
Bias Correction of Cross-Validation Criterion
Based on Kullback-Leibler Information

under a General Condition

Hirokazu Yanagihara1, Tetsuji Tonda2 and Chieko Matsumoto3

1Department of Social Systems and Management
Graduate School of Systems and Information Engineering

University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

2Department of Environmetrics and Biometrics
Research Institute for Radiation Biology and Medicine

Hiroshima University
1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan

3Institute of Economic Research
Hitotsubashi University

2-1 Naka, Kunitachi, Tokyo 186-8603, Japan

Abstract

This paper deals with the bias correction of the cross-validation (CV )

criterion for a choice of models. The bias correction is based on the predictive

Kullback-Leibler information, which measures the discrepancy between the

distributions of an observation for a candidate model and the true model.

By replacing an ordinary maximum likelihood estimator with an estimator

obtained by maximizing a weighted log-likelihood function, a bias-corrected

CV criterion is proposed. This criterion always corrects the bias to O(n−2)

under a general condition. We verify that our criterion has smaller bias than

the AIC, TIC, EIC and CV criteria by conducting numerical experiments.
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1. Introduction

Let yi (i = 1, . . . , n) be a p× 1 observation vector, where n is the sample

size. Suppose that each y is an independent random sample from an unknown

distribution having a density function ϕ(yi), that is, the true model is

M∗ : yi ∼ i.i.d. ϕ(yi), (i = 1, . . . , n). (1.1)

Then we consider a parametric model which consists of a family of probability

distributions {f(y|θ); θ ∈ Θ}, where θ = (θ1, . . . , θq)
′ is the q-dimensional

vector of unknown parameters, and Θ is an open subset of <q. Therefore, a

candidate model is

M : yi ∼ i.i.d. f(yi|θ), (i = 1, . . . , n). (1.2)

The Akaike information criterion (AIC) proposed by Akaike (1973) is

being used universally for choosing the best model in all candidate models

(1.2). It is well known that AIC is an estimator of a risk based on the predic-

tive Kullback-Leibler (K-L) information (Kullback & Leibler, 1951), which

measures the discrepancy between ϕ(·) and f(·|θ̂), where θ̂ is the maximum

likelihood estimator (MLE) of θ. However, AIC has a constant bias for the

risk when ϕ(·) is not consistent with f(·|θ), because Akaike derived AIC

only under the assumption that ϕ(·) and f(·|θ) are equal. Takeuchi (1976)

revaluated the bias correction term of AIC under the assumption that ϕ(·)
and f(·|θ) are equal, and proposed the Takeuchi information criterion (TIC)

by replacing the bias correction term of AIC with the revaluated term. The

TIC is an asymptotic unbiased estimator for the risk in any model if the

true distribution of yi is i.i.d. However, Fujikoshi, Yanagihara and Wakaki
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(2005) pointed out that TIC for selecting variables in normal regression mod-

els hardly corrects the bias in actual use, because its bias correction term is

based on an estimator of the fourth cumulant of the true distribution. Such

an estimator tends to underestimate too much, even if the sample size n is

moderate (Yanagihara, 2004b). Like TIC, the cross-validation (CV ) crite-

rion proposed by Stone (1974) is known as an asymptotic unbiased estimator

for the risk (Stone, 1977), though there are no estimators of higher-order

cumulants in the CV criterion. Therefore, unlike TIC, the CV criterion can

correct the bias efficiently. Using the better property of the CV criterion

instead of those of TIC, Yanagihara (2004a, 2005) proposed a new criterion

which is partially constructed by the cross-validation method, and which is

slightly influenced by the difference of the distributions. However, a bias

for the risk exists also in the CV criterion. Fujikoshi et al. (2003) corrected

the biases of the CV criteria for selecting normal multivariate regression and

GMANOVA models. The purpose of our paper is to reduce the bias in the

CV criterion under a general condition without adding several correction

terms. We replaced θ̂ with an estimator obtained by maximizing a weighted

log-likelihood function, and thus propose a bias-corrected CV criterion. The

bias of our criterion is always corrected to O(n−2).

This paper is organized in the following way. In Section 2, we describe

the risk based on the K-L information and usual information criteria. In

Section 3, we state the derivation of our proposed criterion and its asymptotic

property. In Section 4, by conducting numerical experiments, we verify that

our criterion has smaller bias than other criteria, namely, the AIC, TIC,

EIC and CV criterion.

2. Risk and Usual Information Criteria

Let L(θ|Y ,d) be a weighted log-likelihood function on f(yi|θ) given by

L(θ|Y ,d) =
n∑

i=1

di log f(yi|θ), (2.1)
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where Y = (y1, . . . , yn)′ and d = (d1, . . . , dn)′. For simplicity, if a weight

vector d is 1n, where 1n is an n × 1 vector, all of whose elements are 1, we

omit writing d into equation (2.1), i.e., L(θ|Y ) = L(θ|Y ,1n). When we

assume that each yi is identically and independently distributed according

to a distribution having a density function f(yi|θ) in (1.2), then an MLE

of θ is obtained by maximizing an ordinary log-likelihood function L(θ|Y ),

i.e.,

θ̂ = arg max
„

L(θ|Y ). (2.2)

Let ui be a p × 1 future observation vector and U = (u1, . . . , un)′. We

assume that U is independent of Y and each ui is independently distributed

according to the same distribution of yi. Then, a risk based on the predictive

K-L information, which measures the discrepancy between the true model

(1.1) and the candidate model, (1.2) is defined by

RKL = E∗
yE∗

u

[
−2L(θ̂|U)

]
, (2.3)

where E∗ means an expectation under the true model M∗ (1.1).

The AIC proposed by Akaike (1973) is a simple estimator of the risk RKL

(2.3). Under the candidate model M (1.2), AIC is defined by

AIC = −2L(θ̂|Y ) + 2q. (2.4)

However, if f(·|θ) is not equal to ϕ(·), AIC has a constant bias, i.e.,

BAIC = RKL − E∗
y[AIC] = O(1). (2.5)

This is mainly because Akaike derived AIC only under the assumption that

ϕ(·) and f(·|θ) are equal. Takeuchi (1976) revaluated the bias correction

term of AIC, 2q, under the inconsistency with ϕ(·) and f(·|θ), and proposed

TIC by his revaluation. Under the candidate model M (1.2), TIC is defined

by

TIC = −2L(θ̂|Y ) + 2tr(Ĵ(θ̂)−1Î(θ̂)), (2.6)
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where

Ĵ(θ̂) = − 1

n

n∑
i=1

H(yi|θ̂), Î(θ̂) =
1

n

n∑
i=1

g(yi|θ̂)g(yi|θ̂)′. (2.7)

Here, g(yi|θ̂) and H(yi|θ̂) are a q×1 vector and a q×q matrix, respectively,

which are based on the partial derivatives up to the second order, that is,

g(yi|θ̂) =
∂

∂θ
log f(yi|θ)

∣∣∣
„=„̂

, H(yi|θ̂) =
∂2

∂θ∂θ′ log f(yi|θ)
∣∣∣
„=„̂

. (2.8)

Takeuchi (1976) showed that TIC is an asymptotic unbiased estimator for

the risk (2.3) in any model if the distribution of yi is i.i.d., i.e.,

BTIC = RKL − E∗
y[TIC] = O(n−1). (2.9)

On the other hand, Stone (1974) proposed the CV criterion for a choice

of models (1.2) in the following way. Let θ̂[−i] be an estimator of θ obtained

by maximizing
∑n

j 6=i log f(yj|θ), that is,

θ̂[−i] = arg max
„

L(θ|Y ,1n − ei), (2.10)

where ei is an n × 1 vector whose i-th element is 1 and the other elements

are 0. Using θ̂[−i] (2.10), the CV criterion is given by

CV = −2
n∑

i=1

log f(yi|θ̂[−i]). (2.11)

Stone (1977) pointed out that the TIC (2.6) and CV criteria (2.11) are

asymptotically equivalent, i.e., CV = TIC +Op(n
−1). Therefore, from (2.9),

the bias of the CV criterion is given by

BCV = RKL − E∗
y[CV ] = O(n−1). (2.12)

By comparing (2.9) and (2.12), we can see that the orders of BCV and BTIC

are the same. However, Yanagihara (2004a) showed that the CV criterion for

selecting variables in normal regression models has smaller bias than TIC.
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This is caused by the necessity to estimate higher-order cumulants, because

an ordinary estimator of higher-order cumulants tends to underestimate too

much, even if the sample size n is moderate. Needless to say, we can obtain

the CV criterion without estimating higher-order cumulants. Therefore, even

if a calculation is troublesome, we support using the CV criterion for model

selection rather than TIC.

3. Bias Correction of the CV Criterion

3.1. Asymptotic Expansion of the Bias of the CV Criterion

In this section, we propose a bias-corrected CV (Corrected CV ; CCV )

criterion by replacing θ̂[−i] (2.10) in the CV criterion (2.11) with an estimator

which is obtained by maximizing another weighted log-likelihood function.

First, in order to correct the bias of the CV criterion, we derive an asymptotic

expansion of its bias up to the order n−1. Let θ0 be a q × 1 vector which

satisfies the following equation.

E∗
y [g(y|θ0)] = 0. (3.1)

Note that the MLE θ̂ (2.2) converges to θ0 when n is large, i.e., limn→∞ θ̂ =

θ0. Then, we obtain an asymptotic expansion of the bias of the CV criterion

up to the order n−1 in the following theorem.

Theorem 1. Under a regularity condition, the bias of the CV criterion is

expanded as

BCV = RKL − E∗
y[CV ] = − 1

n
tr(J(θ0)

−1I(θ0)) + O(n−2), (3.2)

where

J(θ0) = −E∗
y [H(y|θ0)] , I(θ0) = E∗

y [g(y|θ0)g(y|θ0)
′] .
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(Proof) We define a q × q2 matrix based on the partial derivatives up to

the third order as

K̂(θ̂) = − 1

n

n∑
i=1

(
∂

∂θ′ ⊗
∂2

∂θ∂θ′

)
log f(yi|θ)

∣∣∣
„=„̂

.

Using the Taylor expansion, we obtain the perturbation expansion of θ̂[−i] as

θ̂[−i] = θ̂ − 1

n
z1,i −

1

n2
z2,i + Op(n

−3), (3.3)

where

z1,i = Ĵ(θ̂)−1g(yi|θ̂), z2,i = Ĵ(θ̂)−1
{
H(yi|θ̂)z1,i +

1

2
K̂(θ̂)vec(z1,iz

′
1,i)

}
.

Here, g(yi|θ̂) and H(yi|θ̂) are given by (2.8), and Ĵ(θ̂) is given by (2.7).

Since the distributions of yi and ui are the same, the commutative equation

E∗
y[log f(yi|θ̂[−i])] = E∗

yE∗
u[log f(ui|θ̂[−i])] is held. Therefore, using the Tay-

lor expansion and the equation (3.3), the expectation of the CV criterion is

expanded as

E∗
y[CV ] = RKL − R1 −

1

n
R2 + O(n−2), (3.4)

where

R1 =
2

n

n∑
i=1

E∗
yE∗

u

[
g(ui|θ̂)′z1,i

]
,

R2 =
1

n

n∑
i=1

E∗
yE∗

u

[
2g(ui|θ̂)′z2,i + z′

1,iH(ui|θ̂)z1,i

]
.

Note that
∑n

i=1 z1,i = 0, because θ̂ is the MLE, i.e.,
∑n

i=1 g(yi|θ̂) = 0. There-

fore, using a conditional expectation of g(ui|θ̂) for Y as η = E∗
u[g(ui|θ̂)|Y ],

we obtain

R1 =
2

n

n∑
i=1

E∗
y

[
E∗

u

[
g(ui|θ̂)′z1,i

∣∣∣ Y ]]
=

2

n

n∑
i=1

E∗
y [η′z1,i] = 0. (3.5)

On the other hand, by using the equation θ̂ → θ0 (n → ∞), R2 is expanded

as

R2 =
1

n

n∑
i=1

E∗
yE∗

u

[
2g(ui|θ0)z2,i + z′

1,iH(ui|θ0)z1,i

]
+ O(n−1).
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From (3.1), the first term on the right side of the above equation disappears.

Moreover, using equation Ĵ(θ̂) → J(θ0) and Î(θ̂) → I(θ0) (n → ∞), we

derive the following equation.

1

n

n∑
i=1

E∗
yE∗

u

[
z′

1,iH(ui|θ0)z1,i

]
= −tr(J(θ0)

−1I(θ0)) + O(n−1).

Therefore, we can see that

R2 = −tr(J(θ0)
−1I(θ0)) + O(n−1). (3.6)

Substituting R1 (3.5) and R2 (3.6) into (3.4) yields

E∗
y[CV ] = RKL +

1

n
tr(J(θ0)

−1I(θ0)) + O(n−2). (3.7)

Consequently, the result (3.2) in Theorem 1 is obtained.

3.2. Corrected CV Criterion

Next, we propose a new criterion, a corrected CV criterion, which always

corrects the bias for the risk (2.3) to O(n−2). Theoretically, we can correct

the bias in the CV criterion by subtracting the term n−1tr(Ĵ(θ̂)−1Î(θ̂)) from

the CV criterion. However, we can easily forecast that the bias is not fully

corrected by such a plug-in estimator because tr(Ĵ(θ̂)−1Î(θ̂)) must have a

large bias for tr(J(θ0)
−1I(θ0)), even if the sample size n is moderate. The

reason for this is the same as the reason that TIC does not reduce the

bias enough in actual use. Therefore, we need to prepare other methods to

correct the bias without estimating tr(J(θ0)
−1I(θ0)). From (2.10), we notice

that θ̂[−i] removes the influence of yi perfectly. However, we consider that

the effect of yi should not be removed completely because RKL (2.3) is not

the predictive K-L information measuring the discrepancy between ϕ(·) and

f(·|θ̂[−i]), but, rather, ϕ(·) and f(·|θ̂). Thus, we use an estimator obtained by

maximizing another weighted log-likelihood function, in which the influence

of yi remains for a while. Consequently, we propose the following bias-

corrected CV criterion.
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Definition. Let θ̃i be an estimator of θ by maximizing a weighted log-

likelihood function as

θ̃i = arg max
„

L(θ|Y ,1n − cnei), (3.8)

where cn =
√

n/(n + 1). Then, we propose the bias-corrected CV (CCV)

criterion as

CCV = −2
n∑

i=1

log f(yi|θ̃i). (3.9)

From the definition of CCV , we can see that any estimators of higher-

order cumulants are not necessary for obtaining CCV . However, CCV al-

ways corrects the bias to O(n−2), even though there is no term based on

tr(Ĵ(θ̂)−1Î(θ̂)) in the formula (3.9). The order of bias of the CCV criterion

is obtained in the following theorem.

Theorem 2. Under a regularity condition, the order of a bias of the CCV

criterion is given by

BCCV = RKL − E∗
y[CCV ] = O(n−2). (3.10)

(Proof) From the definition of θ̃i (3.8) and the Taylor expansion, we expand

θ̃i as

θ̃i = θ̂[−i] −
1

2n2

 1

n − 1

n∑
j 6=i

H(yj|θ̂[−i])


−1

g(yi|θ̂[−i]) + Op(n
−3).

Thus, the perturbation expansion of CCV is given by

CCV = CV +
1

n2

n∑
i=1

g(yi|θ̂[−i])
′

 1

n − 1

n∑
j 6=i

H(yj|θ̂[−i])


−1

g(yi|θ̂[−i])+Op(n
−2).

Therefore, we calculate the expectation of CCV as

E∗
y[CCV ] = E∗

y[CV ] − 1

n
tr(J(θ0)

−1I(θ0)) + O(n−2).
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Substituting equation (3.7) into the above equation yields the equation (3.10)

in Theorem 2.

4. Numerical Examination

In this section, we examine the numerical studies for average biases and

frequencies of the selected model according to the criteria. First, we prepare

another bias-corrected criterion constructed by the bootstrap method, which

was named the empirical information criterion (EIC) by Ishiguro, Sakamoto

and Kitagawa (1997). Let Y ∗
b (b = 1, . . . , B) be the b-th bootstrap data

matrix by resampling, and θ̂
∗
b be the MLE of θ based on Y ∗

b , i.e.,

θ̂
∗
b = arg max

„
L(θ|Y ∗

b). (4.1)

Then, the EIC for the selected model (1.2) is given by

EIC = −2L(θ̂|Y ) − 2

B

B∑
b=1

{
L(θ̂

∗
b |Y ) − L(θ̂

∗
b |Y ∗

b)
}

, (4.2)

(see e.g., Konishi, 1999). Through the simulation, we compare the biases

and frequencies of the selected model in our proposed CCV criterion (3.9),

and also the AIC (2.4), TIC (2.6), EIC (4.2) and CV criteria (2.11).

In this paper, we deal with the selection of the best model of the candidate

models (1.2) having an elliptical distribution, i.e.,

f(yi|θ) = cp|Λ|−1/2g((yi − µ)′Λ−1(yi − µ)), (i = 1, . . . , 20), (4.3)

where g(r) is a known non-negative function and cp is a positive constant

depending on the dimension p (see e.g., Fang, Kotz & Ng, 1990). We choose

the best g(r) and cp in the candidate models by minimizing the information

criteria. The candidate models considered are as follows.

Model 1: Multivariate Normal Distribution,

cp = (2π)−p/2, g(r) = e−r/2.
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Model 2: Multivariate Logistic Distribution,

cp = (2π)−p/2


∞∑

j=1

(−1)j−1j1−p/2


−1

, g(r) =
e−r/2

{1 + e−r/2}2
.

Model 3: Multivariate Cauchy Distribution,

cp =
Γ((p + 1)/2)

π(p+1)/2
, g(r) = (1 + r)−(p+1)/2,

where Γ(·) is the gamma function.

Choosing the best model is equivalent to determining the best weight function

in the M-estimation. Therefore, we will judge whether or not the robust

estimation should be performed through minimizing an information criterion,

since the normal distribution is in the candidate models. Let m and S be

the p × 1 vector and p × p matrix obtained by maximizing the weighted

log-likelihood function L(θ|Y ,d) (2.1) under the candidate model (4.3), i.e.,

m =
1

tr(WD)
Y ′DW1n, S = − 2

tr(D)
(Y −1nm

′)′DW (Y −1nm
′), (4.4)

where D = diag(d1, . . . , dn) and W = diag(w(r1), . . . , w(rn)). Here, w(r) =

{dg(r)/dr}/g(r) and ri = (yi − m)′S−1(yi − m). We can obtain θ̂ (2.2),

θ̂[−i] (2.10), θ̃i (3.8) and θ̂
∗
b (4.1) from the formula (4.4). On the other hand,

we prepare the following four distributions for the true model (1.1).

Normal Distribution: Each of the p variables is generated independently

from N(0,1) (κ
(1)
3,3 = κ

(2)
3,3 = 0 and κ

(1)
4 = 0),

Laplace Distribution: Each of the p variables is generated independently

from the Laplace distribution L(0, 1) divided by the standard deviation
√

2 (κ
(1)
3,3 = κ

(2)
3,3 = 0 and κ

(1)
4 = 2p),

Chi-Square Distribution: Each of the p variables is generated independently

from the χ2 distribution with 3 degrees of freedom standardized by

the mean 3 and standard deviation
√

6 (κ
(1)
3,3 = κ

(2)
3,3 ≈ 1.63 × p and

κ
(1)
4 = 4p),
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Log-Normal Distribution: Each of the p variables is generated independently

from a log-normal distribution LN(0, 1/4) standardized by the mean

e1/8 and standard deviation e1/2
√

e1/4 − 1 (κ
(1)
3,3 = κ

(2)
3,3 ≈ 1.71 × p and

κ
(1)
4 ≈ 8.90 × p).

Table 1 lists the average risk, the biases of the CCV criterion along

with the AIC, TIC EIC and CV criteria, and the frequencies of the model

selected by the criteria in the cases of p = 2 and p = 6. These average

values were obtained after 10,000 iterations, and the EIC was obtained by

resampling 100 times. From the table, we can see that the biases of AIC

were large in all the cases. TIC hardly corrected the bias in Models 1 and

2. On the other hand, the biases of the CV criterion were smaller than

the biases of AIC and TIC. Especially, the biases of the CV criterion were

smaller than the biases of EIC in most cases. Moreover, when we use the CV

criterion for model selection, the frequencies of the model with the smallest

risk selected was the highest in all the criteria. However, the bias of the

CV criterion became large when the dimension p increased. We can see that

CCV corrected the bias efficiently.

Insert Table 1 around here

Next, we compared several methods for correcting the bias in the CV

criterion. We prepared the following two different bias-corrected CV criteria

from the CCV criterion (3.9), which were obtained by adding some bias

correction terms.

CCV ′ = CV − 1

n
tr(Ĵ(θ̂)−1Î(θ̂)), CCV ′′ =

(
1 − 1

2n

)
CV − 1

n
L(θ̂|Y ).

Note that the CCV ′ and CCV ′′ criteria correct the biases to O(n−2) as well

as the CCV criterion. Table 2 shows the biases of the CV , CCV , CCV ′

and CCV ′′ criteria. From the table, we can see that CCV ′ and CCV ′′ did

not reduce the bias fully when the bias is large. Therefore, the methods for

reducing the bias by adding correction terms should not be used for bias
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correction. We have studied several other models and have obtained similar

results.

Insert Table 2 around here
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Table 1. Biases and frequencies of the selected model according to the

criteria

p = 2 p = 6

Distribution Criterion Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Risk 120.50∗ 123.45 132.31 399.91∗ 405.21 404.71
AIC Bias 2.30 5.54 1.77 37.43 43.81 15.90

Freq. (40.7) (58.5) (0.8) (14.4) (85.5) (0.1)
TIC Bias 3.07 5.34 -0.60 42.04 49.58 -11.84

Freq. (55.8) (43.2) (1.0) (13.3) (86.7) (0.0)
Normal EIC Bias -0.06 0.43 -0.74 1.92 2.43 -0.24

Freq. (65.7) (28.7) (5.6) (55.0) (21.0) (24.0)
CV Bias -0.73 -0.93 -0.40 -4.35 -4.71 -2.37

Freq. (71.4) (21.6) (7.1) (57.4) (4.0) (38.6)
CCV Bias -0.27 -0.30 -0.11 0.49 0.66 -0.79

Freq. (71.0) (22.5) (6.5) (62.8) (5.5) (31.7)

Risk 125.27 135.24 121.32∗ 422.27 434.96 387.84∗

AIC Bias 9.93 17.42 1.47 67.59 79.65 17.69
Freq. (62.8) (14.0) (23.3) (57.2) (36.4) (6.4)

TIC Bias 8.52 13.66 -0.59 68.07 79.79 -10.49
Freq. (65.4) (9.0) (25.6) (60.7) (38.9) (0.4)

Laplace EIC Bias 2.49 4.35 -0.80 11.68 14.22 0.21
Freq. (48.1) (7.0) (44.9) (14.1) (3.6) (82.3)

CV Bias -0.31 -0.57 -0.39 -6.27 -7.12 -1.01
Freq. (46.9) (2.9) (50.2) (17.0) (0.2) (82.8)

CCV Bias 0.71 0.92 -0.11 2.74 3.09 0.58
Freq. (47.9) (3.1) (49.0) (19.9) (0.3) (79.8)

Risk 126.92 135.41 122.52∗ 426.64 437.16 387.63∗

AIC Bias 12.06 18.76 2.82 71.44 82.00 17.15
Freq. (39.3) (36.5) (24.2) (35.2) (56.5) (8.3)

TIC Bias 10.61 15.74 -0.31 71.96 82.90 -13.39
Freq. (47.7) (27.8) (24.5) (38.7) (61.1) (0.2)

Chi-Square EIC Bias 2.94 4.76 -0.51 9.74 12.46 -2.21
Freq. (39.5) (18.0) (42.5) (12.7) (6.3) (81.0)

CV Bias -0.76 -1.36 -0.11 -11.56 -13.06 -3.72
Freq. (38.2) (13.8) (48.0) (16.3) (0.8) (82.9)

CCV Bias 0.65 0.67 0.20 -0.21 -0.34 -2.09
Freq. (38.8) (14.4) (46.8) (20.1) (0.9) (79.0)

Risk 128.07 137.34 121.90∗ 427.94 439.32 384.36∗

AIC Bias 13.85 21.38 2.71 75.71 87.04 17.12
Freq. (42.9) (33.3) (23.8) (39.4) (52.5) (8.1)

TIC Bias 12.31 18.17 -0.03 76.01 87.57 -12.89
Freq. (49.7) (24.9) (25.4) (43.7) (55.4) (0.9)

Log-Normal EIC Bias 4.68 7.00 -0.19 14.07 16.86 -1.42
Freq. (41.5) (16.2) (42.3) (13.5) (4.6) (81.9)

CV Bias -0.24 -0.83 0.17 -12.92 -14.57 -3.28
Freq. (41.1) (11.3) (47.6) (15.7) (0.7) (83.6)

CCV Bias 1.51 1.70 0.47 -0.31 -0.41 -1.65
Freq. (41.6) (11.9) (46.5) (19.9) (1.2) (78.9)

∗ denotes the smallset risk in all the candidate models, and the smallest bias in all the criteria is in bold.
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Table 2. Biases of CV , CCV , CCV ′ and CCV ′′ criteria

p = 2 p = 6
Distribution Criterion Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Average

CV -0.54 -0.73 -0.48 -6.39 -7.01 -2.71 -2.98
Normal CCV -0.08 -0.09 -0.19 -1.49 -1.57 -1.14 -0.76

CCV ′ -0.31 -0.47 -0.17 -5.16 -5.81 -0.67 -2.10
CCV ′′ -0.21 -0.31 -0.18 -3.99 -4.43 -0.90 -1.67
CV -1.20 -1.79 -0.31 -8.61 -9.62 -2.75 -4.04

Laplace CCV -0.17 -0.29 -0.02 0.16 0.31 -1.16 -0.20
CCV ′ -0.91 -1.45 -0.01 -7.27 -8.27 -0.69 -3.10
CCV ′′ -0.68 -1.09 -0.01 -5.43 -6.13 -0.93 -2.38
CV -0.57 -1.13 -0.03 -10.78 -12.07 -2.86 -4.57

Chi-Square CCV 0.79 0.81 0.28 0.36 0.41 -1.23 0.24
CCV ′ -0.29 -0.80 0.30 -9.44 -10.74 -0.74 -3.62
CCV ′′ -0.07 -0.38 0.30 -7.35 -8.34 -0.99 -2.80
CV -1.14 -2.01 -0.35 -12.91 -14.78 -2.95 -5.69

Log-Normal CCV 0.65 0.58 -0.05 -0.35 -0.67 -1.33 -0.20
CCV ′ -0.85 -1.68 -0.03 -11.57 -13.45 -0.86 -4.74
CCV ′′ -0.53 -1.20 -0.04 -9.36 -10.90 -1.10 -3.85

The smallest bias in all the criteria is in bold.
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