
Asymptotic distribution of the likelihood ratio
test statistic for equality of two covariance matrices

with two-step monotone missing data

Yuko Fukumotoa, Nobumichi Shutoha,b,∗ and Takashi Seoc

a Department of Mathematical Information Science,
Graduate School of Science, Tokyo University of Science,
1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

b Research Fellow of the Japan Society for the Promotion of Science
c Department of Mathematical Information Science,

Faculty of Science, Tokyo University of Science,
1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Abstract

In this paper, we consider a test for the equality of covariance matrices in two sample
problem based on 2-step monotone missing data via likelihood ratio criterion. Further,
by using the Bartlett correction, we derive modified likelihood ratio test (LRT) statistic.
Finally we investigate the asymptotic behavior of the distribution of test statistics by
Monte Carlo simulations.
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1 Introduction

In multivariate analysis based on the data set observed from more than two populations,

we may be interested in the assumption for covariance matrices because the types of the
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procedures depend on the equality of them. For example, we use Hotelling’s two-sample

T 2 statistic under Σ(1) = Σ(2), on the other hand, under Σ(1) 6= Σ(2), we use method of

Bennett (1951) or Welch’s test for testing equality of means vectors in complete data.

Thus we consider the test for the equality of covariance matrices.

The most famous scheme of the considered test is LRT. For instance, based on complete

data, Nagao (1967) obtained the modified LR critical region and indicated monotonicity

of the modified LRT for a covariance matrix. The modified LRT statistic is considered

for testing equality of covariance structure for complete data in one sample (see, e.g.,

Anderson (2003)). Furthermore, the similar procedure for two sample problem could be

also derived.

The LRT for equality of two covariance matrices based on complete data has been

already considered. First of all, we review the tests based on complete data, i.e., the p-

dimensional observation vectors x
(i)
j from Π(i) (j = 1, . . . , N

(i)
1 , i = 1, 2). Now we consider

the LRT for equality of two covariance matrices based on complete data for a special case.

Henceforth we consider two populations Π(i) : Np(µ
(i), Σ(i)) for i = 1, 2 and testing the

hypothesis

H0 : Σ(1) = Σ(2) = I vs. H1 : Σ(1) 6= Σ(2).

In this case, we can provide the LRT statistic for testing H0 in two sample problem:

−2lnΛ′
1 =

2∑
i=1

−2lnΛ
(i)′

1 ,

where

Λ
(i)′

1 =
( e

N
(i)
1 − 1
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(i)
1 −1)p
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1 | etr
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N
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x

(i)
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)(
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j − x(i)

)′
,

x(i) =
1

N
(i)
1

N
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1∑

j=1

x
(i)
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Then, under H0, the asymptotic distribution of −2lnΛ′
1 for large N

(i)
1 is χ2 distribution

with p(p + 1) degrees of freedom. Therefore, the hypothesis H0 is rejected if −2lnΛ′
1 >

χ2
p(p+1),α, where χ2

p(p+1),α is the upper 100α% point of χ2 distribution with p(p+1) degrees

of freedom.

Next, we propose the modified LRT statistic as follows:

−2lnΛ∗
1 =

2∑
i=1

−2ρ(i)lnΛ
(i)′

1 ,

where ρ(i) = 1 − (2p2 + 3p − 1)/{6(N
(i)
1 − 1)(p + 1)}. Then, under H0, the asymptotic

distribution of −2lnΛ∗
1 is also χ2 distribution with p(p+1) degrees of freedom. Therefore,

the hypothesis H0 is rejected if −2lnΛ∗
1 > χ2

p(p+1),α.

Recently, some authors relaxed the assumptions of the data set in the test for the

covariance matrices. For example, Schott (2001) considered a Wald statistic under ellip-

tical distributions. He proposed the test for equality of covariance matrices in K(≥ 2)

sample problem. Hao and Krishnamoorthy (2001) provided the modified LRT statistic

for the null hypothesis Σ = Σ0 = I for 2-step monotone missing data. Further, Chang

and Richards (2010) provided that for the null hypothesis Σ = Σ0 for 2-step monotone

missing data. These two paper dealt with one sample problem.

In this paper, based on 2-step monotone missing data, we consider the test for equality

of covariance matrices in two sample problem. As it turns out, we derive LRT statistic

for testing equality of covariance matrices in more complicate setting for the data set.

Using the simulation studies, we investigate the asymptotic properties of the proposed

test statistics.

This rest of this paper is organized as follows. In Section 2, we review the MLEs under

the hypothesis (see, e.g., Anderson and Olkin (1985), Shutoh et al. (2011)). In Section 3,

we develop the expression for LRT statistic. In Section 4, we derive modified LRT statistic

via the Bartlett correction. Finally, we give numerical results in order to investigate the

asymptotic properties of test statistics by Monte Carlo simulations in Section 5.
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2 MLEs based on two-step monotone missing data

We assume distribution of observation vector:

x
(i)
j =

(
x

(i)
1j

x
(i)
2j

)
∼ Np(µ

(i), Σ(i)) (j = 1, . . . , N
(i)
1 , i = 1, 2),

x
(i)
1j ∼ Np1(µ

(i)
1 , Σ

(i)
11 ) (j = N

(i)
1 + 1, . . . , N (i), i = 1, 2),

respectively, where x
(i)
`j (` = 1, 2) denotes a p`-dimensional partitioned vector of x

(i)
j and

p = p1 + p2. Further, µ(i) and Σ(i) are partitioned according to blocks of data set, i.e.,

µ(i) =

(
µ

(i)
1

µ
(i)
2

)
, Σ(i) =

(
Σ

(i)
11 Σ

(i)
12

Σ
(i)
21 Σ

(i)
22

)
.

µ
(i)
1 is p1-dimensional vector, µ

(i)
2 is p2-dimensional vector, Σ

(i)
11 is p1×p1 matrix, Σ

(i)
12 = Σ

(i)′

21

is p1 × p2 matrix and Σ
(i)
22 is p2 × p2 matrix, respectively.

In general, x
(i)
1j and x

(i)
2j are not independent. So we consider the transformation of

the observation vector x
(i)
j dewoted by y

(i)
j = (y

(i)′

1j ,y
(i)′

2j )′, where

y
(i)
j =

(
y

(i)
1j

y
(i)
2j

)
=

(
Ip1 0

−Σ
(i)
21Σ

(i)−1

11 Ip2

) (
x

(i)
1j

x
(i)
2j

)
=

(
x

(i)
1j

x
(i)
2j − Σ

(i)
21Σ

(i)−1

11 x
(i)
1j

)
.

Then, y
(i)
1j and y

(i)
2j are mutually independent and are distributed as

y
(i)
1j ∼ Np1(η

(i)
1 , Ψ

(i)
11 ) (j = 1, . . . , N

(i)
1 , i = 1, 2),

y
(i)
2j ∼ Np2(η

(i)
2 , Ψ

(i)
22 ) (j = N

(i)
1 + 1, . . . , N (i), i = 1, 2),

respectively, where

η(i) =

(
η

(i)
1

η
(i)
2

)
=

(
µ

(i)
1

µ
(i)
2 − Ψ

(i)
21µ

(i)
1

)
,

Ψ(i) =

(
Ψ

(i)
11 Ψ

(i)
12

Ψ
(i)
21 Ψ

(i)
22

)
=

(
Σ

(i)
11 Σ

(i)−1

11 Σ
(i)
12

Σ
(i)
21Σ

(i)−1

11 Σ
(i)
22·1

)
,

Σ
(i)
22·1 = Σ

(i)
22 − Σ

(i)
21Σ

(i)−1

11 Σ
(i)
12 .
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In other words, we can write the probability density function of y
(i)
1j and y

(i)
2j as follows:

φ
(i)
1 (y

(i)
1j ) =

1

(2π)
p1
2 | Ψ

(i)
11 | 12

exp
{
− 1

2

(
y

(i)
1j − η

(i)
1

)′
Ψ

(i)−1

11

(
y

(i)
1j − η

(i)
1

)}
,

φ
(i)
2 (y

(i)
2j ) =

1

(2π)
p2
2 | Ψ

(i)
22 | 12

exp
{
− 1

2

(
y

(i)
2j − η

(i)
2

)′
Ψ

(i)−1

22

(
y

(i)
2j − η

(i)
2

)}
.

Therefore, the likelihood function to obtain MLEs of η(1), η(2), Ψ(1) and Ψ(2) has the

following form:

L(η(1),η(2), Ψ(1), Ψ(2))

=
2∏

i=1

(
N(i)∏
j=1

φ
(i)
1 (y

(i)
1j )

N
(i)
1∏

j=1

φ
(i)
1 (y

(i)
2j )

)

= Const. ×
2∏

i=1

[
|Ψ(i)

11 |−
1
2
N(i)|Ψ(i)

22 |−
1
2
N

(i)
1

× exp
{
− 1

2

N(i)∑
j=1

(
y

(i)
1j − η

(i)
1

)′
Ψ

(i)−1

11

(
y

(i)
1j − η

(i)
1

)}

× exp
{
− 1

2

N
(i)
1∑

j=1

(
y

(i)
2j − η

(i)
2

)′
Ψ

(i)−1

22

(
y

(i)
2j − η

(i)
2

)}]
.

If we define the sample mean vectors

x
(i)
1T =

1

N (i)

N(i)∑
j=1

x
(i)
1j , x

(i)
1F =

1

N
(i)
1

N
(i)
1∑

j=1

x
(i)
1j ,

x
(i)
2F =

1

N
(i)
1

N
(i)
1∑

j=1

x
(i)
2j , x

(i)
1L =

1

N
(i)
2

N(i)∑
j=N

(i)
1 +1

x
(i)
1j ,

we can express the MLEs under H1 as follows:

η̂(i) =

(
η̂

(i)
1

η̂
(i)
2

)
=

(
x

(i)
1T

x
(i)
2F − Ψ̂

(i)
21x

(i)
1F

)
, Ψ̂(i) =

(
Ψ̂

(i)
11 Ψ̂

(i)
12

Ψ̂
(i)
21 Ψ̂

(i)
22

)
,
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where

Ψ̂
(i)
11 =

1

N (i)

N(i)∑
j=1

(
x

(i)
1j − x

(i)
1T

)(
x

(i)
1j − x

(i)
1T

)′
,

Ψ̂
(i)
12 =

{ N
(i)
1∑

j=1

(
x

(i)
1j − x

(i)
1F

)(
x

(i)
1j − x

(i)
1F

)′}−1{ N
(i)
1∑

j=1

(
x

(i)
1j − x

(i)
1F

)(
x

(i)
2j − x

(i)
2F

)′}
,

Ψ̂
(i)
22 =

1

N
(i)
1

[
N

(i)
1∑

j=1

(
x

(i)
2j − x

(i)
2F

)(
x

(i)
2j − x

(i)
2F

)′ − { N
(i)
1∑

j=1

(
x

(i)
2j − x

(i)
2F

)(
x

(i)
1j − x

(i)
1F

)′}

×
{ N

(i)
1∑

j=1

(
x

(i)
1j − x

(i)
1F

)(
x

(i)
1j − x

(i)
1F

)′}−1{ N
(i)
1∑

j=1

(
x

(i)
1j − x

(i)
1F

)(
x

(i)
2j − x

(i)
2F

)′}]
.

In the same way, we can obtain the MLEs under H0 as follows:

η̃(i) =

(
η̃

(i)
1

η̃
(i)
2

)
=

(
x

(i)
1T

x
(i)
2F − Ψ̃21x

(i)
1F

)
, Ψ̃ =

(
Ψ̃11 Ψ̃12

Ψ̃21 Ψ̃22

)
,

where

Ψ̃11 =
1

N

2∑
i=1

N(i)∑
j=1

(
x

(i)
1j − x

(i)
1T

)(
x

(i)
1j − x

(i)
1T

)′
,

Ψ̃12 =
{ 2∑

i=1

N
(i)
1∑

j=1

(
x

(i)
1j − x

(i)
1F

)(
x

(i)
1j − x

(i)
1F

)′}−1{ 2∑
i=1

N
(i)
1∑

j=1

(
x

(i)
1j − x

(i)
1F

)(
x

(i)
2j − x

(i)
2F

)′}
,

Ψ̃22 =
1

N1

[
2∑

i=1

N
(i)
1∑

j=1

(
x

(i)
2j − x

(i)
2F

)(
x

(i)
2j − x

(i)
2F

)′ − { 2∑
i=1

N
(i)
1∑

j=1

(
x

(i)
2j − x

(i)
2F

)(
x

(i)
1j − x

(i)
1F

)′}

×
{ 2∑

i=1

N
(i)
1∑

j=1

(
x

(i)
1j − x

(i)
1F

)(
x

(i)
1j − x

(i)
1F

)′}−1{ 2∑
i=1

N
(i)
1∑

j=1

(
x

(i)
1j − x

(i)
1F

)(
x

(i)
2j − x

(i)
2F

)′}]
.

Then we have the MLEs under H1:

µ̂(i) =

(
µ̂

(i)
1

µ̂
(i)
2

)
=

(
x

(i)
1T

x
(i)
2F − Ψ̂

(i)
21 (x

(i)
1F − x

(i)
1T )

)
,

Σ̂(i) =

(
Σ̂

(i)
11 Σ̂

(i)
12

Σ̂
(i)
21 Σ̂

(i)
22

)
=

(
Ψ̂

(i)
11 Ψ̂

(i)
11 Ψ̂

(i)
12

Ψ̂
(i)
21 Ψ̂

(i)
11 Ψ̂

(i)
22 + Ψ̂

(i)
21 Ψ̂

(i)
11 Ψ̂

(i)
12

)
,
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and the MLEs under H0:

µ̃(i) =

(
µ̃

(i)
1

µ̃
(i)
2

)
=

(
x

(i)
1T

x
(i)
2F − Ψ̃21(x

(i)
1F − x

(i)
1T )

)
,

Σ̃ =

(
Σ̃11 Σ̃12

Σ̃21 Σ̃22

)
=

(
Ψ̃11 Ψ̃11Ψ̃12

Ψ̃21Ψ̃11 Ψ̃22 + Ψ̃21Ψ̃11Ψ̃12

)
.

3 Likelihood ratio test statistic

In this section, we develop the expression for the LRT statistic for Σ. We obtain the

likelihood ratio

Λ =
2∏

i=1

| Σ̂
(i)
11 |

N(i)

2 | Σ̂
(i)
22·1 |

N
(i)
1
2

exp
{
− 1

2

N(i)∑
j=1

(x
(i)
1j − η̃

(i)
1 )′(x

(i)
1j − η̃

(i)
1 )

}

exp
{
− 1

2

N(i)∑
j=1

(x
(i)
1j − η̂

(i)
1 )′Ψ̂

(i)−1

11 (x
(i)
1j − η̂

(i)
1 )

}

×

exp
{
− 1

2

N
(i)
1∑

j=1

(x
(i)
2j − η̃

(i)
2 )′(x

(i)
2j − η̃

(i)
2 )

}

exp
{
− 1

2

N
(i)
1∑

j=1

(x
(i)
2j − η̂

(i)
2 )′Ψ̂

(i)−1

22 (x
(i)
2j − η̂

(i)
2 )

} ,

where

exp
{
− 1

2

N(i)∑
j=1

(x
(i)
1j − η̃

(i)
1 )′(x

(i)
1j − η̃

(i)
1 )

}
= exp

{
− 1

2

N(i)∑
j=1

(x
(i)
1j − x

(i)
1T )′(x

(i)
1j − x

(i)
1T )

}
,

exp
{
− 1

2

N
(i)
1∑

j=1

(x
(i)
2j − η̃

(i)
2 )′(x

(i)
2j − η̃

(i)
2 )

}
= exp

{
− 1

2

N
(i)
1∑

j=1

(x
(i)
2j − x

(i)
2F )′(x

(i)
2j − x

(i)
2F )

}
,

exp
{
− 1

2

N(i)∑
j=1

(x
(i)
1j − η̂

(i)
1 )′Ψ̂

(i)−1

11 (x
(i)
1j − η̂

(i)
1 )

}
= exp

(
1

2
N (i)p1

)
,

exp
{
− 1

2

N
(i)
1∑

j=1

(x
(i)
2j − η̂

(i)
2 )′Ψ̂

(i)−1

22 (x
(i)
2j − η̂

(i)
2 )

}
= exp

(
1

2
N

(i)
1 p2

)
.
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Hence, the likelihood ratio can be expressed as

Λ =
2∏

i=1

[
e

1
2
(N(i)p1+N

(i)
1 p2) | Σ̂

(i)
11 |

N(i)

2 | Σ̂
(i)
22·1 |

N
(i)
1
2

×etr
{
− 1

2

( N(i)∑
j=1

(x
(i)
1j − x

(i)
1T )′(x

(i)
1j − x

(i)
1T ) +

N
(i)
1∑

j=1

(x
(i)
2j − x

(i)
2F )′(x

(i)
2j − x

(i)
2F )

)}]
.

Then we define

V (i) =
N(i)∑
j=1

(x
(i)
1j − x

(i)
1T )(x

(i)
1j − x

(i)
1T )′,

V
(i)
`m =

N
(i)
1∑

j=1

(x
(i)
`j − x

(i)
`F )(x

(i)
mj − x

(i)
mF )′ (`,m = 1, 2),

and, henceforth, we consider the likelihood ratio statistic with replacing N (i) by n(i) and

N
(i)
1 by n

(i)
1 :

Λ′ =
2∏

i=1

[( e

n(i)

)n(i)p1
2 | V (i) |

n(i)

2 etr
{
− 1

2

(
V (i)

)}

×
( e

n
(i)
1

)n
(i)
1 p2
2 | V

(i)
22 − V

(i)
21 V

(i)−1

11 V
(i)
12 |

n
(i)
1
2 etr

{
− 1

2

(
V

(i)
22 − V

(i)
21 V

(i)−1

11 V
(i)
12

)}
×etr

{
− 1

2

(
V

(i)
21 V

(i)−1

11 V
(i)
12

)}]

=
2∏

i=1

[
Λ

(i)′

11 Λ
(i)′

22·1etr
{
− 1

2

(
V

(i)
21 V

(i)−1

11 V
(i)
12

)}]
,

where

Λ
(i)′

11 =
( e

n(i)

)n(i)p1
2 | V (i) |

n(i)

2 etr
{
− 1

2

(
V (i)

)}
,

Λ
(i)′

22·1 =
( e

n
(i)
1

)n
(i)
1 p2
2 | V

(i)
22 − V

(i)
21 V

(i)−1

11 V
(i)
12 |

n
(i)
1
2 etr

{
− 1

2

(
V

(i)
22 − V

(i)
21 V

(i)−1

11 V
(i)
12

)}
,

n(i) = N (i) − 1, n
(i)
1 = N

(i)
1 − p1 − 1.

Thus, we can obtain the LRT statistic:

−2lnΛ′ =
2∑

i=1

{
− 2lnΛ

(i)′

11 − 2lnΛ
(i)′

22·1 + tr
(
V

(i)
21 V

(i)−1

11 V
(i)
12

)}
.
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As, N (i) → ∞ and N
(i)
1 → ∞, test statistic is asymptotically distributed as

−2lnΛ′ ∼ χ2
p(p+1),

under H0. Therefore, if −2lnΛ′ > χ2
p(p+1),α, the hypothesis H0 is rejected.

4 Modified likelihood ratio test statistic

Now, we propose the modified LRT statistic as

−2lnΛ∗ =
2∑

i=1

{
− 2ρ

(i)
1 lnΛ

(i)′

11 − 2ρ
(i)
2 lnΛ

(i)′

22·1 + tr
(
V

(i)
21 V

(i)−1

11 V
(i)
12

)}
,

where

ρ
(i)
1 = 1 − 2p2

1 + 3p1 − 1

6n(i)(p1 + 1)
, ρ

(i)
2 = 1 − 2p2

2 + 3p2 − 1

6n
(i)
1 (p2 + 1)

.

As, N (i) → ∞ and N
(i)
1 → ∞, test statistic is asymptotically distributed as

−2lnΛ∗ ∼ χ2
p(p+1),

under H0. Therefore, if −2lnΛ∗ > χ2
p(p+1),α, the hypothesis H0 is rejected.

5 Simulation studies

In this section, we present the simulation results under various setting of dimension and

sample sizes in order to investigate the asymptotic behavior of the proposed test statistics.

For convenience, we prepare data sets whose sample sizes are equal in all the simulation.

Let M1 ≡ N
(1)
1 = N

(2)
1 and M2 ≡ N

(1)
2 = N

(2)
2 be the sample size for complete data and

that for missing data, respectively. In all the tables, we list the probability

Pr
(
−2lnT > χ2

f,α

)
,

where −2lnT is LRT statistic and f = p(p + 1).
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Table 1 Comparison of the LRT statistics with 2-step monotone missing data when

M1 → ∞ and M2 : fix.

LRT modified LRT
p M1 M2 (1,3) (2,2) (3,1) (1,3) (2,2) (3,1)
4 10 10 0.0995 0.0701 0.0679 0.0535 0.0507 0.0503

20 10 0.0669 0.0588 0.0604 0.0504 0.0500 0.0503
50 10 0.0559 0.0533 0.0554 0.0502 0.0504 0.0500
100 10 0.0522 0.0519 0.0520 0.0501 0.0503 0.0503

(2,6) (4,4) (6,2) (2,6) (4,4) (6,2)
8 10 10 0.6076 0.2703 0.2699 0.1398 0.0756 0.0555

20 10 0.1418 0.0883 0.0954 0.0544 0.0516 0.0512
50 10 0.0725 0.0617 0.0674 0.0502 0.0501 0.0506
100 10 0.0599 0.0555 0.0585 0.0505 0.0502 0.0500

At first, we compared the LRT statistic and modified LRT statistic under 2-step mono-

tone missing data, when p = 4((p1, p2) = (1, 3), (2, 2), (3, 1)), 8((p1, p2) = (2, 6), (4, 4), (6, 2)),

M1 = 10, 20, 50, 100, M2 = 10 and α = 0.05. In particular, under small number of ob-

servations, it can be observed that modified LRT statistic has better accuracy than LRT

statistic. In contrast, Table 1 also implies that large dimensionality results in poorer

approximations of modified LRT.

Table 2 Comparison of the LRT statistics with 2-step monotone missing data when

M1 → ∞, M2 → ∞ and M1/M2 = 1.

LRT modified LRT
p M1 M2 (1,3) (2,2) (3,1) (1,3) (2,2) (3,1)
4 10 10 0.0999 0.0707 0.0679 0.0531 0.0506 0.0502

20 20 0.0668 0.0576 0.0576 0.0501 0.0499 0.0505
50 50 0.0554 0.0526 0.0527 0.0500 0.0504 0.0500
100 100 0.0526 0.0508 0.0517 0.0503 0.0499 0.0498

(2,6) (4,4) (6,2) (2,6) (4,4) (6,2)
8 10 10 0.6077 0.2704 0.1635 0.1393 0.0754 0.0555

20 20 0.1413 0.0845 0.0821 0.0551 0.0515 0.0505
50 50 0.0724 0.0597 0.0602 0.0503 0.0504 0.0505
100 100 0.0593 0.0545 0.0550 0.0506 0.0497 0.0500

10



Table 2 lists the results under both of M1 and M2 are large, when p = 4((p1, p2) =

(1, 3), (2, 2), (3, 1)), 8((p1, p2) = (2, 6), (4, 4), (6, 2)), M1 = 10, 20, 50, 100, M2 = 10, 20, 50, 100

and α = 0.05. The simulations conducted in Table 2 implies that the proposed approxi-

mation is useful under M1 → ∞, M2 → ∞ and M1/M2 = 1.

Table 3 Comparison of the LRT statistics with complete data and 2-step monotone

missing data.

LRT modified LRT
p M1 M2 (1,3) (1,3)
4 10 0 0.2895 0.1263

20 0 0.1284 0.0786
50 0 0.0738 0.0599
100 0 0.0611 0.0546

(2,6) (2,6)
8 10 0 0.9733 0.4968

20 0 0.4226 0.1209
50 0 0.1334 0.0689
100 0 0.0833 0.0582

LRT modified LRT
p M1 M2 (1,3) (1,3)
4 10 10 0.0995 0.0535

20 10 0.0669 0.0504
50 10 0.0559 0.0502
100 10 0.0522 0.0501

(2,6) (2,6)
8 10 10 0.6076 0.1398

20 10 0.1418 0.0544
50 10 0.0725 0.0502
100 10 0.0599 0.0505

In Table 3, we compare the results for complete data and two-step monotone missing

data, where p = 4((p1, p2) = (1, 3)), 8((p1, p2) = (2, 6)), M1 = 10, 20, 50, 100, M2 = 10

and α = 0.05. However, when we use complete data, we put M2 = 0. The results in Table

3 indicate that modified LRT statistic in the case of 2-step monotone missing data has

the better performance.
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6 Conclusion and future problems

This paper provided the modified LRT statistic for equality of two covariance matrices

for 2-step monotone missing data.

By the performed simulation studies, we compared the result of the LRT statistic

and the modified LRT statistic under several settings of dimensionality and sample sizes.

The simulation studies listed in Tables 1 and 2 indicated that the result of modified LRT

statistic improved the accuracy of the result derived by LRT statistic based on 2-step

monotone missing data. Table 3 indicated that the result of modified LRT statistic based

on 2-step monotone missing data had better accuracy than the approximations derived

by modified LRT statistic based on complete data.

For large p, we consider that it will be needed for better approximation to be provided.

Furthermore, we consider that we extend the test for the hypothesis :

H : Σ(1) = Σ(2) vs. A 6= H,

and develop the expression for the modified LRT statistic.
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