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Abstract

By introducing new forms of multivariate cumulants this paper provides the first-order

Edgeworth expansions of the standardized and Studentized function of the sample covariance

matrix. Without assuming a known population distribution, the obtained expansions are

most general and also simpler than those in the literature. A new statistic is also proposed

by removing the effect of skewness from that based on standard asymptotics. Because each

expansion only involves the first- and second-order derivatives of the function with respect

to the sample covariance matrix, the results can be easily applied to many statistics in

multivariate analysis. Special cases are also noted when the underlying population follows a

normal distribution or an elliptical distribution.
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1. Introduction

Let y1, . . . ,yn be a random sample from a p-variate population y with mean µ and

covariance matrix Σ. The unbiased sample covariance matrix is

S =
1

n− 1

n∑

i=1

(yi − ȳ)(yi − ȳ)′, (1)

1Corresponding author. E-mail: yanagi@math.sci.hiroshima-u.ac.jp
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where ȳ is the sample mean. Most test statistics in multivariate analysis are functions of

S. It is important to study the distribution of h(S) for a smooth function h(·). The exact

distribution of h(S) can be obtained for only a few statistics with normally distributed data,

e.g., the sample Pearson correlation. These exact distributions are so complicated that they

are almost never used in practice. Most inferences for functions of Σ are still based on

the standard asymptotics, in which the distribution of h(S) is approximated by a normal

distribution. Such an approximation can be poor when either the sample size is not large

enough or y does not follow Np(µ,Σ). Various methods of improving the normal distribution

approximation have been developed (e.g., Sugiura, 1973; Fujikoshi, 1980; Ichikawa & Konishi,

2002; Ogasawara, 2006). These developments either focus on a special statistic or assume

y ∼ Np(µ,Σ). In this paper, we will obtain the Edgeworth expansion for h(S) and use it to

construct a statistic that more closely follows a normal distribution. Because practical data

seldom follow a normal distribution, we will not assume any population distribution forms

in the development. The development only involves the basic inferential statistics and some

algebraic operations. One only needs to identify h(S) and calculates the first and second

derivatives of h(Σ) with respect to the elements of Σ in order to apply the result to a specific

problem.

Section 2 contains some notation and results that will be used for obtaining the asymp-

totic expansion of the distribution of h(S). In Section 3, we give the coefficients in the

asymptotic expansions of the distributions of standardized and Studentized h(S). In Sec-

tion 4, we propose a new statistic by removing the effect of skewness from the statistic that

is based on standard asymptotics. We also illustrate the application of the new statistic in

constructing a better confidence interval for h(Σ).

2. Preliminary

2.1. Several Higher-order Cumulants

Let

εi = Σ−1/2(yi − µ), (i = 1, . . . , n).

Then ε1, . . . , εn are independent and identically distributed as ε = (ε1, . . . , εp)
′ = Σ−1/2(y−

µ) with E[ε] = 0 and covariance matrix Cov[ε] = Ip. The cumulants of y are often used to

obtain the asymptotic expansions of specific functions of S. We will use cumulants of ε for

simpler results. In particular, we will introduce several new cumulants of ε using symmetric

matrices as those in Yanagihara (2007).
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Let

µa1 ···aj = E[εa1 · · · εaj ]

and κa1···aj be the corresponding jth-order cumulant of ε. Then there exist

µabc = κabc, µabcd = κabcd +
∑

[3]

δabδcd,

µabcdef = κabcdef +
∑

[10]

κabcκdef +
∑

[15]

δabκcdef +
∑

[15]

δabδcdδef ,

where δab is the Kronecker delta, i.e., δaa = 1 and δab = 0 for a 6= b; and
∑

[j] is the summation

of a total of j terms of different combinations, e.g.,
∑

[3] δabδcd = δabδcd + δacδbd + δadδbc. Let

M = (mij), P = (pij) and Q = (qij) be p × p symmetric matrices. We define the following

multivariate cumulants of the transformed ε through M , P and Q:

ψ(M ,P ) = E[(ε′Mε)(ε′Pε)] − {tr(M)tr(P ) + 2tr(MP )}

=

p∑

a,b,c,d

κabcdmabpcd,

α1(M ,P ,Q) = E[(ε′
1Mε2)(ε

′
1Pε2)(ε

′
1Qε2)]

=

p∑

a,b,c,d,e,f

κabcκdefmadpbeqcf ,

α2(M ,P ,Q) = E[(ε′
1Mε1)(ε

′
1Pε2)(ε

′
2Qε2)]

=

p∑

a,b,c,d,e,f

κabcκdefmabpcdqef ,

β(M ,P ,Q) = E[(ε′Mε)(ε′Pε)(ε′Qε)]

−2{2α1(M ,P ,Q) + α2(M ,P ,Q) + α2(M ,Q,P ) + α2(P ,M ,Q)}

−{tr(M )ψ(P ,Q) + tr(P )ψ(M ,Q) + tr(Q)ψ(M ,P )}

−4{ψ(M ,PQ) + ψ(P ,MQ) + ψ(Q,MP )} − tr(M)tr(P )tr(Q)

−2{tr(M)tr(PQ) + tr(P )tr(MQ) + tr(Q)tr(MP ) + 4tr(MPQ)}

=

p∑

a,b,c,d,e,f

κabcdefmabpcdqef ,

where the notation
∑p

a,b,... means
∑p

a=1

∑p
b=1 · · ·. The commonly used multivariate skew-

nesses and kurtosis (see, Mardia, 1970) are special cases of those defined above, e.g.,

κ
(1)
4 = ψ(Ip, Ip), κ

(1)
3,3 = α1(Ip, Ip, Ip), κ

(2)
3,3 = α2(Ip, Ip, Ip).

If ε ∼ Np(0, Ip), then all cumulants become 0. If ε follows an elliptical distribution,
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there exist

κabc = 0, κabcd = ϕ4

∑

[3]

δabδcd, κabcd = (ϕ6 − 3ϕ4)
∑

[15]

δabδcdδef , (2)

where ϕ4 = E[ε4
j ]/3−1 and ϕ6 = E[ε6

j ]/15−1 are the extra kurtosis and 6th-order moments

of the jth marginal variate εj of ε relative to those of the standardized normal distribution.

Thus, the cumulants of an elliptical distribution are

ψ(M ,P ) = ϕ4 {tr(M )tr(P ) + 2tr(MP )} ,

α1(M ,P ,Q) = 0,

α2(M ,P ,Q) = 0,

β(M,P ,Q) = (ϕ6 − 3ϕ4) {tr(M )tr(P )tr(Q) + 2tr(M)tr(PQ)

+2tr(P )tr(MQ) + 2tr(Q)tr(MP ) + 8tr(MPQ)} .

For simplicity, we write ψ(M) = ψ(M ,M), α1(M ) = α1(M ,M ,M ), α2(M) = α2(M ,M ,M)

and β(M) = β(M ,M ,M). Then, it follows from the definition that

ψ(M ) = E[(ε′Mε)2]− {tr(M)}2 − 2tr(M 2),

α1(M ) = E[(ε′
1Mε2)

2],

α2(M ) = E[(ε′
1Mε1)(ε

′
1Mε2)(ε

′
2Mε2)],

β(M) = E[(ε′Mε)3]− 2{2α1(M ) + 3α2(M )} − 3{tr(M)ψ(M) + 4ψ(M ,M2)}

−{tr(M )}3 − 6tr(M )tr(M2) − 8tr(M 3).

2.2 Standardized and Studentized h(S)

Let

V =
1√
n

n∑

i=1

(εiε
′
i − Ip), z =

1√
n

n∑

i=1

εi.

Then both the matrix V and the vector z are asymptotically normally distributed. Using

V and z, we can expand the S in (1) as

Σ−1/2SΣ−1/2 = Ip +
1√
n

V − 1

n
(zz′ − Ip) +Op(n

−3/2). (3)

Let

∂ij =
1

2
(1 + δij)

∂

∂σij
,
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and define ∆ = (∂ij) (i = 1, . . . , p; j = 1, . . . , p). Then, we can write the first derivative of

h(Σ) with respect to Σ as

G(M ) =
∂

∂Σ
h(Σ)

∣∣∣∣
Σ=M

= ∆h(Σ)|Σ=M . (4)

Similarly, letting δ = vec(∆), the first and second derivatives of h(Σ) with respect to Σ are

given by

g(M) = δh(Σ)|Σ=M , H(M ) = (δδ′)h(Σ)|Σ=M . (5)

It should be kept in mind that g(M) = vec(G(M)). Let

v = vec(V ), u = vec(zz′ − Ip), Λ = Σ1/2 ⊗ Σ1/2. (6)

Applying the Taylor expansion on h(S) and using (3) lead to

h(S) = h(Σ) +
1√
n

g(Σ)′Λv +
1

n

{
1

2
v′ΛH(Σ)Λv − g(Σ)′Λu

}
+Op(n

−3/2). (7)

The above expansion will be used to obtain the distribution of h(S). We next obtain the

standard error of h(S).

Let r = y − µ and

Ω = E[vec(rr′ − Σ)vec(rr′ − Σ)′].

Then Ω involves the fourth-order cumulants of ε. Let ej be a p×1 vector whose jth element

is 1 and others are 0, then the p2 × p2 matrix

Ψ =

p∑

a,b,c,d

κabcd(eae
′
b ⊗ ece

′
d) (8)

contains all the 4th-order cumulants of ε (Yanagihara, Tonda & Matsumoto, 2005). Let

Kp =

p∑

a,b

(eae
′
b) ⊗ (ebe

′
a).

be the commutation matrix (see Magnus & Neudecker, 1999, p. 48). It follows from

vec(rr′ −Σ) = Λvec(εε′ − Ip)

and ΛKp = KpΛ that

Ω = ΛΨΛ + (Ip2 + Kp)(Σ ⊗ Σ). (9)

When y ∼ Np(µ,Σ), all the cumulants are zero. Then Ω becomes (Ip2 +Kp)(Σ⊗Σ). Notice

that Ip2 =
∑p

a,b(eae
′
a ⊗ ebe

′
b) and vec(Ip)vec(Ip)

′ =
∑p

a,b(eae
′
b ⊗ eae

′
b). When ε follows an
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elliptical distribution, Ψ = ϕ4{Ip2 + Kp + vec(Ip)vec(Ip)
′} is obtained by substituting the

κabcd in (2) into (8). This result furher implies that, when ε follows an elliptical distribution,

Ω = (ϕ4 + 1)(Ip2 + Kp)(Σ ⊗ Σ) + ϕ4vec(Σ)vec(Σ)′.

It follows from (7) that

n{h(S) − h(Σ)}2 = g(Σ)′Λvv′Λg(Σ) +Op(n
−1/2).

Thus,

Var[h(S)] =
1

n
τ 2 + o(n−3/2),

where

τ 2 = g(Σ)′Ωg(Σ). (10)

Since G(Σ) is symmetric, Kpvec(G(Σ)) = vec(G(Σ)). Recall that g(Σ) = vec(G(Σ)).

Hence, the τ 2 in (10) can be written as

τ 2 = g(Σ)′ΛΨΛg(Σ) + 2g(Σ)′(Σ ⊗ Σ)g(Σ)

= g(Σ)′ΛΨΛg(Σ) + 2tr(ΣG(Σ)ΣG(Σ)).

When y ∼ Np(µ,Σ), τ 2 = 2tr(ΣG(Σ)ΣG(Σ)). When ε follows an elliptical distribution, it

follows from vec(Σ)′g(Σ) = tr(ΣG(Σ)) that

τ 2 = ϕ4{tr(ΣG(Σ))}2 + 2(ϕ4 + 1)tr(ΣG(Σ)ΣG(Σ)).

Let

r̂i = yi − ȳ. (11)

and

Ω̂ =
1

n

n∑

i=1

vec(r̂ir̂
′
i − S)vec(r̂ir̂

′
i − S)′. (12)

It follows from (10) that

τ̂ = {g(S)′Ω̂g(S)}1/2 (13)

is consistent for τ . Let

T1 =

√
n{h(S) − h(Σ)}

τ
, T2 =

√
n{h(S) − h(Σ)}

τ̂
. (14)

We will call T1 the standardized h(S) and T2 the Studentized h(S). Notice that both T1

and T2 are asymptotically distributed according to N(0, 1), and there exist

P (Tj ≤ zα) = 1 − α+ o(1), (j = 1, 2), (15)
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where zα = Φ−1(1 − α) with Φ(·) being the cumulative distribution function of N(0, 1). In

the next subsection, we will obtain the asymptotic expansions of P (Tj ≤ x) (j = 1, 2) and

use it to improve the normal distribution approximation in (15).

2.3. Edgeworth Expansions of T1 and T2

In a typical application, one uses T2 ∼ N(0, 1) for inference. But neither T1 nor T2 follows

N(0, 1) exactly. The first and third cumulants of Tj can be expanded as

E[Tj] =
1√
n
ηj,1 + o(n−1/2), E

[
{Tj − E[Tj]}3

]
=

1√
n
ηj,3 + o(n−1/2). (16)

We need the following conditions for the Edgeworth expansions of T1 and T2:

• All the 3rd derivatives of h(S) are continuous in a neighborhood of S = Σ, and the

6th-order moments of ε exist.

• The p(p + 3)/2 × 1 vector ξ = (ε′, vech(εε′ − Ip)
′)′ satisfies the Cramér’s condition

lim sup
‖t‖→∞

|E[exp(it′ξ)]| < 1,

where t is a p(p + 3)/2 × 1 vector and ‖t‖ is the Euclidean norm of t.

It follows from Bhattacharya and Ghosh (1978) and Fujikoshi (1980) that the Edgeworth

expansion of Tj is given by

P (Tj ≤ x) = Φ(x) − 1√
n

{
ηj,1 +

1

6
ηj,3(x

2 − 1)

}
φ(x) + o(n−1/2), (17)

where φ(x) = (2π)−1/2exp(−x2/2) is the probability density function of N(0, 1). Equation

(17) implies that the Edgeworth expansion of Tj is determined by its first- and third-order

cumulants. We only need to know ηj,1 and ηj,3 to obtain the Edgeworth expansion of Tj.

3. Main Results

3.1. The Standardized h(S)

We will obtain explicit forms of η1,1 and η1,3 in this subsection. For simplicity, we let

G0 = Σ1/2G(Σ)Σ1/2, g0 = Λg(Σ), H0 = ΛH(Σ)Λ, (18)
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where G(Σ) is given by (4), g(Σ) and H(Σ) are given by (5), and Λ is given by (6). It

follows from (7) and (14) that

T1 =
1

τ
g′

0v +
1

2τ
√
n

(v′H0v − 2g ′
0u) +Op(n

−1),

where v and u are given by (6). Let

γ1 =
1

τ
E[v′H0v], γ2 =

√
n

τ 3
E

[
(g′

0v)3
]
,

γ3 =
1

τ 3
E

[
(g′

0v)2v′H0v
]
, γ4 =

1

τ 3
E

[
(g′

0v)2g′
0u

]
.

Then

E[T1] =
1

2
√
n
γ1 + o(n−1/2),

E
[
(T1 − E[T1])

3
]

= − 1

2
√
n

(3γ1 − 2γ2 − 3γ3 + 6γ4) + o(n−1/2).

Since G(Σ) is symmetric, ∂ijG(Σ) is also a symmetric matrix. Notice that

H0 = Λ (∂11g(Σ), . . . , ∂ppg(Σ)) Λ = Λ (vec(∂11G(Σ)), . . . , vec(∂ppG(Σ)))Λ.

It follows from KpΛvec(∂ijG(Σ)) = Λvec(∂ijG(Σ)) that KpH0 = H0. Also notice that

E[vv′] = Λ−1ΩΛ−1, where Ω is given by (9). Thus,

E[v′H0v] = tr(ΩH(Σ)) = tr(ΨH0) + 2tr(H0),

where Ψ is given by (8). Using g′
0vec(εiεj − Ip) = ε′

iG0εj + tr(G0), Kpg0 = g0, and the

cumulants introduced in subsection 2.1, we obtain

√
nE

[
(g′

0v)3
]

= E
[
{g′

0vec(εε′ − Ip)}3
]

= β(G0) + 4α1(G0) + 6α2(G0) + 12ψ(G0,G
2
0) + 8tr(G3

0),

E
[
(g′

0v)2v′H0v
]

= E
[
{g′

0vec(εε′ − Ip)}2
]
E [vec(εε′ − Ip)

′H0vec(εε′ − Ip)]

+2E [g′
0vec(εε′ − Ip)vec(εε′ − Ip)

′]H0E [vec(εε′ − Ip)vec(εε′ − Ip)
′g0] + o(1)

= τ 2tr(ΩH(Σ)) + 2g(Σ)′ΩH(Σ)Ωg(Σ) + o(1)

= τ 2 {tr(ΨH0) + 2tr(H0)} + 2 (g′
0ΨH0Ψg0 + 4g ′

0H0Ψg0 + 4g ′
0H0g0) + o(1),

E
[
(g′

0v)2g′
0u

]

= 2E[g′
0vec(ε1ε1 − Ip)g

′
0vec(ε1ε2 − Ip)g

′
0vec(ε2ε2 − Ip)] + o(1)

= 2α2(G0) + o(1).
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Combining the above expectations yields

η1,1 =
1

2τ
{tr(ΨH0) + 2tr(H0)} , (19)

η1,3 =
1

τ 3
{3 (g′

0ΨH0Ψg0 + 4g′
0H0Ψg0 + 4g′

0H0g
′
0)

+β(G0) + 4α1(G0) + 12ψ(G0,G
2
0) + 8tr(G3

0)
}
. (20)

Let

Gj = tr(Gj
0), a = vec(Ip). (21)

If y ∼ Np(µ,Σ), η1,1 and η1,3 are simplified to

η1,1 =
tr(H0)

(2G2)1/2
, η1,3 =

12g ′
0H0g0 + 8G3

(2G2)3/2
.

These results coincide with the coefficients in equation (3.5) of Ichikawa and Konishi (2002),

who studied the distribution of a standardized h(S) under y ∼ Np(µ,Σ). If ε is distributed

according to an elliptical distribution, η1,1 and η1,3 are simplified to

η1,1 =
ϕ4a

′H0a + 2(ϕ4 + 1)tr(H0)

2{ϕ4G2
1 + 2(ϕ4 + 1)G2}1/2

,

η1,3 =
3{4(ϕ2

4 + 2ϕ4 + 1)g ′
0H0g0 + 4(ϕ2

4 + ϕ4)G1a
′H0g0 + ϕ2

4a
′H0a}

{ϕ4G2
1 + 2(ϕ4 + 1)G2}3/2

+
(ϕ6 − 3ϕ4)G

3
1 + 6(ϕ6 − ϕ4)G1G2 + 8(ϕ6 + 1)G3

{ϕ4G
2
1 + 2(ϕ4 + 1)G2}3/2

.

3.2. The Studentized h(S)

This subsection provides explicit forms of η2,1 and η2,3. Let

Ω0 = Λ−1ΩΛ−1 = Ψ + Ip2 + Kp

and

W =
1√
n

n∑

i=1

{vec(εiε
′
i − Ip)vec(εiε

′
i − Ip)

′ −Ω0} .

Then the matrix W is asymptotically normally distributed. Notice that

g(S) = g(Σ) +
1√
n

H(Σ)Λv +Op(n
−1), Ω̂ = Ω +

1√
n
ΛW Λ +Op(n

−1).

It follows from (13) and the above expressions that

1

τ̂
=

1

τ

{
1 − 1

2τ 2
√
n

(g′
0W g0 + 2g′

0Ω0H0v)

}
+Op(n

−1), (22)
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where g0 and H0 are given by (18). Combining (14) and (22) yields

T2 = T1 −
1

2τ 3
√
n

(g′
0Wg0g

′
0v + 2g′

0Ω0H0vg′
0v) +Op(n

−1).

Let

γ5 =
1

τ 3
E[g′

0W g0g
′
0v], γ6 =

1

τ 3
E[g′

0Ω0H0vg′
0v],

γ7 =
1

τ 5
E[g′

0W g0(g
′
0v)3], γ8 =

1

τ 5
E[g′

0Ω0H0v(g′
0v)3].

Then,

E[T2] =
1√
n

(
η1,1 −

1

2
γ5 − γ6

)
+ o(n−1/2), (23)

E
[
(T2 − E[T2])

3
]

=
1√
n

{
η1,3 +

3

2
(γ5 − γ7) + 3(γ6 − γ8)

}
+ o(n−1/2), (24)

where η1,1 and η1,3 are given by (19) and (20), respectively. Using essentially the same

technique as for getting the expectations in subsection 3.1, we obtain

E[g′
0Wg0g

′
0v]

= E[{g′
0vec(εε′ − Ip)}3]

= β(G0) + 4α1(G0) + 6α2(G0) + 12ψ(G0,G
2
0) + 8tr(G3

0),

E[g′
0Ω0H0vg′

0v]

= g(Σ)′ΩH(Σ)Ωg(Σ)

= g′
0ΨH0Ψg0 + 4g ′

0H0Ψg0 + 4g′
0H0g0,

E[g′
0Wg0(g

′
0v)3]

= 3E
[
{g′

0vec(εε′ − Ip)}2
]
E

[
{g′

0vec(εε′ − Ip)}3
]
+ o(1)

= 3τ 2
{
β(G0) + 4α1(G0) + 6α2(G0) + 12ψ(G0,G

2
0) + 8tr(G3

0)
}

+ o(1),

E[g′
0Ω0H0v(g′

0v)3]

= 3E
[
{g′

0vec(εε′ − Ip)}2
]
E [g′

0Ω0H0vec(εε′ − Ip)vec(εε′ − Ip)
′g0] + o(1)

= 3τ 2g(Σ)′ΩH(Σ)Ωg(Σ) + o(1)

= 3τ 2 (g′
0ΨH0Ψg0 + 4g′

0H0Ψg0 + 4g′
0H0g0) + o(1),

where G0 is given by (18). Using the above expectations in (23) and (24), together with

(16) lead to

η2,1 =
1

2τ
{tr(ΨH0) + 2tr(H0)}
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− 1

2τ 3
{2 (g′

0ΨH0Ψg0 + 4g′
0H0Ψg0 + 4g′

0H0g0)

+β(G0) + 4α1(G0) + 6α2(G0) + 12ψ(G0,G
2
0) + 8tr(G3

0)
}
,

η2,3 = − 1

τ 3
{3 (g′

0ΨH0Ψg0 + 4g ′
0H0Ψg0 + 4g ′

0H0g
′
0)

+2β(G0) + 8α1(G0) + 18α2(G0) + 24ψ(G0,G
2
0) + 16tr(G3

0)
}
.

When y ∼ Np(µ,Σ), η2,1 and η2,3 are simplified to

η2,1 =
2{G2tr(H0) − 2g′

0H0g0}
(2G2)3/2

and η2,3 = −12g′
0H0g0 + 16G3

(2G2)3/2
,

where the Gj ’s are given by (21). When ε follows an elliptical distribution, η2,1 and η2,3 are

simplified to

η2,1 =
ϕ4a

′H0a + 2(ϕ4 + 1)tr(H0)

2{ϕ4G2
1 + 2(ϕ4 + 1)G2}1/2

−2{4(ϕ2
4 + 2ϕ4 + 1)g′

0H0g0 + 4(ϕ2
4 + ϕ4)G1a

′H0g0 + ϕ2
4a

′H0a}
2{ϕ4G2

1 + 2(ϕ4 + 1)G2}3/2

−(ϕ6 − 3ϕ4)G
3
1 + 6(ϕ6 − ϕ4)G1G2 + 8(ϕ6 + 1)G3

{ϕ4G2
1 + 2(ϕ4 + 1)G2}3/2

,

η2,3 = −3{4(ϕ2
4 + 2ϕ4 + 1)g′

0H0g0 + 4(ϕ2
4 + ϕ4)G1a

′H0g0 + ϕ2
4a

′H0a}
{ϕ4G

2
1 + 2(ϕ4 + 1)G2}3/2

−2{(ϕ6 − 3ϕ4)G
3
1 + 6(ϕ6 − ϕ4)G1G2 + 8(ϕ6 + 1)G3}

{ϕ4G2
1 + 2(ϕ4 + 1)G2}3/2

,

where a is given by (21).

4. Some Applications

Equation (17) indicates that the approximation T2 ∼ N(0, 1) is affected by nonzero η2,1

and η2,3. In this section, we propose a new statistic by removing the effect of η2,1 and η2,3.

Similar statistics in other contexts have been obtained by Hall (1992) and Yanagihara and

Yuan (2005).

Let

c1 = tr(Ω̂H(S)),

c2 =
1

n

n∑

i=1

{
r̂′

iG(S)r̂i − tr(SG(S))
}3
,

c3 = g(S)′Ω̂H(S)Ω̂g(S),

c4 =
1

n2

n∑

i,j

{
r̂′

iG(S)r̂i − tr(SG(S))
} {

r̂′
iG(S)r̂j − tr(SG(S))

}{
r̂′

jG(S)r̂j − tr(SG(S))
}
,
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where G(S) is given by (4), g(S) and H(S) are given by (5), and r̂i and Ω̂ are given by

(11) and (12), respectively. Then, consistent estimates of γ1 to γ8 are given by

γ̂1 = c1/τ̂ , γ̂2 = c2/τ̂
3, γ̂3 = c1/τ̂ + 2c3/τ̂

3, γ̂4 = 2c4/τ̂
3,

γ̂5 = c2/τ̂
3, γ̂6 = c3/τ̂

3, γ̂7 = 3c2/τ̂
3, γ̂8 = 3c3/τ̂

3,

where τ̂ is given by (13). It follows from (23) and (24) that

η̂2,1 =
1

2τ̂ 3

(
τ̂ 2c1 − c2 − 2c3

)
and η̂2,3 = − 1

τ̂ 3
(2c2 + 3c3 + 6c4)

are consistent for η2,1 and η2,3. Let

f(x) = x− 1

6
√
n

{
6η̂2,1 + η̂2,3(x

2 − 1)
}

+
1

108n
η̂2

2,3x
3.

Then f(x) is monotonically increasing in x. Let

T3 = f(T2) = T2 −
1

6
√
n

{
6η̂2,1 + η̂2,3(T

2
2 − 1)

}
+

1

108n
η̂2

2,3T
3
2 . (25)

It follows from Yanagihara and Yuan (2005) that

P (T3 ≤ zα) = 1 − α+ o(n−1/2).

Thus, using T3 ∼ N(0, 1) for inference attains a higher order of accuracy than using T2 ∼
N(0, 1).

Many statistical problems in multivariate analysis (see, Tyler, 1983) can be formulated

as

H0 : h(Σ) = 0 vs H1 : h(Σ) 6= 0.

The conventional statistic for testing such a hypothesis is T2,0 =
√
nh(S)/τ̂ ; and, under H0,

there exists

P (|T2,0| > zα/2) = α + o(1).

Let

T3,0 = f(T2,0).

Then, under H0,

P (|T3,0| > zα/2) = α+ o(n−1/2). (26)

Thus, T3,0 improves the order of accuracy from o(1) in using T2,0 to o(n−1/2).

The statistic T3 in (25) also provides a more accurate confidence interval for h(Σ). The

1 − α confidence interval for h(Σ) based on T2 ∼ N(0, 1) is given by

I(2)
1−α =

[
h(S) − τ̂√

n
zα/2, h(S) +

τ̂√
n
zα/2

]
.

12



with

P (h(Σ) ∈ I(2)
1−α) = 1 − α + o(1).

When η̂2,3 6= 0, the inverse of f(x) exists and is given by

f−1(x) =
6
√
n

η̂2,3
+ 3

(
4n

η̂2,3

{
x+

1

6
√
n

(6η̂2,1 − η̂2,3) −
2
√
n

η̂2,3

})1/3

.

The 1 − α confidence interval for h(Σ) based on T3 ∼ N(0, 1) is given by

I(3)
1−α =

[
h(S) +

τ̂√
n
f−1(−zα/2), h(S) +

τ̂√
n
f−1(zα/2)

]
.

It follows from (26) and the monotonicity of f(x) that

P (h(Σ) ∈ I(3)
1−α) = 1 − α+ o(n−1/2).

Thus, the confidence interval using T3 ∼ N(0, 1) improve the conventional confidence interval

from the order of o(1) with using T2 to the order of o(n−1/2).
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