), ∆̃ = n2ηtr(B̃
∗
11B̃

∗
22), and Ξ̃ = nηB̃

∗
11B̃

∗
22.

2. We draw a sample of d1 × d2 independently and χ2
ij-distributed random

variables to obtain

TH =

d1∑
i=1

d2∑
j=1

λ̃1iλ̃2j√
tr(Λ̃2

1)tr(Λ̃
2
2)
χ2
ij .

We repeat this operation until we obtain a Monte Carlo estimate of the
distribution for the random variable TH and its (1− α)-quantile t̃α.

3. We draw a sample of z from Nd2(0,Kd2 + Id2) and caluclate

TA = z⊤C̃∗z+ c̃∗⊤z,

where

C̃∗ =
1

∥Λ̃1∥F ∥Λ̃2∥F
(B̃

∗
11 ⊗ B̃

∗
22), c̃

∗ =
1

∥Λ̃1∥F ∥Λ̃2∥F
vec(Ξ̃+ Ξ̃⊤).

We repeat this operation until we obtain a Monte Carlo estimate G̃(·) of
the distribution for the random variable TA. By using G̃(·), we obtain

Pr(T > t̂α|AL) ≈ G̃

(
t̃α − ∆̃

∥Λ̃1∥F ∥Λ̃2∥F

)
.

In Tables 3 and 4, the approximate and empirical powers calculated by the
simulation are denoted by APW and EPW, respectively. Tables 3 and 4 verify
that the asymptotic power function given by Corollary 2 is a good approximation
of power in high-dimensional settings. Tables 3 and 4 indicate that APW is very
close to EPW for most simulation settings.

4. Conclusion

This study presents a test statistic for vector correlation for high-dimensional
data using a low-dimensional factor model. We formulate the test statistic as
a consistent estimator of ρV coefficient. We further employ the corresponding
asymptotic theory to derive the null and non-null limiting distributions of the
proposed test when both the sample size and dimensions approach infinity. The
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Table 3: This table presents the case where the number of factors d is d = 2. The
power of the proposed tests (EPW) and the approximate power (APW) are
evaluated under three different distribution scenarios for specific factors at
a significance level of 5%. The average power in each column is listed in the
“mean” row, and the standard deviation of power in each column is listed
in the “sd” row.

n = p/2 n = p n = 2p
(p1, p2) ϵij EPW APW EPW APW EPW APW

(D1) 56.88 58.75 55.74 55.68 56.57 55.41
(100, 150) (D2) 57.59 56.40 56.53 56.39 56.67 57.08

(D3) 57.29 55.82 57.09 55.31 56.64 56.15
(D1) 67.94 67.21 67.66 67.96 68.06 67.54

(200, 300) (D2) 66.67 66.84 67.40 67.44 67.27 66.27
(D3) 68.03 67.69 67.95 66.04 67.03 66.61
(D1) 57.73 57.34 57.41 57.49 58.05 58.99

(400, 600) (D2) 57.09 57.33 58.27 57.34 57.65 58.30
(D3) 57.19 57.80 57.41 57.20 57.25 58.06
(D1) 58.47 60.59 59.01 58.57 58.81 57.29

(800, 1200) (D2) 58.88 59.75 59.46 59.85 59.34 60.87
(D3) 58.74 58.09 58.82 57.64 57.92 57.81

mean 60.21 60.30 60.23 59.74 60.11 60.03
sd 4.29 4.20 4.41 4.44 4.32 4.13

Table 4: This table presents the case where the number of factors d is d = 4. The
power of the proposed tests (HNN) and the approximate power (Approx)
are evaluated under three different distribution scenarios for specific factors
at a significance level of 5%. The average power in each column is listed
in the “mean” row, and the standard deviation of power in each column is
listed in the “sd” row.

n = p/2 n = p n = 2p
(p1, p2) ϵij EPW APW EPW APW EPW APW

(D1) 62.87 63.98 64.36 63.13 65.35 65.01
(100, 150) (D2) 63.82 62.89 64.16 65.40 64.00 65.50

(D3) 63.38 62.91 64.18 63.23 65.44 64.59
(D1) 62.65 62.65 63.48 63.36 62.55 65.56

(200, 300) (D2) 62.93 62.25 63.37 64.00 63.09 62.13
(D3) 62.79 62.26 63.96 63.66 62.56 64.57
(D1) 59.23 58.45 58.11 59.72 59.53 58.21

(400, 600) (D2) 58.48 58.48 59.04 58.42 59.22 59.86
(D3) 58.64 60.45 58.90 59.75 59.02 59.60
(D1) 67.61 66.62 67.77 67.72 67.02 68.03

(800, 1200) (D2) 66.78 67.83 67.94 67.52 67.80 66.85
(D3) 68.12 65.46 66.57 66.03 68.42 69.10

mean 63.11 62.85 63.49 63.50 63.67 64.08
sd 3.11 2.77 3.15 2.87 3.14 3.29

asymptotic theory of the test was developed under a few mild assumptions,
and accommodates a wide class of highly spiked, high-dimensional covariance
models for the population, which usually represent a factor structure.

We propose a chi-square mixture-type of asymptotic approximations of the
test statistic, along with a Monte Carlo simulation scheme, to compute the
critical values of the test. This approach is in contrast to that of [1], in which
the asymptotic theory of the proposed tests centers around the normal limits
of the null distribution. Both our theoretical findings and numerical studies
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justify that the proposed construction of the ρV coefficient–based test statistic,
and its chi-squared mixture approximation allow for better test size control.
Therefore, our proposed approach is more suitable for high-dimensional models
with a latent factor structure than the test proposed by [1], which does not
consider the structural aspects of the distribution of the underlying population.

Consequently, the proposed testing method may be appropriate for high-
dimensional, vector correlation tests when the data have an unknown degree
with an underlying low-dimensional latent factor structure. The test performs
very well for many practical distributions of the factor vector and error term
of (3.1) and spiked distributions, where the dimensions may greatly exceed the
sample size, and even for a moderate number of independent samples.

Appendix

A. Proof of Theorem 1

Let ygi = xgi − µg for g ∈ {1, 2}. Note that

yi =

(
y1i

y2i

)
=

(
B1 Ψ

1/2
1 O

B2 O Ψ
1/2
2

) fi
e1i
e2i

 ,

where egi = Ψ
−1/2
g ϵgi for i ∈ {1, . . . , n}, g ∈ {1, 2}.

First, we evaluate ̂∥Σgh∥2F , denoted as

̂∥Σgh∥2F = J1 − 2J2 + J3,

where

J1 =
1

n(n− 1)

n∑
i,j=1

i ̸=j

y⊤
giygjy

⊤
hiyhj ,

J2 =
2

n(n− 1)(n− 2)

n∑
i,j,k=1

i ̸=j,j ̸=k,k ̸=i

y⊤
giygjy

⊤
hiyhk,

J3 =
1

n(n− 1)(n− 2)(n− 3)

n∑
i,j,k,ℓ=1

i ̸=j ̸=k ̸=ℓ,k ̸=i ̸=ℓ ̸=j

y⊤
giygjy

⊤
hkyhℓ.

Because the expectation value of J1 is ∥Σgh∥2F and the expectation values

of J2 and J3 are 0, the unbiasedness of ̂∥Σgh∥2F is verified.
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var(J1) is calculated as

var(J1) =
2

n2(n− 1)2

n∑
i,j=1

i ̸=j

E{(y⊤
giygj)

2(y⊤
hiyhj)

2}

+
4

n2(n− 1)2

n∑
i,j,k=1

i ̸=j,j ̸=k,k ̸=i

E(y⊤
giygjy

⊤
hiyhjy

⊤
giygky

⊤
hiyhk)

+
1

n2(n− 1)2

n∑
i,j,k,ℓ=1

i ̸=j ̸=k ̸=ℓ,k ̸=i ̸=ℓ ̸=j

E(y⊤
giygjy

⊤
hiyhjy

⊤
gkygℓy

⊤
hkyhℓ)

=
2

n(n− 1)
tr(A2

1)tr(A
2
2) +

2

n(n− 1)
{tr(A1A2)}2

+
4

n
tr{(A1A2)

2}+ 4

n
tr(A2

1A
2
2)

+
κ

n
tr{(A1A2)⊙ (A1A2)}+

κ

n
tr{(A2A1)⊙ (A2A1)}

+
2κ

n
tr{(A1A2)⊙ (A2A1)}+

2κ

n(n− 1)
tr{(A1 ⊙A2)

2}

+
4κ

n(n− 1)
tr(A2

1 ⊙A2
2) +

4κ

n(n− 1)
tr{(A1A2)⊙ (A2A1)}

+
2

n(n− 1)
tr{(A1A2)

2}+ 2

n(n− 1)
tr(A2

1A
2
2),

where

A1 =

 B⊤
1 B1 B⊤

1 Ψ
1/2
1 O

Ψ
1/2
1 B1 Ψ1 O
O O O

 , A2 =

 B⊤
2 B2 O B⊤

2 Ψ
1/2
2

O O O

Ψ
1/2
2 B2 O Ψ2

 .

Therefore, under (A1)–(A3),

1

n2(n− 1)2
var

 n∑
i,j=1

i ̸=j

y⊤
giygjy

⊤
hiyhj

 = O(p4/n).

Under Assumptions (A1) and (A2), the variance of each term is:

4

n2(n− 1)2(n− 2)2
var

 n∑
i,j,k=1

i ̸=j,j ̸=k,k ̸=i

y⊤
giygjy

⊤
hiyhk

 = O(p4/n3),

1

n2(n− 1)2(n− 2)2(n− 3)2
var

 n∑
i,j,k,ℓ=1

i ̸=j ̸=k ̸=ℓ,k ̸=i ̸=ℓ ̸=j

y⊤
giygjy

⊤
hkyhℓ

 = O(p4/n4).
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Therefore, for g, h ∈ {1, 2},

̂∥Σgh∥2F
pgph

=
∥Σgh∥2F
pgph

+Op(n
−1/2). (A.1)

From (A.1), ∥Σ12∥F = O(
√
p1p2) and ∥Σgg∥F ≍ pg (g ∈ {1, 2}) under (A1) and

(A2),

HRV12 =
̂∥Σ12∥2F /(p1p2)√

̂∥Σ11∥2F /p21
√

̂∥Σ22∥2F /p22

=
∥Σ12∥2F /(p1p2) +Op(n

−1/2)

{∥Σ11∥F /p1 +Op(n−1/2)}{∥Σ22∥F /p2 +Op(n−1/2)}
=ρV12 + op(1).

B. Proof of Theorem 2

First, we derive stochastic asymptotic expansion of n ̂∥Σ12∥2F /(p1p2).

n

p1p2
̂∥Σ12∥2F =

1

np1p2

n∑
i,j=1

i ̸=j

f⊤i B⊤
1 B1fjf

⊤
i B⊤

2 B2fj + op(1)

=
1

n
tr

 n∑
i,j=1

i ̸=j

fif
⊤
i B∗

11fjf
⊤
j B∗

22

+ op(1). (B.1)

Here, when the null hypothesis Σ12 = B1B
⊤
2 = O is true, B∗

11B
∗
22 = O. There-

fore, when the null hypothesis is true, B∗
11 and B∗

22 can be simultaneous diag-
onalization. In other words, an appropriate orthogonal matrix H that satisfies
the following decomposition exists

B∗
11 = HΛ̃11H

⊤,B∗
22 = HΛ̃22H

⊤,

where

Λ̃1 =

(
Λ1 Od1,d2

Od2,d1
Od2,d2

)
, Λ̃2 =

(
Od1,d1

Od1,d2

Od2,d1
Λ2

)
.

Under (A4), because the distribution of fi is invariant under any orthogonal
transformation, the principal term in (B.1) follows the same distribution as:

1

n
tr

 n∑
i,j=1

i ̸=j

fif
⊤
i Λ̃1fjf

⊤
j Λ̃2

 .
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We let Vi = fif
⊤
i − Id, W = n−1/2

∑n
i=1 Vi, and z̃ = vec(W). As Λ̃1Λ̃2 =

Λ̃2Λ̃1 = O under the null hypothesis, the main term can be rewritten as follows:

1

n
tr

 n∑
i,j=1

i ̸=j

fif
⊤
i Λ̃1fjf

⊤
j Λ̃2

 =
1

n
tr

 n∑
i,j=1

i ̸=j

ViΛ̃1VjΛ̃2


=z̃⊤

(
Λ̃1 ⊗ Λ̃2

)
z̃

− 1

n

n∑
i=1

{
tr(Λ̃1ViΛ̃2Vi)− tr(Λ̃1)tr(Λ̃2)

}
− tr(Λ̃1)tr(Λ̃2)

=z̃⊤
(
Λ̃1 ⊗ Λ̃2

)
z̃− tr(Λ1)tr(Λ2) + op(1).

From CLT, under (A1)–(A4),

z̃⇝ Nd2 (0, Id2 +Kd2) (n, p1, p2 → ∞).

From the above discussion, under (A1)–(A4) and H,

n ̂∥Σ12∥2F
p1p2

+ tr(Λ1)tr(Λ2)⇝ z⊤(Id2 +Kd2)
(
Λ̃1 ⊗ Λ̃2

)
z (n, p1, p2 → ∞),

(B.2)

where z ∼ N (0, Id2). Furthermore, because (Id2 + Kd2)(Λ̃1 ⊗ Λ̃2) is a lower-

triangular matrix, the eigenvalue of (Id2 + Kd2)(Λ̃1 ⊗ Λ̃2) is λ1iλ2j for i ∈
{1, . . . , d1}, j ∈ {1, . . . , d2}. As the distribution of z is invariant with respect
to any orthogonal transformation, the quadratic form in (B.2) converges to
a weighted chi-square distribution with λ1iλ2j as a weight. Therefore, under
(A1)–(A4),

n ̂∥Σ12∥2F
p1p2

+ tr(Λ1)tr(Λ2)⇝
d1∑
i=1

d2∑
j=1

λ1iλ2jχ
2
ij (n, p1, p2 → ∞). (B.3)

From (A.1) and ∥Σgg∥F /pg = ∥Λg∥F + o(1),

nMRV12 =
n ̂∥Σ12∥2F /(p1p2)
∥Λ1∥F ∥Λ2∥F

+ op(1) (n, p1, p2 → ∞). (B.4)

Theorem 2 is proven by applying Slutsky’s theorem to (B.3) and (B.4).

C. Proof of Theorem 3

The difference between the random variables in Theorem 2 and T is given
by:

nMRV12 +
tr(Λ1)tr(Λ2)√
tr(Λ2

1)tr(Λ
2
2)

− T =
tr(Λ1)tr(Λ2)√
tr(Λ2

1)tr(Λ
2
2)

− t̂r(Λ1)t̂r(Λ2)√
t̂r(Λ2

1)t̂r(Λ
2
2)

. (C.1)
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Using Lemmas 1 and 2 in [8], the following two properties are established.

1. Under (A1)–(A4), λ̂gi = λgi + op(1) for i ∈ {1, . . . , dg}, g ∈ {1, 2}.
2. There exists cg ∈ (0, 1] such that Pr(d̂g = dg) → 1 under (A1)–(A4),

for any ig,max ∈ (dg, ⌊cg min(pg, n)⌋ − dg − 1], where ⌊·⌋ denotes the floor
function.

These two properties yield the following conclusions. Under (A1)–(A3),

t̂r(Λg) = tr(Λg) + op(1), t̂r(Λ2
g) = tr(Λ2

g) + op(1). (C.2)

By integrating (C.1) and (C.2) under (A1)–(A3), we obtain

nMRV12 +
tr(Λ1)tr(Λ2)√
tr(Λ2

1)tr(Λ
2
2)

− T = op(1). (C.3)

Theorem 3 is proven by integrating Theorems 2 and (C.3).

D. Proof of Theorem 4

Under fixed alternative AF and (A1)–(A4),
√
n(MRV12 − ρV12) = ρV12{vec(E)}⊤z̃+ op(1), (D.1)

where

E =
p1p2

∥Σ12∥2F
(B∗

22B
∗
11 +B∗

11B
∗
22)−

p21
∥Σ11∥2F

B∗2
11 −

p22
∥Σ22∥2F

B∗2
22.

Additionally, from the central limit theorem, because the distribution of z̃ con-
verges to Nd2 (0, Id2 +Kd2), the first term on the right-hand side of (D.1) con-
verges to a normal distribution with mean 0 and variance 2ρV 2

12tr(E
2). Here,

2tr(E2) is expanded as follows.

2tr(E2) =2

[
p41∥B

∗2
11∥2F

∥Σ11∥4F
+
p42∥B

∗2
22∥2F

∥Σ22∥4F
+ 2

p21p
2
2tr{(B

∗
11B

∗
22)

2}+ tr(B2∗
11B

2∗
22)

∥Σ12∥4F

+
2p21p

2
2tr(B

∗2
11B

∗2
22)

∥Σ11∥2F ∥Σ22∥2F
− 4p31p2tr(B

∗3
11B

∗
22)

∥Σ11∥2F ∥Σ12∥2F
− 4p1p

3
2tr(B

∗3
22B

∗
11)

∥Σ22∥2F ∥Σ21∥2F

]
.

Therefore, Theorem 4 is proven.

E. Proof of Corollary 1

We verify that t̂α is a consistent estimator of tα, where tα is (1−α)-quantile of
the weighted chi-squared distribution in (2.3). Therefore, we need only evaluate
Pr(T > tα|AF ). From Theorem 4, under (A1)–(A4), we obtain

Pr (T > tα|AF ) =1− Φ

(
tα
σ
√
n
− tr(Λ1)tr(Λ2)

σ
√
ntr(Λ2

1)tr(Λ
2
2)

−
√
nρV12
σ

)
+ o(1)

=1− Φ(−∞) + o(1) = 1 + o(1).

Therefore, Corollary 1 is proven.
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F. Proof of Theorem 5

First, we derive stochastic asymptotic expansion of n ̂∥Σ12∥2F /(p1p2). Under
(A1)–(A4) and AL,

n ̂∥Σ12∥2F
p1p2

+ tr(Λ1)tr(Λ2) =z̃⊤C̃z̃+ c̃⊤z̃+
n∥Σ12∥2F
p1p2

+ op(1), (F.1)

where

C̃ =
1

p1p2
(B⊤

1 B1)⊗ (B⊤
2 B2), c̃ =

√
n

p1p2
vec(B⊤

1 B1B
⊤
2 B2 +B⊤

2 B2B
⊤
1 B1).

The first term on the right-hand side of (F.1) is always Op(1) regardless of
η = 1/2 and η > 1/2. The variance of the second term can be evaluated as
follows:

var(c̃⊤z̃) =
4n

p21p
2
2

[
tr{(B⊤

1 B1B
⊤
2 B2)

2}+ tr{(B⊤
1 B1)

2(B⊤
2 B2)

2}
]

≤ 4n

p21p
2
2

tr{(B⊤
1 B1B

⊤
2 B2)

2}

+
4n

p21p
2
2

λ1(B
⊤
1 B1)λ1(B

⊤
2 B2)tr(B

⊤
1 B1B

⊤
2 B2)

=4n1−2η{tr(Ξ2) + λ1(B
∗
11)λ1(B

∗
22)∆}+ o(1) = O(n1−2η).

The third term is evaluated as n∥Σ12∥2F /(p1p2) = n1−2η∆ + o(1). Therefore,
the second and third terms on the right side of (F.1) are related to η = 1/2 and
η > 1/2.

Under AL and η > 1/2, because n∥Σ12∥2F /(p1p2) = o(1) and var(c̃⊤z̃) =
o(1), the second and third terms on the right side of (F.1) are negligible.
Additionally, from the central limit theorem, z̃ is asymptotically distributed
Nd2 (0, Id2 +Kd2). Therefore, under (A1)–(A4), AL, and η > 1/2,

n ̂∥Σ12∥2F
p1p2

+ tr(Λ1)tr(Λ2)⇝ z⊤C̃∗z, (F.2)

where C̃∗ = B∗
11 ⊗B∗

22.
Under AL and η = 1/2, because n∥Σ12∥2F /(p1p2) ≍ 1 and var(c̃⊤z̃) ≍ 1, the

second and third terms on the right side of (F.1) are nonnegligible. Therefore,
under (A1)–(A4), AL and η = 1/2,

n ̂∥Σ12∥2F
p1p2

+ tr(Λ1)tr(Λ2)⇝ z⊤C̃∗z+ c̃∗⊤z+∆, (F.3)

where

c̃∗ = Ξ+Ξ⊤.
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Furthermore, from (A.1) and the basic properties of the stochastic conver-
gence under (A1)–(A3),

nMRV12 =
n ̂∥Σ12∥2F /(p1p2)
∥Λ1∥F ∥Λ2∥F

+ op(1). (F.4)

Theorem 5 is proven by integrating (F.2)–(F.4).

G. Proof of Corollary 2

We verify that t̂α is a consistent estimator of tα, where tα is (1−α)-quantile
of the weighted chi-squared distribution in (2.3). Therefore, we only evaluate
Pr(T > tα|AL).

From Theorem 5, under (A1)–(A4) and η = 1/2,

Pr (T > tα|AL) =G{tα −∆/(∥Λ1∥F ∥Λ2∥F )}+ o(1).

Under AL,∥∥∥∥ 1

p1p2
B⊤

1 B1B
⊤
2 B2

∥∥∥∥
F

≤ 1

nη

∥∥∥∥ nη

p1p2
B⊤

1 B1B
⊤
2 B2 −Ξ

∥∥∥∥
F

+
1

nη
∥Ξ∥F

=o(1) (n, p1, p2 → ∞).

Therefore, ∥B∗
11B

∗
22∥F = o(1) holds under AL. Because B∗

11B
∗
22 = B∗

22B
∗
11 =

O, B∗
11 and B∗

22 can be diagonalized simultaneously. Therefore, z⊤C∗z shows
the same asymptotic distribution as in (2.3). The asymptotic distribution of
T under AL and η > 1/2 is similar to that of T under the null hypothesis H,
Hence the asymptotic power is equal to α.
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