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Abstract

In the present study, we consider the selection of model selection criteria for multivariate

ridge regression. There are several model selection criteria for selecting the ridge parameter

in multivariate ridge regression, e.g., the Cp criterion and the modified Cp (MCp) criterion.

We propose the generalized Cp (GCp) criterion, which includes Cp andMCp criteria as special

cases. The GCp criterion is specified by a non-negative parameter λ, which is referred to as

the penalty parameter. We attempt to select an optimal penalty parameter such that the

predictive mean square error (PMSE) of the predictor of ridge regression after optimizing the

ridge parameter is minimized. Through numerical experiments, we verify that the proposed

optimization methods exhibit better performance than conventional optimization methods,

i.e., optimizing only the ridge parameter by minimizing the Cp or MCp criterion.

Key words: Asymptotic expansion; Generalized Cp criterion; Model selection criterion; Mul-

tivariate linear regression model; Ridge regression; Selection of the model selection criterion.

1. Introduction

In the present paper, we deal with a multivariate linear regression model with n observa-

tions of a p-dimensional vector of response variables and a k-dimensional vector of regressors

(for more detailed information, see, for example, Srivastava, 2002, Chapter 9; Timm, 2002,

Chapter 4). Let Y = (y1, . . . ,yn)
′, X, and E = (ε1, . . . , εn)

′ be the n × p matrix of re-

sponse variables, the n × k matrix of non-stochastic centerized explanatory variables (i.e.,

X ′1n = 0k) of rank(X) = k (< n), and the n × p matrix of error variables, respectively,

where n is the sample size, 1n is an n-dimensional vector of ones, and 0k is a k-dimensional

vector of zeros. Suppose that n − k − p − 2 > 0 and ε1, . . . , εn
i.i.d.∼ Np(0p,Σ), where Σ
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is a p × p unknown covariance matrix. Then, the matrix form of the multivariate linear

regression model is expressed as

Y = 1nµ
′ +XΞ+ E ,

where µ is a p-dimensional unknown location vector, and Ξ is a k × p unknown regression

coefficient matrix. This model can also be expressed as

Y ∼ Nn×p(1nµ
′ +XΞ,Σ⊗ In).

Note that X is centerized. The maximum likelihood or the least squares (LS) estimators

of µ andΞ are given by µ̂ = Y ′1n/n and Ξ̂ = (X ′X)−1X ′Y , respectively. Since µ̂ and Ξ̂ are

simple, and the unbiased estimators of µ and Ξ, LS estimators are widely used in actual data

analysis (see, e.g., Dien et al., 2006; Sârbu et al., 2008, Saxén and Sundell, 2006; Skagerberg,

Macgregor, and Kiparissides, 1992; Yoshimoto, Yanagihara, and Ninomiya, 2005). However,

the problem of an estimator of Ξ becoming unstable when multicollinearity occurs in X is

well known. In order to avoid this problem, a ridge regression was proposed by Hoerl and

Kennard (1970) when p = 1. Several studies extended this univariate ridge regression to

the multivariate case, e.g., Brown and Zidek (1980), Haitovsky (1987), and Yanagihara and

Satoh (2010). The ridge regression estimator of Ξ is given as

Ξ̂θ = M−1
θ X ′Y ,

where Mθ = X ′X + θIk, and θ is a nonnegative value, which is referred to as a ridge

parameter. Since an estimate of Ξ̂θ depends strongly on the value of the ridge parameter θ,

the optimization of θ is an important problem in ridge regression.

An optimal θ is commonly determined by minimizing the predicted mean square error

(PMSE) of the predictor of Y , i.e., Ŷθ = 1nµ̂
′ + XΞ̂θ. However, we cannot directly use

the PMSE to optimize θ, because unknown parameters are included in the PMSE. Hence,

we adopt an optimization method using a model selection criterion, i.e., an estimator of

PMSE, instead of the unknown PMSE. As an estimator of PMSE, Yanagihara and Satoh

(2010) proposed a Cp criterion. This criterion includes Cp criteria for selecting variables in a

univariate linear model, which was proposed by Mallows (1973; 1995), for selecting variables

in a multivariate linear model, which was proposed by Sparks, Coutsourides, and Troskie

(1983) as a special case. Yanagihara and Satoh (2010) also proposed the modified Cp (MCp)

criterion such that the bias of the Cp criterion for choosing the ridge parameter for PMSE

is completely corrected under a fixed θ. This criterion coincides with the bias-corrected Cp

criterion proposed by Fujikoshi and Satoh (1997) when θ = 0. The MCp criterion has several
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desirable properties as the estimator of PMSE as described by, e.g., Fujikoshi, Yanagihara,

and Wakaki (2005), and Yanagihara and Satoh (2010).

Unfortunately, optimizing θ by minimizing MCp, i.e., an unbiased estimator of PMSE,

does not always minimize the PMSE of Ŷθ. This indicates that there will be an optimal

model selection criterion for selecting θ. Thus, we propose a generalized Cp (GCp) criterion

that includes the Cp and MCp criteria as special cases (originally, the GCp criterion was

proposed by Atkinson, 1980, for selecting variables in the univariate linear model). The

GCp criterion is specified by a non-negative parameter λ, which is referred to as the penalty

parameter. From the viewpoint of making the PMSE of the predictor of Y after optimizing θ

small, we select the optimal penalty parameter λ, which is basically the selection of the model

selection criterion. In the present paper, we optimize λ by the following three methods:

• (Double optimization): We optimize θ and λ simultaneously by minimizing GCp and

the penalty selection criteria, respectively.

• (Optimization of λ with an approximated value of an optimal θ): We optimize λ

by minimizing the penalty selection criterion made from the approximated value of

optimal θ.

• (Asymptotic optimization of λ): We calculate an asymptotic optimal λ from an asymp-

totic expansion of the PMSE. We then estimate the asymptotic optimal λ.

From the optimization of the model selection criterion, we will perform a reasonable opti-

mization of θ.

The remainder of the present paper is organized as follows: In Section 2, we propose the

GCp criterion, which includes criteria proposed by Yanagihara and Satoh (2010) as special

cases. In Section 3, we propose three optimization methods for λ. In Section 4, we compare

the optimization methods by conducting numerical studies. Finally, technical details are

provided in the Appendix.

2. Generalized Cp Criterion

In this section, we propose the GCp criterion for optimizing the ridge parameter, which

includes Cp and MCp criteria proposed by Yanagihara and Satoh (2010). Moreover, we

present several mathematical properties of the optimal θ by minimizing the GCp criterion.

The PMSE of Ŷθ is defined as

PMSE[Ŷθ] = EY [EU [tr{(U − Ŷθ)
′(U − Ŷθ)Σ

−1}]],
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where U is a random variable matrix that is independent of Y and has the same distribution

as Y .

The Cp criterion proposed by Yanagihara and Satoh (2010) is a rough estimator of the

PMSE of Ŷθ, which is defined by

Cp(θ) = tr(WθS
−1) + 2ptr(M−1

θ M0),

where Wθ is a residual sum of squares matrix defined by Wθ = (Y − Ŷθ)
′(Y − Ŷθ), S

is an unbiased estimator of Σ defined by S = W0/(n − k − 1). From the definition of

the Cp criterion, the first term of Cp measures the closeness of the ridge regression to the

data, and the second term evaluates the penalty for the complexity of the ridge regression.

However, the Cp criterion has the bias to the PMSE. The MCp proposed by Yanagihara

and Satoh (2010) is an exact unbiased estimator of the PMSE. By neglecting terms that are

independent of θ, MCp is defined as

MCp(θ) = cMtr(WθS
−1) + 2ptr(M−1

θ M0),

where cM = 1 − (p + 1)/(n − k − 1). By comparing the two criteria, we can see that the

difference between Cp and MCp is a coefficient before tr(WθS
−1).

Thus, we can generalize the model selection criterion for optimizing the ridge parameter

as

GCp(θ, λ) = λtr(WθS
−1) + 2ptr(M−1

θ M0), (2.1)

where λ is a non-negative parameter. Note that GCp(θ, 1) = Cp(θ) and GCp(θ, cM) =

MCp(θ). In this criterion, the penalty for the complexity of the model, which is in the

second term of (2.1), becomes large when λ becomes small. This means that λ controls the

penalty for the complexity of the model in the criterion (2.1). Hence, we can regard λ as

a penalty parameter. In the present paper, we consider the optimization of λ to obtain the

optimal θ, which further reduces the PMSE.

When λ is fixed, the optimized ridge parameter θ̂(λ) is obtained by

θ̂(λ) = arg min
θ∈[0,∞]

GCp(θ, λ). (2.2)

Since θ̂(λ) is a minimizer of GCp(θ, λ), the following equation holds:

∂GCp(θ, λ)

∂θ

∣∣∣∣
θ=θ̂(λ)

= 0. (2.3)

Note that θ̂(λ) changes with λ.

Here, we obtain the following mathematical properties of θ̂(λ) (The proof is provided in

Appendix A.1.):

4



Theorem 2.1. Let

(z1, . . . , zk)
′ = Q′X ′Y S−1/2, (2.4)

rλ,j =
λ∥zj∥2 − pdj

pd2j
, (j = 1, . . . , k), (2.5)

where zi is a p-dimensional vector, Q is a k×k orthogonal matrix which diagonalizes X ′X,

i.e., Q′X ′XQ = D = diag(d1, . . . , dk) and di (i = 1, . . . , k) are eigenvalues of X ′X, and

r+λ,1 ≤ · · · ≤ r+λ,m (m ≤ k) are positive values of rλ,1, . . . , rλ,k. Then, θ̂(λ) has the following

properties:

1. θ̂(λ) is a monotonic decreasing function with respect to λ.

2. θ̂(λ) is not 0 when λ ∈ [0,∞).

3. θ̂(λ) > (r+λ,1)
−1 when r+λ,1 exists. θ̂(λ) = ∞ when r+λ,1 does not exist, i.e., maxj=1,...,m rλ,j

≤ 0.

4. θ̂(∞) = 0, θ̂(0) = ∞.

5. θ̂(λ) = ∞ for any λ < minj=1,...,k pd
2
j/∥zj∥2.

We suppose that di = O(n). However, we must use an iterative computational algorithm

to optimize θ because we cannot obtain θ̂(λ) in closed form. In order to reduce the number

of computational tasks, we consider approximating θ̂(λ) using an asymptotic expansion.

Equation (2.3) implies asymptotic expansion of the GCp criterion. From this expansion, we

obtain the asymptotic expansion of θ̂(λ) as the follows:

Theorem 2.2. Here, θ̂(λ) can be expanded as

θ̂(λ) = θ̃(L)(λ) +Op(n
−L),

where

θ̃(L)(λ) =
pb1
λa1

+
1

2λa1

L−1∑
ℓ=0

1

nℓ
(−1)ℓ+1(ℓ+ 1)θ̃ℓ(L−1)(λ){λ(ℓ+ 2)aℓ+1θ̃(L−1)(λ)− 2pbℓ+1}.

(2.6)

Here, θ̃(0)(λ) = 0, V = X ′Y S−1Y ′X, aj = njtr(V M
−(j+2)
0 ), and bj = njtr(M−j

0 ), and

θ̃ℓ(L)(λ) refers to {θ̃(L)(λ)}ℓ.

The proofs of this theorem are given in Appendix A.2. Note that θ̃(L)(λ) can be used

as an approximated value of θ̂(λ). There is a one-to-one correspondence between θ̃(1)(λ) =

pb1/(λa1) and λ, and θ̃(1)(λ) satisfies the properties 1, 2, and 4 in Theorem 2.1.
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3. Optimization of Penalty in the GCp Criterion

3.1. Double optimization of θ and λ

In the previous section, we considered the model selection criterion for selecting θ, which

can be regarded as an estimator of PMSE[Ŷθ]. By minimizing the estimator of PMSE of Ŷθ,

we expect to reduce the PMSE of Ŷθ. However, since the optimal ridge parameter will be

changed by the data, it is important to reduce not the PMSE of Ŷθ but rather the PMSE

of Ŷθ̂, i.e., the predictor of Y after optimizing θ. In this section, we consider optimizing λ

using PMSE[Ŷθ̂(λ)], where Ŷθ̂(λ) = 1nµ̂
′ +XΞ̂θ̂(λ).

Without a loss of generality, we can assume that the covariance matrix of yi is Ip in the

PMSE[Ŷθ̂(λ)]. Therefore, from Efron (2004), we obtain PMSE[Ŷθ̂(λ)], which is a function of

λ, as follows:

PMSE[Ŷθ̂(λ)] = EY [tr(Wθ̂(λ)Σ
−1)] + 2EY

[
n∑

i=1

p∑
j=1

∂(Ŷθ̂(λ))ij

∂(Y )ij

]
,

where (A)ij are the (i, j)th elements of A. Since θ̂(λ) depends on (Y )ij, we can see that

∂(Ŷθ̂(λ))ij

∂(Y )ij
=

∂(Ŷθ)ij
∂(Y )ij

∣∣∣∣∣
θ=θ̂(λ)

+
∂(Ŷθ)ij
∂θ

∣∣∣∣∣
θ=θ̂(λ)

∂θ̂(λ)

∂(Y )ij
. (3.1)

The first term of the above equation is calculated as

∂(Ŷθ)ij
∂(Y )ij

∣∣∣∣∣
θ=θ̂(λ)

=
∂(1nµ̂

′)ij
∂(Y )ij

+
∂(XM−1

θ X ′Y )ij
∂(Y )ij

∣∣∣∣
θ=θ̂(λ)

=
∂(1nµ̂

′)ij
∂(Y )ij

+ (XM−1

θ̂(λ)
X ′)ii.

Note that
∑n

i=1

∑p
j=1 ∂(1nµ̂

′)ij/∂(Y )ij = p and
∑n

i=1

∑p
j=1(XM−1

θ̂(λ)
X ′)ii = ptr(M−1

θ̂(λ)
M0).

Next, we consider obtaining the second term of (3.1). Note that

∂(Ŷθ)ij
∂θ

=
∂(XM−1

θ X ′Y )ij
∂θ

= −(XM−2
θ X ′Y )ij.

Hence, we derive

PMSE[Ŷθ̂(λ)] = EY [tr(Wθ̂(λ)Σ
−1)] + 2p{EY [tr(M

−1

θ̂(λ)
M0)] + 1}

− 2EY

[
n∑

i=1

p∑
j=1

(XM−2

θ̂(λ)
X ′Y )ij

∂θ̂(λ)

∂(Y )ij

]
.

(3.2)

Based on this result, we need only obtain ∂θ̂(λ)/∂(Y )ij in order to calculate PMSE[Ŷθ̂(λ)].

This derivative leads to the following theorem (The proofs are given in Appendix A.3.):
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Theorem 3.1. The PMSE of Ŷθ̂(λ) is expressed as

PMSE[Ŷθ̂(λ)] = EY [tr(Wθ̂(λ)Σ
−1) + 2p{tr(M−1

θ̂(λ)
M0) + 1}+ 4B(θ̂(λ))], (3.3)

where

B(θ) =
λθtr(V M−5

θ M0)

λtr(V M−3
θ )− 3λθtr(V M−4

θ ) + 2ptr(M−3
θ M0)

.

By neglecting the terms that are independent of λ, we define the penalty selection criteria

for optimizing λ as follows:

Definition 3.1. The penalty selection criteria to optimize λ are defined as

C#
p (λ) = tr(Wθ̂(λ)S

−1) + 2ptr(M−1

θ̂(λ)
M0) + 4B(θ̂(λ)),

MC#
p (λ) = cMtr(Wθ̂(λ)S

−1) + 2ptr(M−1

θ̂(λ)
M0) + 4B(θ̂(λ)),

where θ̂(λ) is given by (2.2) and cM = 1− (p+ 1)/(n− k − 1).

Here, note that C#
p (λ) is obtained by substituting S−1 for Σ−1 when we neglect the terms

that are independent of λ in (3.3). However, there exists a bias because S−1 is not an unbi-

ased estimator of Σ−1 (see, e.g., Siotani, Hayakawa, and Fujikoshi (1985)). Based on the re-

sults reported by Yanagihara and Satoh (2010), we will correct the bias of EY [tr(Wθ̂(λ)S
−1)]

to EY [tr(Wθ̂(λ)Σ
−1)] under fixed θ̂(λ). Finally, we define MC#

p (λ) by neglecting terms that

are independent of θ and λ. Using these criteria, λ and θ are optimized as follows:

λ̂#
C = arg min

λ∈[0,∞]
C#

p (λ) and θ̂(λ̂#
C ) = arg min

θ∈[0,∞]
GCp(θ, λ̂

#
C ),

λ̂#
M = arg min

λ∈[0,∞]
MC#

p (λ) and θ̂(λ̂#
M) = arg min

θ∈[0,∞]
GCp(θ, λ̂

#
M).

These optimization methods are similar to those reported by Ye (1998) and Shen and Ye

(2002).

3.2. Optimization of λ with approximated θ̂(λ)

In the previous subsection, we proposed penalty selection criteria for selecting λ. These

criteria are made from the optimal θ obtained by minimizing the GCp criterion. This indi-

cates that we need to repeat the optimization of θ until obtaining the optimal λ. Hence, a

number of computational tasks are required for such an optimization. In this subsection, we

try to reduce the number of computational tasks by using the approximated θ̂(λ), which is

given by (2.6). Thus, we propose the penalty selection criterion when the approximated θ̂(λ)

is used. As such, we calculate ∂θ̃(L)(λ)/∂(Y )ij. The following lemma is useful for obtaining

such a derivative (The proof is provided in Appendix A.4.):
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Lemma 3.1. For any ℓ, the first derivative of aℓ with respect to (Y )ij is calculated as

∂aℓ
∂(Y )ij

= 2nℓ

(
S−1Y ′XM−ℓ−2

0 X ′
(
In −

1

n− k − 1
Y S−1Y ′H

))
ji

,

where H = In − 1n1
′
n/n−XM−1

0 X ′.

By using this lemma and (2.6), we obtain the following theorem:

Theorem 3.2. The PMSE of Ŷθ̃(L)(λ)
is expressed as

PMSE[Ŷθ̃(L)(λ)
] = EY [tr(Wθ̃(L)(λ)

Σ−1) + 2p{tr(M−1

θ̃(L)(λ)
M0) + 1}] + 2EY [B

′(θ̃(L)(λ))],

where

B′(θ̃(L)(λ))

=
2n

a1
θ̃(1)(λ)tr(M

−2
0 M−2

θ̃(L)(λ)
V )

+
1

λa21
tr(M−2

0 M−2

θ̃(L)(λ)
V )

L−1∑
ℓ=0

1

nℓ−1
(−1)ℓ+1(ℓ+ 1)θ̃ℓ(L−1)(λ){λ(ℓ+ 2)aℓ+1θ̃(L−1)(λ)− 2pbℓ+1}

− 1

2λa1

L−1∑
ℓ=0

1

nℓ
(−1)ℓ+1(ℓ+ 1)θ̃ℓ−1

(L−1){λ(ℓ+ 1)(ℓ+ 2)aℓ+1θ̃(L−1)(λ)− 2pℓbℓ+1}

×
n∑

i=1

p∑
j=1

(XM−2

θ̃(L)(λ)
X ′Y )ij

∂θ̃(L−1)

∂(Y )ij

− n

a1

L−1∑
ℓ=0

(−1)ℓ+1(ℓ+ 1)(ℓ+ 2)θ̃ℓ+1
(L−1)tr(M

−(ℓ+2)
0 M−2

θ̃(L)(λ)
V ).

The proof of this theorem is presented in Appendix A.5. When θ̃(1)(λ) is used, we obtain

PMSE[Ŷθ̃(1)(λ)
] = EY [tr(Wθ̃(1)(λ)

Σ−1) + 2p{tr(M−1

θ̃(1)(λ)
M0) + 1}]

+ EY

[
4nθ̃(1)(λ)

a1
tr(M−2

0 M−2

θ̃(1)(λ)
V )

]
.

Thus, by neglecting terms that are independent of λ, the penalty selection criteria with

θ̃(1)(λ) are defined as follows:

Definition 3.2. Penalty selection criteria to optimize λ when θ̃(1)(λ) is used are defined as

follows:

C(1)
p (λ) = tr(Wθ̃(1)(λ)

S−1) + 2ptr(M−1

θ̃(1)(λ)
M0) +

4n

a1
θ̃(1)(λ)tr(M

−2
0 M−2

θ̃(1)(λ)
V ),

MC(1)
p (λ) = cMtr(Wθ̃(1)(λ)

S−1) + 2ptr(M−1

θ̃(1)(λ)
M0) +

4n

a1
θ̃(1)(λ)tr(M

−2
0 M−2

θ̃(1)(λ)
V ),

where θ̃(1)(λ) = pb1/(λa1) and cM = 1− (p+ 1)/(n− k − 1).
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Similar to MC#
p (λ), MC

(1)
p (λ) can be regarded as simple bias-corrected C

(1)
p (λ). At least,

when θ̃(1)(λ) = 0, MC
(1)
p (λ) completely corrects the bias of C

(1)
p (λ). If we use a θ̃(L)(λ) other

than θ̃(1)(λ), the penalty selection criteria becomes more complicated as the number of L

increases. As an example, we describe the penalty selection criteria for θ̃(2)(λ) in Appendix

A.6. From the viewpoint of an application, C
(1)
p (λ) and MC

(1)
p (λ) are useful because these

are the simplest criteria among all L. When we use C
(1)
p (λ) and MC

(1)
p (λ), the optimal θ

and λ are given as follows:

λ̂
(1)
C = arg min

λ∈[0,∞]
C(1)

p (λ) and θ̂(λ̂
(1)
C ) = θ̃(1)(λ̂

(1)
C ),

λ̂
(1)
M = arg min

λ∈[0,∞]
MC(1)

p (λ) and θ̂(λ̂
(1)
M ) = θ̃(1)(λ̂

(1)
M ).

3.3. Asymptotic optimization for λ

In previous subsections, we proposed the penalty selection criteria. When such criteria

are used to optimize λ, we must perform an iterative procedure. In this subsection, we

consider the non-iterative optimization of λ. This requires the calculation of an asymptotic

optimal λ, which minimizes an asymptotic expansion of PMSE[Ŷθ̂(λ)] among λ ∈ [0,∞].

The following theorem gives such an asymptotic optimal value of λ (The proof is provided

in Appendix A.7.):

Theorem 3.3. An asymptotic optimal λ∗ minimizes PMSE[Ŷθ̂(λ)] asymptotically is given by

1

λ∗ =
EY [a

−1
1 ]

EY [a∗1/a
2
1]
− 2EY [a2/a

2
1]

pb1EY [a∗1/a
2
1]
,

where V ∗ = X ′Y Σ−1Y ′X and a∗j = njtr(V ∗M
−(j+2)
0 ).

By replacing a∗1 with a1, we estimate λ∗ as follows:

λ̂0 =

{
1− 2tr(M−4

0 V )

ptr(M−3
0 V )tr(M−1

0 )

}−1

. (3.4)

Note that EY [a1] = c−1
M EY [a

∗
1] holds. Hence, we can estimate EY [a

∗
1] as cMa1. This implies

new estimator of λ∗ given by λ̂M = cMλ̂0. When we use λ̂0 and λ̂M, optimal θ is given by

θ̂(λ̂0) = arg min
θ∈[0,∞]

GCp(θ, λ̂0) and λ̂0 is in (3.4),

θ̂(λ̂M) = arg min
θ∈[0,∞]

GCp(θ, λ̂M) and λ̂M = cMλ̂0.

4. Numerical Study
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In this section, we conduct numerical studies to compare the PMSEs of predictors of Y

consisting of the ridge regression estimators with optimized ridge and penalty parameters.

Let Rq and ∆q(ρ) be q × q matrices defined by Rq = diag(1, . . . , q) and (∆q(ρ))ij = ρ|i−j|.

The explanatory matrix X was generated from X = WΨ1/2, where Ψ = R
1/2
k ∆k(ρx)R

1/2
k ,

and W is an n × k matrix, the elements of which were generated independently from the

uniform distribution on (−1, 1). The k × p unknown regression coefficient matrix Ξ was

defined by Ξ = δFΞi, where δ is a constant, and F is defined as F = diag(1κ,0k−κ), which

is a k× k matrix, and Ξi is defined as the first five rows of Ξ0 when k = 5, Ξ0 when k = 10,

and Ξ1 when k = 15.

Ξ0 =



0.8501 0.6571 0.2159
−0.2753 −0.2432 −0.1187
−0.3193 −0.2926 −0.1671
0.2754 0.2608 0.1766
0.2693 0.2164 0.2066

−0.0676 −0.0663 −0.0561
0.2239 0.2197 0.1880

−0.0352 −0.0346 −0.0305
0.3240 0.3199 0.2868

−0.3747 −0.3727 −0.3554


, Ξ1 =



1.3794 0.0645 0.0330
−0.0766 −0.0241 −0.0143
−0.2618 −0.1396 −0.0951
−0.4619 −0.2589 −0.1798
0.2381 0.1488 0.1082
0.2140 0.1463 0.1112
0.3002 0.2364 0.1950
0.1155 0.0953 0.0812

−0.2774 −0.2395 −0.2091
0.3392 0.3072 0.2807
0.0016 0.0107 0.0100
0.0438 0.0408 0.0381

−0.3187 −0.3039 −0.2904
0.0529 0.0510 0.0493
0.2505 0.2451 0.2399



.

Here, δ controls the scale of the regression coefficient matrix, and F controls the number

of non-zero regression coefficients via κ (the dimension of the true model). The values

of the elements of Ξ0 and Ξ1, which is an essential regression coefficient matrix, are the

same as in Lawless (1981). Simulated data values Y were generated by Nn×3(XΞ,Σ⊗ In)

repeatedly under several selections of n, k, κ, δ, ρy, and ρx, where Σ = R
1/2
3 ∆3(ρy)R

1/2
3 ,

and the number of repetition was 1000. At each repetition, we evaluated r(XΞ, Ŷθ̂) =

tr{(XΞ − Ŷθ)
′(XΞ − Ŷθ)Σ

−1}, where Ŷθ̂ = 1nµ̂
′ + XΞ̂θ̂, which is the predicted value of

Y obtained from each method. The average of np+ r(XΞ, Ŷθ̂) across 1000 repetitions was

regarded as the PMSE of Ŷθ̂. In the simulation, a standardized X was used to estimate the

regression coefficients.

Recall that GCp(θ, λ) is defined in (2.1). Here, λ and θ are optimized by the following

methods:

Method 1: θ̂ = arg min
θ∈[0,∞]

GCp(θ, λ̂) and λ̂ = λ̂0, where λ̂0 is defined in (3.4).

Method 2: θ̂ = arg min
θ∈[0,∞]

GCp(θ, λ̂) and λ̂ = λ̂M = cMλ̂0, where cM = 1− (p+1)/(n−k−1).
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Method 3: θ̂ = arg min
θ∈[0,∞]

GCp(θ, λ̂) and λ̂ = arg min
λ∈[0,∞]

C#
p (λ), where C#

p (λ) is given by

Definition 3.1.

Method 4: θ̂=arg min
θ∈[0,∞]

GCp(θ, λ̂) and λ̂=arg min
λ∈[0,∞]

MC#
p (λ), where MC#

p (λ) is given by

Definition 3.1.

Method 5: θ̂ = θ̃(1)(λ̂) and λ̂ = arg min
λ∈[0,∞]

C(1)
p (λ), where θ̃(1)(λ) and C

(1)
p (λ) are defined in

(2.6) and by Definition 3.2.

Method 6: θ̂ = θ̃(1)(λ̂) and λ̂ = arg min
λ∈[0,∞]

MC(1)
p (λ), where MC

(1)
p (λ) is given by Definition

3.2.

For the purpose of comparison with the proposed methods, we prepare conventional

optimization methods, which are obtained using the following methods:

Method 7: θ̂C = arg min
θ∈[0,∞]

Cp(θ) = arg min
θ∈[0,∞]

GCp(θ, 1).

Method 8: θ̂M = arg min
θ∈[0,∞]

MCp(θ) = arg min
θ∈[0,∞]

GCp(θ, cM), where cM = 1− (p+ 1)/(n−

k − 1).

In Methods 3 through 8, the fminsearch function in Matlab is used to find the minimizer of

the penalty selection criterion or model selection criterion. In the fminsearch function, the

Nelder-Mead simplex method (see, e.g., Lagarias et al., 1998) is used to search the value that

minimizes the function. When Methods 1 through 4 are used, an optimal θ is searched using

the fminsearch function. We can see that computational speeds of Methods 1 and 2 are the

same as those of Methods 5 and 6. Furthermore, the computational speeds of Methods 5 and

6 are almost the same as those of Methods 7 and 8 because these four methods optimize one

parameter. It is easy to predict that the computational speeds of Methods 3 and 4 are slower

than the other methods because Methods 3 and 4 optimize two parameters simultaneously.

In this paper, we proposed Methods 1 through 6 as referred to above, and these methods

can be regarded as the estimation methods for the optimal λ. To obtain the optimal λ,

called λ∗∗, which minimizes the PMSE, we divided [0, 2] into 100 parts and used each point.

Then we compute r(XΞ, Ŷθ̂) for each point in each repetition. After 1000 repetitions, we

compute the averages of these values for each point which are regarded as the main term of

PMSE of Ŷθ̂. By comparing the average values, the λ∗∗ is obtained. For comparing λ̂ which

is estimated λ by using each method in above Methods 1 through 6, we show the Figure 1 in

some situations which shows the box plots of each λ̂ in 1000 repetitions. The horizontal line
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means the λ∗∗. Tables 1 through 4 show the averages of (λ̂ − λ∗∗)2 across 1000 repetitions,

which is referred as the mean squared error (MSE) of λ̂, for each method.

In the Theorem 2.2, we derived the expansion for θ̂(λ) and we suggested to use the first

term of the expansion which is referred as θ̃(1)(λ). To compare the θ̂(λ) and θ̃(1)(λ), we show

the scatter plots in some situations when we fix λ as 1 or 2 in Figure 2. In each scatter plot,

the line means the 45-degree line which means the line of θ̂(λ) = θ̃(1)(λ). When the scatter

plot close up this line, θ̃(1)(λ) closes to θ̂(λ).

Tables 7 through 12 show the simulation results obtained for PMSE[Ŷθ̂]/{p(n +k+1)}×
100 for the cases in which (k, n) = (5, 30), (5, 50), (10, 30), (10, 50), (15, 30), and (15, 50),

respectively, where p(n + k + 1) is the PMSE of the predictor of Y derived using the LS

estimators. We note p = 3 in numerical studies. In the tables, bold font indicates the

minimized PMSE, and italic font indicates the second-smallest PMSE.

Please insert figures 1 and 2 around here

Please insert tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 around here

From the figure 1 shows the box plots for λ̂ for each method, we can see that the dispersion

of λ̂ and the differences between λ̂ and λ∗∗. Methods 2, 4 and 6 are always smaller value

than Methods 1, 3 and 5. The dispersion of Methods 2, 4 and 6 are smaller than Methods 1,

3 and 5. This facts mean that the correction of each method make the optimized value and

dispersion smaller. We note that the dispersions of Methods 1 and 2 are smaller than other

methods. When ρy and ρx are small, our optimization method is nearly equal to λ∗∗. From

the tables 1 through 6, we can see that the numerical evaluation for each method. When k

and δ are zeros, Method 6 is the best and Method 5 is the second best. Methods 2 and 4

are the best and the second best when κ and δ is small. When κ is equal to k = 10 and δ

is large, Method 6 is the best method. On the other hand, when k = κ = 15 and δ is large,

Method 6 or 2 is the best in ρy is small or large. Consequently, Method 6 and 5 was, on

average, the best and the second best method except k = 15. When k = 15, Method 5 was

the best. Hence we recommend using Method 6 to optimize the penalty parameter λ.

From the figure 2 shows the scatter plot for θ̃(1)(λ) and θ̂(λ), we can see the dispersion

in each situation. We note that λ become large, the difference between θ̂(λ) and θ̃(1)(λ)

becomes small. Also when ρy or n become large, the difference between θ̂(λ) and θ̃(1)(λ)

becomes small. On the other hand, the difference between θ̂(λ) and θ̃(1)(λ) becomes large

ρx is large. In almost case, θ̃(1)(λ) is smaller than θ̂(λ). This fact is corresponding the result

in the Theorem 2.2 since θ̂(λ) = θ̃(1)(λ) + O(n−1). When the ρy or δ become large, the

dispersion of θ̂(λ) becomes small. The each value of θ̂(λ) and θ̃(1)(λ) become small when ρy,

ρx, δ or λ becomes large.
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Based on the simulations, we can see that all of the methods improved the PMSEs of

the LS estimators in almost all cases. All of the methods greatly improved the PMSE

when n becomes small or k becomes large. Moreover, the improvement in the PMSE of the

proposed method increases as ρy decreases. The improvement in the PMSE when κ ̸= 0

and δ ̸= 0 of the proposed method increases as ρx increases. Comparison of several methods

reveals that Methods 2 and 4 were better than Methods 1 and 3, respectively, in almost all

cases when ρx is large. When k and ρx become large, Methods 5 and 6 provide a greater

improvement in PMSE than Methods 3 and 4. When k becomes small and n becomes

large, Methods 4 and 6 improve the PMSE more than Methods 2 and 4 in most cases.

Occasionally, Method 7 improves the PMSE more than Method 8, especially when κ and δ

become large. Consequently, Method 6 was, on average, the best method. In particular, it

strongly improved the PMSE when δ and κ are small. Based on these results, we recommend

using Method 6 to optimize the multivariate ridge regression.
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Appendix

A.1. Proof of Theorem 2.1

In this subsection, we prove Theorem 2.1, which shows the properties of θ̂(λ). Using dj
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and zj in (2.4), we can write tr(WθS
−1) and tr(M−1

θ M0) in (2.1) as

g(θ) = tr(WθS
−1) = tr(Y ′Y S−1)− 2

k∑
j=1

∥zj∥2

dj + θ
+

k∑
j=1

∥zj∥2dj
(dj + θ)2

− nµ̂′S−1µ̂,

h(θ) = tr(M−1
θ M0) =

k∑
j=1

dj
dj + θ

.

Since dj > 0 and θ ≥ 0, we have

ġ(θ) =
∂g(θ)

∂θ
= 2θ

k∑
j=1

∥zj∥2

(dj + θ)3
≥ 0, (A.1)

with equality if and only if θ = 0 or θ → ∞, and

ḣ(θ) =
∂h(θ)

∂θ
= −

k∑
j=1

dj
(dj + θ)2

≤ 0, (A.2)

with equality if and only if θ → ∞. Therefore, g(θ) and h(θ) are strictly monotonic increasing

and decreasing functions of θ ∈ [0,∞], respectively. Since GCp(θ, λ) = λg(θ)+2ph(θ), these

results imply that

θ̂(∞) = arg min
θ∈[0,∞]

GCp(θ,∞) = arg min
θ∈[0,∞]

tr(WθS
−1) = 0,

θ̂(0) = arg min
θ∈[0,∞]

GCp(θ, 0) = arg min
θ∈[0,∞]

tr(M−1
θ M0) = ∞.

On the other hand, from (A.1) and (A.2), we derive

∂GCp(θ, λ)

∂θ
= ˙GCp(θ, λ) = 2

k∑
j=1

pd2j(θrλ,j − 1)

(dj + θ)3
=

k∑
j=1

ϕj(θ|λ),

where rλ,j is given by (2.5). Note that ϕj(θ|λ) ≤ 0 when θ ∈ [0, (r+λ,1)
−1]. Therefore,

˙GCp(θ, λ) < 0 when θ ∈ [0, (r+λ,1)
−1]. These imply that GCp(θ, λ) is a monotonic decreasing

function with respect to θ ∈ [0, (r+λ,1)
−1]. Thus, θ̂(λ) > (r+λ,1)

−1. On the other hand, if

maxj=1,...,k rλ,j ≤ 0 is satisfied, ϕj(θ|λ) ≤ 0 holds for any θ. This fact means GCp(θ, λ) is a

monotonic decreasing function with respect to θ ∈ [0,∞]. Hence, we can see that θ̂(λ) = ∞
when maxj=1,...,k rλ,j ≤ 0. Since maxj=1,...,k rλ,j ≤ 0 holds when λ < minj=1,...,k pdj/∥zj∥2.
Thus, θ̂(λ) = ∞ when λ < minj=1,...,k pdj/∥zj∥2 is satisfied.

Using Equation (2.3) and ˙GCp(θ, λ) = λġ(θ) + 2pḣ(θ), we have

∂

∂λ
˙GCp(θ̂(λ), λ) = ġ(θ̂(λ)) +

∂θ̂(λ)

∂λ
¨GCp(θ̂(λ), λ) = 0, (A.3)

where ¨GCp(θ, λ) = ∂2GCp(θ, λ)/(∂θ
2). Since θ̂(λ) satisfies (2.2), i.e., θ̂(λ) is the minimizer

of GCp(θ, λ), GCp(θ, λ) is a convex function around the neighborhood of θ̂(λ). Hence, we
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have ¨GCp(θ̂(λ), λ) > 0. Using this result and Equation (A.3), we obtain

∂θ̂(λ)

∂λ
= − ġ(θ̂(λ))

¨GCp(θ̂(λ), λ)
.

We derive ġ(θ̂(λ)) ≥ 0 because ġ(θ) is a strictly monotonic decreasing function of θ ∈ [0,∞].

Hence, ∂θ̂(λ)/(∂λ) ≤ 0 is obtained. This implies that θ̂(λ) is a monotonic decreasing function

with respect to λ.

A.2. Proof of Theorem 2.2

In this subsection, we present the proof of Theorem 2.2, which describes the expansion

of θ̂(λ). In order to prove this theorem, we expand the GCp criterion in (2.1) under fixed λ.

Recall that X ′1n = 0k, (n−k−1)S = Y ′(In−1n1
′
n/n−XM−1

0 X ′)Y , and Q′X ′XQ = D.

Hence, we derive

WθS
−1 = Y ′(In − 1n1

′
n/n−XM−1

θ X ′)2Y S−1

= (n− k − 1)Ip + Y ′X(M−1
0 − 2M−1

θ +M−1
θ M0M

−1
θ )X ′Y S−1

= (n− k − 1)Ip + Y ′XQD−1/2{Ik −D(D + θIk)
−1}2D−1/2Q′X ′Y S−1.

Based on this result, the GCp criterion is expressed as

GCp(θ, λ) = λ(n− k − 1)p+ λθ2tr{D−1/2Q′V QD−1/2(D + θIk)
−2}+ 2p{D(D + θIk)

−1}.

Letting tj = (D−1/2Q′V QD−1/2)jj, we obtain

GCp(θ, λ) = λ(n− k − 1)p+
k∑

i=1

{
λ

(
1 +

θ

di

)−2
θ2ti
d2i

+ 2p

(
1 +

θ

di

)−1
}
.

By Taylor expansion around θ = 0, we have

GCp(θ, λ) = λ(n− k − 1)p+ λ

k∑
i=1

∞∑
ℓ=1

(−1)ℓ+1ℓθℓ+1

dℓ+1
i

ti + 2p
k∑

i=1

(
1−

∞∑
ℓ=1

(−1)ℓ+1

dℓi
θℓ

)

= (λ(n− k − 1) + 2k)p+
∞∑
ℓ=1

{
λ(−1)ℓ+1ℓθℓ+1

k∑
i=1

ti

dℓ+1
i

− 2p(−1)ℓ+1θℓ
k∑

i=1

1

dℓi

}

= (λ(n− k − 1) + 2k)p+
∞∑
ℓ=1

(−1)ℓ+1θℓ{λℓθtr(V M
−(ℓ+2)
0 )− 2ptr(M−ℓ

0 )}.

Recall that aj = njtr(V M
−(j+2)
0 ) and bj = njtr(M−j

0 ). It follows that

GCp(θ, λ) = (λ(n− k − 1) + 2k)p+ lim
L→∞

L∑
ℓ=1

(−1)ℓ+1θℓ

nℓ
{λℓθaℓ − 2pbℓ}.
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Then, the following equation is derived:

∂

∂θ
GCp(θ, λ) = lim

L→∞

L∑
ℓ=1

(−1)ℓ+1ℓθℓ−1

nℓ
{λ(ℓ+ 1)aℓθ − 2pbℓ}.

Using the above equation and θ̂(λ) satisfying (2.3), we obtain the equation in Theorem 2.2.

A.3. Proof of Theorem 3.1

In this subsection, we prove Theorem 3.1, which shows the risk function with respect

to λ. Recall that g(θ) = tr(WθS
−1), h(θ) = tr(M−1

θ M0) and GCp(θ, λ) = λg(θ) + 2ph(θ).

Since θ̂(λ) satisfies (2.3), we obtain

0 =
∂

∂(Y )ij

(
λ
∂g(θ)

∂θ

∣∣∣∣
θ=θ̂(λ)

+ 2p
∂h(θ)

∂θ

∣∣∣∣
θ=θ̂(λ)

)

=
∂θ̂(λ)

∂(Y )ij

{
λg̈(θ̂(λ)) + 2pḧ(θ̂(λ))

}
+ λ

∂ġ(θ̂(λ))

∂(Y )ij
,

where ġ(θ̂(λ)) = ∂g(θ)/(∂θ)|θ=θ̂(λ), g̈(θ̂(λ)) = ∂2g(θ)/(∂θ)2|θ=θ̂(λ), and ḣ(θ̂(λ)) = ∂h(θ)/(∂θ)

|θ=θ̂(λ). Thus, we obtain

∂θ̂(λ)

∂(Y )ij
= −λ(∂ġ(θ̂(λ)))/(∂(Y )ij)

¨GCp(θ̂(λ), λ)
,

because, from Appendix A.1, ¨GCp(θ̂(λ), λ) = λg̈(θ̂(λ)) + 2pḧ(θ̂(λ)) > 0. By simple cal-

culation, we have ġ(θ̂(λ)) = 2θ̂(λ)tr(M−3

θ̂(λ)
V ). As in the proof of Lemma 3.1, which

is given in Appendix A.4, we obtain ∂tr(M−3

θ̂(λ)
V )/(∂(Y )ij) = 2(S−1Y ′XM−3

θ̂(λ)
X ′{In −

Y S−1Y ′H/(n− k − 1)})ji. Hence, we derive

n∑
i=1

p∑
j=1

(XM−2

θ̂(λ)
X ′Y )ij

∂θ̂(λ)

∂(Y )ij
= −

4λθ̂(λ)tr(V M−5

θ̂(λ)
M0)

¨GCp(θ̂(λ), λ)
,

because X ′1n = 0k and M−3

θ̂(λ)
M0M

−2

θ̂(λ)
= M−5

θ̂(λ)
M0. By simple calculation, we have

˙GCp(θ, λ) = λġ(θ) + 2pḣ(θ) = 2{λθtr(M−3
θ V )− ptr(M−2

θ M0)} and

¨GCp(θ̂(λ), λ) = 2{λtr(M−3

θ̂(λ)
V )− 3λθ̂(λ)tr(M−4

θ̂(λ)
V ) + 2ptr(M−3

θ̂(λ)
M0)}.

Thus, the theorem is proved.

A.4. Proof of Lemma 3.1

In this subsection, we prove Lemma 3.1, which shows the derivative of aℓ for any ℓ.

Since aℓ = nℓtr(V M
−(ℓ+2)
0 ), M0 = X ′X, and V = X ′Y S−1Y ′X, we need only obtain the
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derivative of V . We can see that

∂S−1

∂(Y )ij
= −S−1 ∂S

∂(Y )ij
S−1

= − 1

n− k − 1
S−1(ej·pe

′
i·nHY + Y ′Hei·ne

′
j·p)S

−1,

where ei·n is the n-dimensional vector, the ith element of which is one and other elements

of which are zeros. Thus, we obtain

∂V

∂(Y )ij
= X ′ei·ne

′
j·pS

−1Y ′X +X ′Y S−1ej·pe
′
i·nX

− 1

n− k − 1
X ′Y S−1(ej·pe

′
i·nHY + Y ′Hei·ne

′
j·p)S

−1Y ′X.

From ∂aℓ/(∂(Y )ij) = nℓtr{M−(ℓ+2)
0 (∂V )/(∂(Y )ij)}, we derive this lemma.

A.5. Proof of Theorem 3.2

From (3.2), we obtain

PMSE[Ŷθ̃(L)(λ)
] = EY [tr(Wθ̃(L)(λ)

Σ−1) + 2p{tr(M−1

θ̃(L)(λ)
M0) + 1}]

− 2EY

[
n∑

i=1

p∑
j=1

(XM−2

θ̃(L)(λ)
X ′Y )ij

∂θ̃(L)(λ)

∂(Y )ij

]
.

Hence, we need only calculate ∂θ̃(L)(λ)/(∂(Y )ij). Using Theorem 2.2, we derive the derivative

as follows:

∂θ̃(L)(λ)

∂(Y )ij
=

∂θ̃(1)(λ)

∂(Y )ij

+
∂

∂(Y )ij

[
1

2λa1

L−1∑
ℓ=0

1

nℓ
(−1)ℓ+1(ℓ+ 1) θ̃ℓ(L−1)(λ){λ(ℓ+ 2)aℓ+1θ̃(L−1)(λ)− 2pbℓ+1}

]
.

Recall that θ̃(0)(λ) = 0. From Lemma 3.1, we have

∂θ̃(1)(λ)

∂(Y )ij
= − pb1

λa21

∂a1
∂(Y )ij

= −
2nθ̃(1)(λ)

a1

(
S−1Y ′XM−3

0 X ′
(
In −

1

n− k − 1
Y S−1Y ′H

))
ji

,
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and

∂

∂(Y )ij

[
1

2λa1

L−1∑
ℓ=0

1

nℓ
(−1)ℓ+1(ℓ+ 1)θ̃ℓ(L−1)(λ){λ(ℓ+ 2)aℓ+1θ̃(L−1)(λ)− 2pbℓ+1}

]

= − n

λa21

(
S−1Y ′XM−3

0 X ′
(
In −

Y S−1Y ′H

n− k − 1

))
ji

×
L−1∑
ℓ=0

1

nℓ
(−1)ℓ+1(ℓ+ 1)θ̃ℓ(L−1)(λ){λ(ℓ+ 2)aℓ+1θ̃(L−1)(λ)− 2pbℓ+1}

+
1

2λa1

L−1∑
ℓ=0

1

nℓ
(−1)ℓ+1(ℓ+ 1)θ̃ℓ−1

(L−1){λ(ℓ+ 1)(ℓ+ 2)aℓ+1θ̃(L−1)(λ)− 2pℓbℓ+1}
∂θ̃(L−1)

∂(Y )ij

+
n

a1

L−1∑
ℓ=0

(−1)ℓ+1(ℓ+ 1)(ℓ+ 2)θ̃ℓ+1
(L−1)

(
S−1Y ′XM

−(ℓ+3)
0 X ′

(
In −

1

n− k − 1
Y S−1Y ′H

))
ji

.

Thus, we obtain
n∑

i=1

p∑
j=1

(XM−2

θ̃(L)(λ)
X ′Y )ij

× ∂

∂(Y )ij

[
1

2λa1

L−1∑
ℓ=0

1

nℓ
(−1)ℓ+1(ℓ+ 1) θ̃ℓ(L−1)(λ){λ(ℓ+ 2)aℓ+1θ̃(L−1)(λ)− 2pbℓ+1}

]
= − n

λa21
tr(M−2

0 M−2

θ̃(L)(λ)
V )

L−1∑
ℓ=0

1

nℓ
(−1)ℓ+1(ℓ+ 1)θ̃ℓ(L−1)(λ){λ(ℓ+ 2)aℓ+1θ̃(L−1)(λ)− 2pbℓ+1}

+
1

2λa1

L−1∑
ℓ=0

1

nℓ
(−1)ℓ+1(ℓ+ 1)θ̃ℓ−1

(L−1){λ(ℓ+ 1)(ℓ+ 2)aℓ+1θ̃(L−1)(λ)− 2pℓbℓ+1}

×
n∑

i=1

p∑
j=1

(XM−2

θ̃(L)(λ)
X ′Y )ij

∂θ̃(L−1)

∂(Y )ij

+
n

a1

L−1∑
ℓ=0

(−1)ℓ+1(ℓ+ 1)(ℓ+ 2)θ̃ℓ+1
(L−1)tr(M

−(ℓ+2)
0 M−2

θ̃(L)(λ)
V ),

and
n∑

i=1

p∑
j=1

(XM−2

θ̃(L)(λ)
X ′Y )ij

∂θ̃(1)(λ)

∂(Y )ij
= −

2nθ̃(1)(λ)

a1
tr(M−2

0 M−2

θ̃(L)(λ)
V ).

We derive this theorem by substituting these results into (3.2).

A.6. The criteria for optimizing λ when we use θ̃(2)(λ)

In this subsection, we calculate the criterion for optimizing λ when we use θ̃(2)(λ). From

(2.6), we obtain

θ̃(2)(λ) = θ̃(1)(λ) +
1

nλa1
θ̃(1)(λ){3λa2θ̃(1)(λ)− 2pb2}

= θ̃(1)(λ) +
1

n
θ̃2(1)(λ)

{
3
a2
a1

− 2
b2
b1

}
.
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Since bℓ = nℓtr(M−ℓ
0 ) does not depend on (Y )ij, we derive

∂θ̃(2)(λ)

∂(Y )ij
=

∂θ̃(1)(λ)

∂(Y )ij
+

1

n

∂

∂(Y )ij

{
θ̃2(1)(λ)

(
3
a2
a1

− 2
b2
b1

)}
=

∂θ̃(1)(λ)

∂(Y )ij
+

1

n

{
∂θ̃2(1)(λ)

∂(Y )ij

(
3
a2
a1

− 2
b2
b1

)
+ 3θ̃2(1)(λ)

∂ a2/a1
∂(Y )ij

}

=
∂θ̃(1)(λ)

∂(Y )ij

{
1 +

2θ̃(1)(λ)

n

(
3
a2
a1

− 2
b2
b1

)}
+

3θ̃2(1)(λ)

n

∂a2/a1
∂(Y )ij

.

Hence, the third term of (3.1) is obtained using the result of ∂θ̃(1)(λ)/(∂(Y )ij) as follows:

n∑
i=1

p∑
j=1

(XM−2

θ̃(2)(λ)
X ′Y )ij

∂θ̃(2)(λ)

∂(Y )ij

= −
2nθ̃(1)(λ)

a1

{
1 +

2θ̃(1)(λ)

n

(
3
a2
a1

− 2
b2
b1

)}
tr
(
M−2

0 M−2

θ̃(2)(λ)
V
)

+
3θ̃2(1)(λ)

na21

n∑
i=1

p∑
j=1

(XM−2

θ̃(2)(λ)
X ′Y )ij

(
a1

∂a2
∂(Y )ij

− a2
∂a1

∂(Y )ij

)
.

From Lemma 3.1, we obtain

3θ̃2(1)(λ)

na21

n∑
i=1

p∑
j=1

(XM−2

θ̃(2)(λ)
X ′Y )ij

(
a1

∂a2
∂(Y )ij

− a2
∂a1

∂(Y )ij

)

=
6θ̃2(1)(λ)

a21

n∑
i=1

p∑
j=1

(XM−2

θ̃(2)(λ)
X ′Y )ij

×
(
S−1Y ′XM−3

0

(
na1M

−1
0 − a2Ik

)
X ′
(
In −

1

n− k − 1
Y S−1Y ′H

))
ji

=
6θ̃2(1)(λ)

a21
tr{XM−2

θ̃(2)(λ)
V M−3

0 (na1M
−1
0 − a2Ik)X

′}

=
6θ̃2(1)(λ)

a21
tr{M−2

0 M−2

θ̃(2)(λ)
V (na1M

−1
0 − a2Ik)}.

Thus, we have

−
n∑

i=1

p∑
j=1

(XM−2

θ̃(2)(λ)
X ′Y )ij

∂θ̃(2)(λ)

∂(Y )ij

=
2nθ̃(1)(λ)

a1
tr(M−2

0 M−2

θ̃(2)(λ)
V ) +

4θ̃2(1)(λ)

a1

(
3
a2
a1

− 2
b2
b1

)
tr(M−2

0 M−2

θ̃(2)(λ)
V )

+
6θ̃2(1)(λ)

a21
tr{M−2

0 M−2

θ̃(2)(λ)
V (a2Ik − na1M

−1
0 )}

=
2nθ̃(1)(λ)

a1
tr(M−2

0 M−2

θ̃(2)(λ)
V ) +

18θ̃2(1)(λ)a2

a21
tr(M−2

0 M−2

θ̃(2)(λ)
V )

−
8θ̃2(1)(λ)b2

a1b1
tr(M−2

0 M−2

θ̃(2)(λ)
V )−

6nθ̃2(1)(λ)

a1
tr(M−3

0 M−2

θ̃(2)(λ)
V ).
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When we use Theorem 3.2, we obtain the same result. Using this result, we obtain the Cp

type criteria for optimizing λ are defined as

C(2)
p (λ) = tr(Wθ̃(1)(λ)

S−1) + 2ptr(M−1

θ̃(2)λ
M0)

+
4nθ̃(1)(λ)

a1
tr(M−2

0 M−2

θ̃(2)(λ)
V ) +

36θ̃2(1)(λ)a2

a21
tr(M−2

0 M−2

θ̃(2)(λ)
V )

−
16θ̃2(1)(λ)b2

a1b1
tr(M−2

0 M−2

θ̃(2)(λ)
V )−

12nθ̃2(1)(λ)

a1
tr(M−3

0 M−2

θ̃(2)(λ)
V ),

and

MC(2)
p (λ) = cMtr(Wθ̃(1)(λ)

S−1) + 2ptr(M−1

θ̃(2)λ
M0)

+
4nθ̃(1)(λ)

a1
tr(M−2

0 M−2

θ̃(2)(λ)
V ) +

36θ̃2(1)(λ)a2

a21
tr(M−2

0 M−2

θ̃(2)(λ)
V )

−
16θ̃2(1)(λ)b2

a1b1
tr(M−2

0 M−2

θ̃(2)(λ)
V )−

12nθ̃2(1)(λ)

a1
tr(M−3

0 M−2

θ̃(2)(λ)
V ).

A.7. Proof of Theorem 3.3

In this subsection, we show an asymptotic expansion PMSE[Ŷθ̂(λ)] of and calculation to

obtain λ̂0. Since PMSE[Ŷθ̂(λ)] is obtained as (3.3), we consider expanding each term for

obtaining λ̂0. We obtain

Wθ̂(λ)Σ
−1 = Y ′(In − 1n1

′
n/n−XM−1

θ̂(λ)
X ′)2Y Σ−1

= (n− k − 1)SΣ−1 + Y ′X(M−1
0 − 2M−1

θ̂(λ)
+M−1

θ̂(λ)
M0M

−1

θ̂(λ)
)X ′Y Σ−1

= (n− k − 1)SΣ−1 + Y ′XQD−1/2(Ik −D{D + θ̂(λ)Ik)
−1}2D−1/2Q′X ′Y Σ−1,

because Y ′(In − 1n1
′
n/n −XM−1

0 X ′)Y = (n − k − 1)S, X ′1n = 0k and Q′X ′XQ = D.

Hence, we obtain

tr(Wθ̂(λ)Σ
−1) = (n− k − 1)tr(SΣ−1) + θ2tr{(D + θIk)

−2D−1Q′V ∗Q}.

Since S is an unbiased estimator of Σ, we have

EY [tr(Wθ̂(λ)Σ
−1)] = (n− k − 1)p+ EY

 k∑
j=1

(
θ̂(λ)

dj + θ̂(λ)

)2
(Q′V ∗Q)jj

dj

 .

Then, since di = O(n) and V ∗ = Op(n
2), we can expand the above equation as follows:

EY [tr(Wθ̂(λ)Σ
−1)] = (n− k − 1)p+ EY

[
k∑

j=1

θ̂2(λ)

d3j
(Q′V ∗Q)jj +Op(n

−2)

]

= (n− k − 1)p+ EY

[
a∗1θ̂

2(λ)

n
+Op(n

−2)

]
.
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From simple calculation by Taylor expansion and noting that aj = Op(1) and bj = O(1), we

derive

tr(M−1

θ̂(λ)
M0) = k − b1θ̂(λ)

n
+Op(n

−2),

λθ̂(λ)tr(V M−5

θ̂(λ)
M0) =

λθ̂(λ)a2
n2

+Op(n
−3),

λtr(V M−3

θ̂(λ)
) =

λa1
n

+Op(n
−2),

λθtr(V M−4

θ̂(λ)
) =

λθ̂(λ)a2
n2

+Op(n
−3),

tr(M−3

θ̂(λ)
M0) =

b2
n2

+Op(n
−3).

By substituting these results into PMSE[Ŷθ̂(λ)] in (3.3), we obtain the asymptotic expansion

of PMSE[Ŷθ̂(λ)], as follows:

PMSE[Ŷθ̂(λ)] = (n+ k + 1)p+ EY

[
a∗1θ̂

2(λ)

n
− 2pb1θ̂(λ)

n
+

4a2θ̂(λ)

na1
+Op(n

−2)

]
.

From (2.6), which is proved in Appendix A.2, θ̂(λ) = pb1/(λa1) + Op(n
−1). Hence, we

consider minimizing the following approximated PMSE:

PMSE[Ŷθ̂(λ)] = (n+ k + 1)p+ EY

[
pb1
na1

(
pb1a

∗
1

λ2a1
− 2pb1

λ
+

4a2
λa1

)]
+O(n−2).

Hence we obtain the asymptotic optimal λ∗, which minimizes the second term of the above

equation as in Theorem 3.3.
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Figure 1. The box plots for λ̂ in the case of (n, k, κ, δ, ρy, ρx)
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Table 1. MSE of λ̂ in which (k, n) = (5, 30)

Method
κ δ ρy ρx 1 2 3 4 5 6

0 0 0.2 0.2 1.470 1.014 1.475 1.145 0.039 0.014
0.95 1.644 1.135 2.599 2.151 0.036 0.013

0.95 0.2 1.327 0.896 1.239 0.907 0.033 0.013
0.95 1.593 1.092 2.482 2.050 0.035 0.012

5 1 0.2 0.2 0.030 0.002 0.009 0.015 0.181 0.331
0.95 0.305 0.114 0.424 0.266 0.378 0.445

0.95 0.2 0.006 0.016 0.001 0.032 0.055 0.167
0.95 0.340 0.137 0.327 0.169 0.270 0.338

3 0.2 0.2 0.008 0.012 0.004 0.017 0.001 0.030
0.95 1.577 1.095 1.261 0.815 0.303 0.154

0.95 0.2 1.322 0.918 1.293 0.894 1.253 0.861
0.95 1.516 1.053 1.359 0.927 0.677 0.397

Average 0.928 0.624 1.039 0.782 0.272 0.231

Table 2. MSE of λ̂ in which (k, n) = (5, 50)

Method
κ δ ρy ρx 1 2 3 4 5 6

0 0 0.2 0.2 1.394 1.148 1.504 1.277 0.027 0.015
0.95 1.654 1.363 2.645 2.397 0.022 0.012

0.95 0.2 1.164 0.941 1.218 0.998 0.023 0.017
0.95 1.656 1.364 2.680 2.436 0.020 0.010

5 1 0.2 0.2 0.010 0.001 0.003 0.003 0.076 0.136
0.95 0.288 0.176 0.413 0.310 0.406 0.442

0.95 0.2 0.003 0.003 0.001 0.008 0.015 0.048
0.95 0.232 0.133 0.187 0.121 0.322 0.377

3 0.2 0.2 0.000 0.013 0.001 0.016 0.002 0.021
0.95 1.550 1.281 1.281 1.040 0.460 0.337

0.95 0.2 1.289 1.065 1.276 1.054 1.253 1.033
0.95 1.483 1.226 1.335 1.100 0.928 0.731

Average 0.894 0.726 1.045 0.897 0.296 0.265
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Table 3. MSE of λ̂ in which (k, n) = (10, 30)

Method
κ δ ρy ρx 1 2 3 4 5 6

0 0 0.2 0.2 1.293 0.798 0.977 0.773 0.016 0.003
0.95 1.375 0.849 1.601 1.261 0.016 0.004

0.95 0.2 1.292 0.798 0.930 0.701 0.017 0.004
0.95 1.332 0.815 1.539 1.111 0.017 0.004

5 1 0.2 0.2 0.070 0.001 0.028 0.011 0.311 0.461
0.95 0.328 0.104 0.375 0.202 0.311 0.355

0.95 0.2 0.056 0.000 0.020 0.007 0.145 0.284
0.95 0.303 0.090 0.283 0.127 0.308 0.361

3 0.2 0.2 0.030 0.004 0.011 0.015 0.017 0.088
0.95 0.181 0.031 0.110 0.029 0.329 0.438

0.95 0.2 0.018 0.011 0.007 0.022 0.002 0.054
0.95 1.369 0.853 1.130 0.673 0.241 0.106

10 1 0.2 0.2 0.035 0.003 0.010 0.019 0.267 0.450
0.95 0.283 0.079 0.277 0.141 0.339 0.392

0.95 0.2 0.043 0.002 0.015 0.014 0.121 0.277
0.95 0.303 0.090 0.215 0.071 0.282 0.348

3 0.2 0.2 1.299 0.810 1.230 0.755 0.936 0.535
0.95 1.411 0.879 1.115 0.657 0.122 0.043

0.95 0.2 1.307 0.815 1.259 0.777 1.059 0.624
0.95 1.399 0.872 1.159 0.693 0.233 0.094

Average 0.686 0.395 0.615 0.403 0.255 0.246
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Table 4. MSE of λ̂ in which (k, n) = (10, 50)

Method
κ δ ρy ρx 1 2 3 4 5 6

0 0 0.2 0.2 1.173 0.940 0.977 0.862 0.016 0.007
0.95 1.282 1.028 1.562 1.409 0.008 0.004

0.95 0.2 1.129 0.902 0.890 0.751 0.014 0.007
0.95 1.285 1.031 1.598 1.403 0.007 0.003

5 1 0.2 0.2 0.012 0.000 0.005 0.004 0.200 0.287
0.95 0.203 0.111 0.183 0.126 0.407 0.437

0.95 0.2 0.007 0.001 0.003 0.004 0.058 0.115
0.95 0.182 0.096 0.120 0.067 0.372 0.414

3 0.2 0.2 0.005 0.002 0.003 0.003 0.001 0.015
0.95 0.014 0.000 0.013 0.024 0.492 0.601

0.95 0.2 0.006 0.001 0.004 0.002 0.001 0.006
0.95 1.261 1.016 1.138 0.917 0.455 0.328

10 1 0.2 0.2 0.004 0.002 0.001 0.008 0.158 0.248
0.95 0.171 0.087 0.102 0.054 0.426 0.465

0.95 0.2 0.007 0.001 0.004 0.003 0.047 0.104
0.95 0.123 0.054 0.063 0.022 0.430 0.487

3 0.2 0.2 1.224 0.986 1.217 0.979 1.066 0.8444
0.95 1.325 1.067 1.161 0.912 0.229 0.147

0.95 0.2 1.211 0.976 1.206 0.971 1.124 0.897
0.95 1.304 1.050 1.194 0.951 0.459 0.325

Average 0.596 0.468 0.572 0.474 0.298 0.287
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Table 5. MSE of λ̂ in which (k, n) = (15, 30)

Method
κ δ ρy ρx 1 2 3 4 5 6

0 0 0.2 0.2 1.311 0.660 1.046 0.716 0.014 0.002
0.95 1.514 0.762 1.364 0.940 0.011 0.001

0.95 0.2 1.217 0.594 0.922 0.540 0.012 0.004
0.95 1.462 0.726 1.326 0.861 0.013 0.003

5 1 0.2 0.2 0.285 0.042 0.163 0.036 0.242 0.328
0.95 0.864 0.328 0.717 0.356 0.080 0.096

0.95 0.2 0.030 0.024 0.013 0.048 0.207 0.471
0.95 0.316 0.044 0.201 0.049 0.338 0.412

3 0.2 0.2 0.012 0.047 0.005 0.069 0.181 0.473
0.95 0.232 0.017 0.141 0.048 0.427 0.522

0.95 0.2 0.004 0.063 0.003 0.068 0.001 0.111
0.95 0.139 0.002 0.043 0.018 0.224 0.390

10 1 0.2 0.2 0.099 0.001 0.038 0.020 0.336 0.506
0.95 0.475 0.111 0.340 0.099 0.253 0.296

0.95 0.2 0.044 0.014 0.018 0.033 0.097 0.301
0.95 0.315 0.044 0.169 0.038 0.315 0.398

3 0.2 0.2 1.308 0.667 1.139 0.562 0.621 0.249
0.95 1.542 0.787 1.145 0.547 0.057 0.013

0.95 0.2 0.002 0.073 0.001 0.084 0.002 0.118
0.95 0.114 0.002 0.026 0.024 0.210 0.376

15 1 0.2 0.2 0.071 0.005 0.025 0.023 0.260 0.462
0.95 0.468 0.109 0.307 0.074 0.244 0.292

0.95 0.2 0.033 0.020 0.013 0.040 0.074 0.267
0.95 1.540 0.786 1.142 0.540 0.050 0.011

3 0.2 0.2 1.259 0.642 1.146 0.571 0.841 0.374
0.95 1.527 0.779 1.121 0.556 0.104 0.029

0.95 0.2 0.006 0.056 0.004 0.063 0.001 0.083
0.95 0.121 0.002 0.033 0.018 0.149 0.305

Average 0.583 0.264 0.450 0.251 0.192 0.246
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Table 6. MSE of λ̂ in which (k, n) = (15, 50)

Method
κ δ ρy ρx 1 2 3 4 5 6

0 0 0.2 0.2 1.166 0.903 0.867 0.753 0.006 0.002
0.95 1.256 0.973 1.247 1.059 0.004 0.001

0.95 0.2 1.167 0.904 0.816 0.701 0.007 0.003
0.95 1.254 0.972 1.163 0.997 0.004 0.002

5 1 0.2 0.2 0.023 0.001 0.023 0.025 0.520 0.625
0.95 0.289 0.163 0.210 0.141 0.318 0.340

0.95 0.2 0.002 0.007 0.001 0.009 0.073 0.154
0.95 0.044 0.006 0.010 0.006 0.555 0.630

3 0.2 0.2 0.000 0.015 0.000 0.017 0.053 0.126
0.95 0.035 0.003 0.011 0.007 0.557 0.645

0.95 0.2 0.006 0.041 0.006 0.042 0.013 0.059
0.95 0.004 0.005 0.000 0.015 0.117 0.205

10 1 0.2 0.2 0.012 0.000 0.004 0.005 0.278 0.392
0.95 0.174 0.080 0.078 0.036 0.441 0.472

0.95 0.2 0.004 0.004 0.003 0.006 0.034 0.095
0.95 0.063 0.014 0.021 0.005 0.452 0.532

3 0.2 0.2 1.171 0.912 1.158 0.900 0.946 0.714
0.95 1.261 0.982 1.069 0.817 0.126 00.073

0.95 0.2 0.003 0.034 0.003 0.034 0.008 0.046
0.95 0.004 0.005 0.000 0.014 0.088 0.168

15 1 0.2 0.2 0.006 0.003 0.001 0.011 0.232 0.345
0.95 0.142 0.059 0.060 0.020 0.449 0.494

0.95 0.2 0.002 0.007 0.001 0.009 0.030 0.088
0.95 0.053 0.010 0.015 0.002 0.442 0.523

3 0.2 0.2 1.197 0.932 1.184 0.920 1.002 0.761
0.95 1.270 0.989 1.056 0.812 0.192 0.122

0.95 0.2 0.007 0.002 0.007 0.002 0.003 0.005
0.95 0.016 0.000 0.006 0.003 0.051 0.115

Average 0.380 0.287 0.322 0.263 0.250 0.276
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Figure 2. The scatter plots for θ̃(1)(λ) and θ̂(λ) in the case of (n, k, κ, δ, ρy, ρx, λ)
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Table 7. Simulation results for the case in which (k, n) = (5, 30)

Method
κ δ ρy ρx 1 2 3 4 5 6 7 8

0 0 0.2 0.2 88.34 87.53 88.00 87.16 87.30 86.76 87.44 86.88
0.95 90.24 89.05 90.52 89.32 88.34 87.46 88.63 87.73

0.95 0.2 88.49 87.64 88.15 87.28 87.39 86.82 87.53 86.94
0.95 90.25 89.03 90.37 89.15 88.28 87.41 88.56 87.67

5 1 0.2 0.2 94.80 94.72 94.81 94.90 94.87 95.10 94.72 94.91
0.95 92.17 91.54 92.09 91.48 91.25 90.96 91.34 91.02

0.95 0.2 97.34 97.31 97.34 97.36 97.37 97.46 97.29 97.41
0.95 93.47 92.94 93.47 93.00 92.74 92.43 92.76 92.45

3 0.2 0.2 98.92 98.93 98.92 98.94 98.92 98.95 98.91 98.98
0.95 95.44 95.23 95.69 95.75 95.40 95.43 95.19 95.21

0.95 0.2 99.37 99.37 99.37 99.38 99.37 99.38 99.37 99.40
0.95 97.61 97.54 97.66 97.82 97.72 97.86 97.54 97.67

Average 93.87 93.40 93.87 93.46 93.25 93.00 93.27 93.02

Table 8. Simulation results for the case in which (k, n) = (5, 50)

Method
κ δ ρy ρx 1 2 3 4 5 6 7 8

0 0 0.2 0.2 92.22 91.94 92.06 91.70 91.63 91.45 91.73 91.54
0.95 93.29 92.91 93.52 93.08 92.10 91.80 92.27 91.98

0.95 0.2 92.22 91.96 92.08 91.72 91.67 91.49 91.76 91.58
0.95 93.24 92.83 93.42 93.01 92.05 91.78 92.21 91.93

5 1 0.2 0.2 97.46 97.45 97.46 97.48 97.52 97.57 97.46 97.52
0.95 94.96 94.79 95.00 94.82 94.54 94.46 94.57 94.48

0.95 0.2 98.75 98.76 98.76 98.77 98.77 98.79 98.77 98.81
0.95 96.19 96.06 96.28 96.20 95.96 95.92 95.91 95.87

3 0.2 0.2 99.57 99.57 99.57 99.57 99.57 99.57 99.57 99.58
0.95 97.70 97.67 97.80 97.84 97.78 97.83 97.66 97.70

0.95 0.2 99.79 99.80 99.79 99.80 99.79 99.80 99.80 99.81
0.95 98.73 98.73 98.74 98.75 98.77 98.80 98.74 98.78

Average 96.18 96.04 96.21 96.06 95.84 95.77 95.87 95.80
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Table 9. Simulation results for the case in which (k, n) = (10, 30)

Method
κ δ ρy ρx 1 2 3 4 5 6 7 8

0 0 0.2 0.2 79.07 77.26 78.10 76.70 77.69 76.47 77.86 76.56
0.95 81.19 78.61 80.54 78.24 78.86 77.14 79.13 77.28

0.95 0.2 78.78 77.07 77.90 76.56 77.48 76.33 77.64 76.41
0.95 81.01 78.44 80.29 77.72 78.72 76.89 79.03 77.08

5 1 0.2 0.2 87.14 86.60 87.12 87.07 86.75 86.88 86.72 86.76
0.95 83.49 81.63 82.99 81.41 81.83 80.74 82.01 80.86

0.95 0.2 91.60 91.36 91.45 91.52 91.46 91.66 91.38 91.56
0.95 85.21 83.47 84.66 83.12 83.70 82.59 83.87 82.68

3 0.2 0.2 95.74 95.71 95.71 95.80 95.72 95.85 95.67 95.83
0.95 88.41 87.52 88.34 87.83 87.67 87.21 87.73 87.23

0.95 0.2 97.50 97.51 97.50 97.56 97.50 97.56 97.47 97.58
0.95 91.85 91.67 91.91 92.63 91.77 92.18 91.66 92.02

10 1 0.2 0.2 92.02 91.74 91.93 91.93 91.85 92.12 91.76 91.98
0.95 84.62 82.96 84.27 82.91 83.14 82.18 83.29 82.28

0.95 0.2 94.53 94.37 94.50 94.57 94.47 94.68 94.36 94.57
0.95 86.19 84.74 85.81 84.66 84.91 84.02 85.03 84.10

3 0.2 0.2 98.57 98.64 98.59 98.71 98.59 98.72 98.57 98.77
0.95 91.50 90.99 91.59 91.67 91.12 91.23 91.06 91.12

0.95 0.2 99.69 99.73 99.70 99.76 99.70 99.76 99.70 99.81
0.95 94.15 93.83 94.20 94.37 94.00 94.19 93.87 94.02

Average 89.11 88.19 88.85 88.24 88.35 87.92 88.39 87.93
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Table 10. Simulation results for the case in which (k, n) = (10, 50)

Method
κ δ ρy ρx 1 2 3 4 5 6 7 8

0 0 0.2 0.2 84.93 84.48 84.60 84.09 84.41 84.09 84.51 84.17
0.95 86.22 85.43 85.59 84.96 84.99 84.48 85.19 84.63

0.95 0.2 84.98 84.50 84.62 84.13 84.44 84.10 84.54 84.18
0.95 86.20 85.42 85.58 85.00 85.04 84.60 85.20 84.68

5 1 0.2 0.2 92.65 92.60 92.67 92.72 92.66 92.74 92.60 92.66
0.95 88.43 87.94 88.14 87.77 87.70 87.40 87.82 87.48

0.95 0.2 95.43 95.43 95.44 95.47 95.45 95.51 95.42 95.50
0.95 90.03 89.69 89.94 89.68 89.55 89.31 89.61 89.37

3 0.2 0.2 97.90 97.92 97.90 97.93 97.90 97.93 97.90 97.95
0.95 93.17 93.09 93.36 93.52 93.15 93.22 93.09 93.14

0.95 0.2 99.27 99.28 99.27 99.28 99.27 99.28 99.27 99.30
0.95 95.51 95.47 95.49 95.53 95.54 95.61 95.48 95.54

10 1 0.2 0.2 96.50 96.47 96.53 96.55 96.52 96.57 96.47 96.53
0.95 89.71 89.33 89.58 89.32 89.16 88.94 89.23 89.00

0.95 0.2 97.64 97.64 97.66 97.68 97.66 97.70 97.64 97.70
0.95 91.07 90.75 91.09 90.91 90.63 90.48 90.67 90.51

3 0.2 0.2 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.45
0.95 95.66 95.64 95.85 95.97 95.75 95.89 95.65 95.77

0.95 0.2 99.46 99.46 99.46 99.47 99.46 99.47 99.46 99.47
0.95 97.31 97.29 97.35 97.38 97.36 97.43 97.30 97.37

Average 93.08 92.86 92.98 92.84 92.80 92.71 92.83 92.72
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Table 11. Simulation results for the case in which (k, n) = (15, 30)

Method
κ δ ρy ρx 1 2 3 4 5 6 7 8

0 0 0.2 0.2 72.83 69.39 71.66 68.77 70.91 68.51 71.05 68.56
0.95 76.39 71.49 74.39 70.03 72.67 69.23 72.91 69.43

0.95 0.2 73.86 69.79 72.30 69.03 71.62 68.75 71.78 68.81
0.95 76.96 71.53 74.71 70.21 72.86 69.12 73.14 69.26

5 1 0.2 0.2 81.70 79.12 81.18 79.31 80.22 78.70 80.33 78.73
0.95 78.31 73.62 76.23 72.84 74.79 71.99 75.01 72.06

0.95 0.2 93.65 93.73 93.78 94.48 93.61 94.47 93.50 94.31
0.95 83.27 80.58 82.40 80.94 81.18 80.12 81.29 80.16

3 0.2 0.2 95.37 95.79 95.46 96.48 95.45 96.66 95.33 96.48
0.95 83.89 81.25 83.09 81.71 81.83 80.83 81.96 80.84

0.95 0.2 99.19 99.30 99.19 99.32 99.20 99.34 99.19 99.40
0.95 91.36 90.77 91.08 91.36 90.87 91.24 90.84 91.15

10 1 0.2 0.2 86.74 85.67 86.32 86.26 86.01 86.17 86.02 86.09
0.95 80.23 76.29 78.81 75.65 77.28 74.85 77.44 74.89

0.95 0.2 94.47 94.45 94.46 94.87 94.43 94.95 94.33 94.84
0.95 84.20 81.78 83.37 82.11 82.29 81.24 82.40 81.27

3 0.2 0.2 97.61 97.51 97.59 97.73 97.57 97.76 97.48 97.72
0.95 86.41 84.68 85.85 85.24 85.06 84.55 85.13 84.55

0.95 0.2 99.24 99.32 99.25 99.35 99.25 99.35 99.24 99.40
0.95 92.31 91.76 91.97 92.10 91.90 92.16 91.86 92.08

15 1 0.2 0.2 89.95 89.49 89.75 90.12 89.59 90.23 89.54 90.11
0.95 81.17 77.65 79.74 77.00 78.54 76.39 78.69 76.45

0.95 0.2 95.13 95.08 95.11 95.38 95.09 95.47 95.00 95.39
0.95 84.74 82.63 84.10 83.32 83.04 82.47 83.13 82.49

3 0.2 0.2 97.99 98.09 98.00 98.23 97.99 98.25 97.95 98.28
0.95 88.99 87.89 88.33 88.61 88.07 88.28 88.09 88.23

0.95 0.2 99.16 99.21 99.16 99.23 99.16 99.23 99.15 99.27
0.95 92.82 92.25 92.46 92.53 92.40 92.56 92.36 92.48

Average 87.78 86.08 87.13 86.15 86.53 85.82 86.58 85.81
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Table 12. Simulation results for the case in which (k, n) = (15, 50)

Method
κ δ ρy ρx 1 2 3 4 5 6 7 8

0 0 0.2 0.2 79.00 78.27 78.34 77.85 78.34 77.87 78.42 77.93
0.95 80.06 78.92 78.88 78.24 78.74 78.07 78.90 78.17

0.95 0.2 78.96 78.24 78.35 77.78 78.31 77.80 78.39 77.86
0.95 80.47 79.24 79.11 78.33 79.01 78.24 79.18 78.34

5 1 0.2 0.2 89.06 88.80 89.42 89.64 88.86 88.89 88.84 88.83
0.95 82.51 81.71 81.91 81.31 81.60 81.14 81.70 81.20

0.95 0.2 97.59 97.65 97.60 97.69 97.63 97.76 97.61 97.77
0.95 88.51 88.15 88.41 88.35 88.14 88.05 88.16 88.04

3 0.2 0.2 98.10 98.12 98.10 98.13 98.11 98.16 98.10 98.18
0.95 89.07 88.81 89.06 89.18 88.81 88.87 88.82 88.84

0.95 0.2 99.76 99.77 99.76 99.77 99.76 99.77 99.76 99.77
0.95 95.77 95.74 95.77 95.81 95.77 95.83 95.73 95.81

10 1 0.2 0.2 93.46 93.41 93.49 93.55 93.46 93.60 93.40 93.53
0.95 84.38 83.67 83.97 83.45 83.59 83.15 83.68 83.22

0.95 0.2 98.01 98.03 98.02 98.05 98.02 98.07 98.01 98.08
0.95 89.21 88.93 89.27 89.22 88.92 88.88 88.93 88.87

3 0.2 0.2 98.84 98.86 98.84 98.86 98.85 98.87 98.85 98.89
0.95 92.05 91.85 92.06 92.11 91.89 91.92 91.86 91.87

0.95 0.2 99.68 99.69 99.68 99.69 99.68 99.69 99.69 99.70
0.95 96.56 96.56 96.57 96.62 96.58 96.65 96.55 96.64

15 1 0.2 0.2 95.10 95.05 95.13 95.17 95.10 95.19 95.05 95.14
0.95 85.64 85.11 85.46 85.14 85.04 84.76 85.11 84.80

0.95 0.2 98.37 98.39 98.38 98.41 98.39 98.43 98.38 98.44
0.95 89.86 89.58 89.72 89.75 89.58 89.58 89.59 89.56

3 0.2 0.2 99.46 99.46 99.46 99.46 99.46 99.46 99.45 99.48
0.95 93.82 93.65 93.77 93.73 93.69 93.71 93.65 93.66

0.95 0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.95 96.76 96.75 96.78 96.81 96.77 96.82 96.74 96.80

Average 91.79 91.52 91.62 91.50 91.50 91.40 91.52 91.41
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