MATHEMATICS SEMINAR NOTES
Vol. 9 (1981)

Surface Bundles over S] Which Are

2-fold Branched Cyclic Coverings of 53
Dedicated to the memory of Shouro Kasahara

By Makoto SAKUMA

Let Fg be a closed orientable surface of genus g. Then ngsl (gz21) is
not a 2-fold branched cyclic covering of 33 (Fox (3], Hirsh-Neumann (5]
and Montesinos [8]). Recently, M. Ochiai and M. Takahashi (10] showed that,
for any positive integer g, there is an Fg-bundle over S1 (Fg-bundle, in
brief) which is a 2-fold branched cyclic covering of 33. In fact, they
showed that there is an F g-bundle of Heegaard genus 2 for gny positive in-
teger g, and they classified torus bundles of Heegaard genus 2 (cf. [6]).

In this paper, we consider the problem of which surface bundle is a 2-
fold branched cyclié covering of 33. Let ¢ be an orientation preserving
homeomorphism of Fg. Let M¢ be the space obtained from ngI by identi-
fying (z,0) ngxo with (¢(x),1) ngxl. Then M¢ is an orientable Fg-
bundle over Sl, and every such bundle is so obtained. The first integral
homology group Hl(M¢] is isomorphic to ZeCoker(d, - 1), where ¢, is
the automorphism of Hl(Fg) induced by ¢. Since Hl [Fg) '5229, there are

unique non-negative integers n. Q sniSZQ), such that Coker(¢, ~ 1) T

2 .. .
°«;5='1 Z"i (where Z0 denotes Z), and n. divides na (1sis2g-1).
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We shall prove the following:

Theorem 1. If M¢ i8 a 2-fold branched cyclic covering of a homology

sphere, then "g =1 or 2. Coversely, let n,

y) (1sZs2g) be non-negative

integers, such that n, divides ny,, (sis2g-1), and n = 1 or 2.
Then there is an Fg-bundle M, such that H, = ZS{QEIZ" } and M is
i

a 2-fold branched cyclic covering of SS.

For torus bundles, we can list up all such bundles. In fact, we shall

prove the following:

Theorem 2. For a torus bundle M, the following three conditions are

equivalent:
(1) M s a 2-fold branched cyclic covering of a homology sphere.
(2) M <8 a 2-fold branched cyclic covering of 5.
(3) M is homeomorphic to Ma,B for some pair of integers (a,R),

where ¥y 8 i8 the torus bundle whose monodromy is presented by the matriz
-1 -a
A“;B [ B QB - 1] *
MOl 8 is the 2-fold branched cyclic covering of 33, branched along the

link KX(a,B) as illustrated in Fig. 1.

(\_)\ - right-hand
‘: B-half twists

right-hand
a-half twists

Fig. 1
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Remark. (1) The link KX(a,B) is equivatemt to the Jink XK(a',B'), iff
(¢’',B!) 1is equal to =(a,B) or *(B,a). Thus, for any K(a,B), there is
a unique pair of integers (x_,B ), such that (i) lsa s |B°| or 0=a
< Bo and (ii) X(o,B) is equivalent to K(uo,Bo).

(2) X(a,B) is a 3-bridge link, iff a or B 1is equal to *].

Furthermore, a slight generalization of Tollefson’s theorem in [12] on

involutions of surface bundles enables us to prove the following:

Theorem 3. Let L be a link in Ss. Then the 2-fold branched cyclic
covering of 53 branched along L is a torus bundle, iff L <8 equivalent

to the link K(a,B) for some pair of integers (a,B).

Corollary. (Theorem 3 of ([10]) An orientable torus bundle M has

Heegaard genug 2, iff M ie homeomorphic to M, 8 for some integer B.
?

Remark. (1) The integer B is uniquely determined by M, and genus 2

Heegaard splitting of M1 8 is unique, from Theorem 4 below (cf. [1]).
-1
. 11 1 17 [B-2 -1 . .

(2) Since (_1 O]AI,B[-I 0] = [ 1 0]’ MI,B is homeomorphic
to the torus bundle M(B-2,-1) defined in [10].

In the last section, we will give a practical method determining
whether a given torus bundle is a 2-fold branched cyclic covering of SS
or not (Theorem 5). To do this, we use a result of [7] or [11], and we

will give complete invariants of the homeomorphism types of torus bundles

(Lemmas 7 and 8). In particular, we will have the following:

Theorem 4. Let (o;,8;) be a pair of integers such that 1 sa.s lBiI or

0=a,<B, for each ©=1,2. Then Mal’sl i8 homeomorphic to Maz’sz’ iff
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(1) (a1,81)=(02.82) or (2) (o;,B;)=(1,6) or (2,3) for each i=1,2.

In other ’worda, the branch line is unique with the exception of Ml 6’=W2 3
2 »

Finally, we will give a table of torus bundles ¥ with lTorHl(M)| £ 20.

In particular, we will have the following:

Theorem 6. Let M be a torus bundle, such that El M) <8 iscmorphic
to ZoZn (0sns<sll, or n = 14, 16 or 19) or ZQZZQZZn (0sns<4). Then

M <8 a 2-fold branched cyeclic covering of 83.

In this paper, we assume that every orientable surface Fg is endowed
with a longitude-meridian syetem (l-m system, in brief) {Zi,mil 1sisgl.

For a self-homeomorphism ¢ of Fg’ let A, be the matrix representing the

¢
automorphism ¢, of iy (F g) induced by ¢, with respect to the l-m system.

g -
Then A¢ is an element of Sp(2g,Z) =14 | AJAt=tJ}, where J = 0[(1) [1)]

The correspondénce ¢->A¢ induces an anti-homomorphism from H(Fg), the
homeotopy group of Fg, onto Sp(2g,2). ¢ is orientation preserving (resp.

reversing), iff A, is an element of Sp+(2g,Z) = {4 l/flJAt = J} (resp.

¢
Sp~(2g9,2) ={4 |AJAt =-J}). If g=1, the anti-homomorphism is one to one,
and 5p(2,2) = GL(2,2), Sp'(2,1) = SL(2,1), and Sp (2,2)=8L"(2,0)=1{4|
g Z] of GL(2,7), let "A be the self-
homeomorphism of stxst defined by ¢ A(zl,zz) = (z‘i I;-zg], where Sl is

identified with the unit sphere in the complex plane. If the l-m system

detd = -1}. For a matrix 4 =

(4]
*3,, 2

of Slxsl is given by 1 = SIXI and m = lxsl, then A¢ = A. The torus
A
bundle M is denoted by M.
44 A
The auther would like to express his gratitude to Prof. M. Ochiai and

Prof. K. Asano for inviting him to the problem and for helpful suggestion.
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1. Proof of Theorem 1

Lemma 1. Let M be a 2-fold branched cyelic covering of a 3-manifold N,
and let h be the covering transformation. Then the following hold:

(1) If N isa Zp—homology sphere, for some non-negative integer p,
then 1+h,=0: Hi(M;zp) -'Hi(M;Zp) Z = 1,2).

(2) If 1+h,= O:HI(M) +H1(M), then the transfer T : Hl w) +H1(M] i a

zero-map, and 2H,(¥) =

Proof. This follows from a standard argument using transfer (see [2])
and the fact that the homomorphism Hl ()] +Hl (N) induced by the covering

projection is an onto map.

Lemma 2. Let M be a 2-fold branched cyelic covering of a Zp—homolagy
3-gphere. Then, for any two elements z and y of HZ(M;ZP), 2int(x,y) =

oeal (M;Zp], where int denotes the intersection pairing.

Proof. Let h, be the automorphism of H*(M;Zp) induced by the cover-
ing transformation. Then we have the following, which proves Lemma 2.

-int(z,y) = h,(int(z,y)) = int(h,(®),h, @) = int(-z,-y) = int(z,y).

Now we prove the first half of Theorem 1. Assume that M¢ is a 2-fold

branched cyclic covering of a homology sphere and ngzs, where ng is
the integer defined in the introduction. Then there is an odd prime p

dividing ng. Let ¢, be the automorphism of H (F ;Z ) induced by ¢.
Then dunz Coker(¢,-1) 2g+1; so dmz Im($,-1) sg-1, and dmz Ker(¢,~1) 2
g+l. Let n be the natural map H (g’ ,Z ) + Coker(¢,-1) cH (MZ,Z }. Then

dimz,n[}(er-(cb,,-l))zdtmz Ker(¢,-1) -dvnz Im(¢*-1) 2 (g+1)-(g-1) 22. Hence
14 P 14
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there is a l-cycle 3 in Fg such that (2] € Xer(¢,-1) and. (p-1)n({z]) =
OEHI(M¢;Zp), where [3] is the homology class of 111 (Fg;Zp) represented
by =z. Since ¢,([2]) =[2], there is a 2-chain ¢ such that 23c =9, ([3])
-[2] mod p. Let & be the Z-chain of M¢ represented by zxI+eXxp c
FgXI/ (x,0)~($(x),1) = M¢. Then £ is a mod p 2-cycle. Let [4] be the
homology class of HZ(M¢;Zp) represented by £, and let [Fg] be the
homology class of HZ(M¢;ZP) represented by ng(l/z). Then it can be seen .
that int([ﬁ],[b’g]) = n([z]). Since (p-1)n({z]) = 0, this contradicts
Lemma 2; so ng is equal to 1 or 2.

Next we prove the later half of Theorem 1. Let V be an oriented handle
body of genus g, with a fixed I-m system {Zi’mi |1si,§sg}. For a g-
tuple of integers (al,---,ag), let us consider a surface S(al,---,ug)

as shown in Fig. 2, consisting of one disk and g bands, where o denotes

the number of half twists of the i-th band.

Fig. 2 5(3,-2)

Consider two such pairs of manifolds l:Vl,.S;'1 (al X ,ag]) and (VZ’SZ (Bl X

B g)). Let f: avl ->3V2 be an orientation reversing homeomorphism. Then

we obtain an oriented closed 3-manifold W= Vl u V2 and a surface Sl u.S’2
F

embedded in ¥, Let L be the link in N formed by the boundary of Sl USZ.
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Consider the homomorphism w:,'rrl(N-L)-*-Zz, defined by y(x) =int([x],[$1]*[sz])
for each element x of nl(N-L), where [x] denotes the homology class of
HI(”"L;ZZ) represented by x, and [SI] (resp. [.5‘2]) denotes the homology
class of Hz (N,L;Zz) represented by Sl (resp. 52). Then ¢ sehds the

meridian of each component to the genetator of ZZ‘ Let ¥4 be the 2-fold
branched cyclic covering of ¥ branched along [ corresponding to Ker(y).

Then we have the following:

. . ~ -1
Lenma 3. ¥ is an Fg—bundle with monodromy ¢, such that A 6= AszAf Pl,
where Af is the matrix representing the isomorphism f, :chavl) +H1(3V2),

with respect to the given l-m systems of V, and V,, P, =e.,9 {1 aiJ

1 2 17 %A, 7
ad , =09 {1 Bil,
o -1

Proof., Let ?11 be the manifold obtained by cutting open Vi along the
interior of Si for each 2 = 1,2. Then ﬁi (=1,2) is isomorphic to

| ngl'. Let C;: ‘be the component of 391: which contains 381:, and let CE

be the component of aﬁi corresponding to avi for each £=1,2. Take two
copies 91: and F71E of f;i for each 7=1,2. Then M is obtained by

glueing Vl, ?’, I'}z, and ?2', according to the following scheme:

- b + + ~ -
¢] Vv, 20 —ch < ¥,>0

1

I E
et edscybgyeiyacy,
where Y, (resp. y,) denotes the involution of C; (resp. C;) such that
Fix(yl) = 331 (resp. Fix(yz) = aSZ). Hence M is an Fg-bundle with mono-
dromy ¢ = Yilof'icyzof. It can be seen that, Yl* (resp. yz*) is repre-

1

sented by the matrix .9 [
1=1 0

“1:] (resp. 91:81 [1 Bi]), with respect to the
-1 Tl -1
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induced by that of V., (resp. V This

1-m system of C; (resp. A -

c,)
completes the proof of Lemma 3.

In the above lemma, choose f to be the homeomorphism corresponding to
the standard Heegaard splitting of 6'3 of genus g. Then we have a link

in S whose 2-fold branched cyclic covering is an F_-bundle M¢ such that

SR | A A K AR
A * 0 -1 T %=1lg;, ap; 1) M1l isdse-

morphic to 20{0 1%: }, where G, is the abelian group presented by the

-2 -0,
. 4
matrix [B @B, -2]° Hence #, M ¢) ZO{O {Z eZ

A

1}, where

(I Bi-4|/gi]

g;=g-c.d.{a;,B;,2}. From this, we can prove the later half of Theorem 1.

2. Proof of Theorem 2

For an Fg -bundle M,, let ¥, be the infinite cyclic covering of M

¢ ¢ ¢’

corresponding to Ker(p, : m M ¢) +1rl(sl)), where p :M¢+sl is the bundle

projection. Then E¢ is homeomorphic to ng}?l, and the homeomorphism $:

FgXRl +ngR1 defined by $[z,t) = (¢(=),t+1) is a generator of the

covering transformation group.

Lemma 4. If M¢ i8 a 2-fold branched eyclic covering of a homology
sphere, then there is a matrix P of Sp (2g9,l) which satisfies the fol-
lowing conditions:

(1) P°=I and AP = PA¢ ,

(2) [Pl+I=0: Coker(A¢-I) +Coker(A -I), where [P] denotes the

¢
homomorphism induced by P. (Note that the condition (1) assures the ex-

igtence of such a homomorphism.)
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Proof. Assume that M¢ is a 2-fold branched cyclic covering of a homo-
logy sphere, and let h be the covering transformation. Then, from Lemma 1
(1), there is a 1ift % of h, such that hep = § ‘o and Z,([Fg]):-[?g]
in H2(§¢), where [Fg] is the homology class represented by ngo CngRl =
f7¢. Hence the matrix P representing i, : Hl (r7¢) +31(F!¢] is an element
of Sp (2g,1), and it satisfies the later half of the condition (1). Since
Pix(h) =@, we can choose % so that Fia:('fz') 2@, Then 7‘1'2 = 1, since %

2

is a 1lift of h2=1. So, we have P° = I. The condition (2) follows from

the fact that Hl(M¢) = ZeCoker(4,-I) and Lemma 1 (1).

¢

To establish Theorem 2, we have only to prove that (1) implies (3). Let
¢ be a self-homeomorphism of a torus T2 , and assume that the torus bundle
M¢ is a 2-fold branched cyclic covering of a homology sphere, We may as-

sume that ¢ = ¢A . Let P be the matrix of SL (2,Z) which satisfies the
¢

conditions of Lemma 4, and let y = ¢P‘ By the condition (1), we can define
an involution # of M‘b = TZXRI/(x,t)~(¢(z),1+t) by the equation h([x,%])

= [y(x),1-t], where [x,t] denotes the point of tv!('> corresponding to the

point (z,t) in .'I'ZXRI. Then we have:

Hy/h F 1%00,1/2)/ (2,00~ ov (@), 00, (=,1/2~(@),1/2)} = Vy vy,

n

where ¥, = 17x[0,1/4}/ (z,0)~(¢ " +¥(z),0), and

vy = Tx(1/4,1/2]/ (@, 1/ D~(1(@),1/2).

Since Y and ¢-1°Y are orientation reversing involutions of Tz, AY and

- . R 1 0 1 0 s .
A¢ 1°Y are conjugate to the matrix (1 -l] or [0 _1]. From this, it

can be seen that ‘Vl and Vz are handlebodies of genus 1, and the links
Fia:(x#'loy)xo <V and Praz(y)x(1/2) c v, are equivalent to the links as

illustrated in Fig. 2 in §1. Hence M¢/h is a 3-manifold of Heegaard
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genus 1, and M, is a 2-fold branched branched cyclic covering of M /h.

¢ )
It can be seen that 1+j, = 0: HI(M¢) +8) [”q:)’ by the condition {2). Hence,
from Lemma 1 (2), M¢/h is 33 or RPS. If M¢/h is 53, the branch line

is equivalent to the link X(a,B) as illustrated in Fig. 1 for some pair
of integers («,B8), and we have the desired result. Thus we have only to
prove that M /h is not RP>. From the fact that 1+h, =0 and Lemma 1 (2)

this is proved by the following Lemma.

Lemma 5. Consider two Links in soltd tori (Vl,asl(u)) and (VZ,GSZ(B)]

defined in §1, and let f: avl +8V2 be the homeomnrphiem which is repre-

gented by the matrix [; _(1)] with respect to the given l-m systems of V

3

1
and V,. Let M be the 2-fold branched cyelic covering of Vl U Vz ¥ RP
, F
branched along the link asl (x)u aSZ(B) corragponding to Ker(y), where Y
i8 the homomorphism definened in §1. Then the transfer < :1'11 (RP3) -*Hl N

18 not a zero-map.

Proof. From Lemma 3, ¥ is a torus bundle whose monodromy is presented
e merix 3 3)ls G306 8] - (65 bRk we
respect to the I-m system {I,m} induced by that of Vl' Hence Hl M) is
isomorphic to Ze<il,m | 2Bl + (a+B+2aB)m, 4(1+B8)1 + 2(20+B+2aB)m>. It is easy
to see that Im(t) 1is generated by 27 +am. Assume that Im(t) = 0. Then
there are integers x and y satisfying the following equations:

(1) 2Bz +4(1+8)y = 2 (2) (a+B+20B)x + 2(2a+B+20B)y = a.

By (1), we have B=x =1 mod.2. By (2), we have (a+B)x Sa mod.2.

So a+lZa mod.2; contradiction. Hente Im(T) =0.
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3. Proof of Theorem 3
J.L. Tollefson [12] proved the following:

Theorem. (Theorem 2 of [12]) Let h be a P.L. tnvolution on M ¢=ng}?1/$_,
where Hl W ¢‘;Q) %(Q. Then h s equivalent to an involution h' defined
on Ml; = ngRI/E by h'([z,t]) = [Y(x),A(t)]), where Y is some involution
on Fg, the map ¢ 1is igotopic to ¢, and A(t) = t, 1-t, or t+(1/2).

The condition Hl (M¢;Q) £Q is used only in p.229 of [12], to prove that
h(Fg) is isotopic to Fg’ where Fg is a fiber. This condition can be

replaced with the condition that h*([Fg]) =1[Fg] in Bz(M¢). In fact, it

assures the existence of the lift of % to the infinite cyclic covering M

¢
of M¢, by which we can prove that h(Fg) is isotopic to Fg from a simi-
lar argument to that of [12] in p.229.

From the above argument and Lemma 1 (1), we have the following:

Lemma 6. Asswne that M¢ i8 a 2-fold branched cyclic covering of a ho-
mology sphere. Then the covering transformation h <is equivalent to an
involution h' defined on ng}?llg by h'([z,t]) = [Y(x),1-t], where Y
i8 gome orientation reversing involution on Fg and the map [ i8 isotopic

to ¢.

Using Lemma 6, we can prove Theorem 3 by a similar argument to the

proof of Theorem 2.
4. Invariants of torus bundles

Lenma 7. (1) Let A be a matrix of SL(2,l) such that 'Hl(MA) is

tsomorphic to ZGZGZn for some non-negative integer n. Then A is
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*
conjugate to the matrix [’ll (1]] .

(2) Let A and A' be matrices of SL(2,1). Then M, 18 homeomorphic

to M,,, tff A’ is conjugate to A or At

Proof. (1) follows from the fact that Ker(A-I) is non-trivial iff the
first Betti number of MA is greater than 1. (2) follows from (1) and the
fact that two surface bundles, whose first Betti numbers are equal to 1,

are homeomorphic, iff they are equivalent as fiber bundles (see [9]).

Thus the homeomorphism problem of torus bundles is reduced to the conju-

gacy problem for 2x2-matrices over Z, which is solved as follows:

Lemma 8. Let A= Z S] be a matrix of SL(2,1). Then the following hold:

(1) The characteristic polynomial f 4 () of A i8 equal to a:z-Tr(A):x:-rl,
and the discriminant D, of f,(x) is equal to (Ir(A)) - 4.

(2) If Tr(A)=2c for some €=*%1, then there i8 a unique non-negative
integer n such that A s conjugate to the matrix [; g] .

(3) If rr(4)=-1 (resp. 0,1), A i8 conjugate to the matrix A

1,1
(resp. 4

1,22 41,30 -

(4) If ITr(a)i=3, fA(xj is irreducible over I, and D, is positive
and non-gquare. Let 0(4) = {(d-a]+/l'7;}/2b. Then the conjugate class of A
18 completely determined by Tr(A) and the equivalence class of the quad-
ratic irrationality 8(A). Hence two matrices A and A' of SL(2,1), such
that Tr(A) =Tr(A') = 0,%1,%2, are conjugate, iff the purely cyclic parts of
the infinite continued fractions representing 0(A) and 0(A') are equal

up to cyelic permutations.

* This means 'conjugate in GL(2,Z)".
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Proof. (2). If Tr(4)=2¢ for some €=t1, then fA(x)--(z—e)z and

A has a real eigen value; so 4 is conjugate to the matrix 2] for

i . . 1 O)fe oJfr of _{te O
some integer n. Since (0 _1] [n s] [0 _1}. = [-n s]’ we may assume that
n is non-negative. The first elementary ideal of the matrix xI - (: g]

is <x-g£, n> and Z[x]/<x-£, n> 'EZn. Hence the non-negative integer n
is uniquely determined by the conjugate class of 4.

(3) and (4). Assume that Tr(4) 2. Then fA[:x:) is irreducible over
Z, and we can make use of the results of [7] or [11}. Let E be the first

root of f,(z), that is, £ = { Tr(4)+/D,}/2. Then there are algebraic in-
| A A

w w. | .
tegers W, and w, of Z{£], such that A{ml} = E{wll. (71 and [11]
2 2 .

proved that the set {wl, mz] forms a base of an ideal of the ring Z[£],
and the ideal class of the ideal <y, m2> is uniquely determined by the
conjugate class.qf' A. (3) follows from Lemma 9 below and the fact that
the class numbers of the rings Z[(1+v3%)/2] and Z[Z] are equal to 1.
(4) is deduced from the following facts (i)~ (ii): {i) two ideals <m1,w2>
and <m1’,w2'> are in the same ideal class, iff the quadratic irrationalities
mzlm1 and mz'/mi are equivalent, (ii) two quadratic irrationalities are
equivalent, iff the purt.ely cyclic parts of the:infinite continued fractions
representing the quadratic irrationalities are equal up to cyclic permuta-

tions (see [4]), (ii) A[El-,a] = E[Elja] , and (§-a)/b= {(d-a)+/IJ—A}/2b.

For the matrix Aa g’ we have the following:
k]

Lemma 9. Let (a,B) be a pair of integers, such that 1sa<%|B| or
O=asxB. Then the following hold:

. . -1
1 .
(1) Aa, 8 18 eonjugate to Aa, 8
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() TrAy g =-2, iff a=0. 4, is equal to ["13 _‘1’].
(3) TPCAQ,B)= 2, tff (a,B) = (1,4) or (2,2). A1,4 18 conjugate to
[i (1)], and A2,2 18 conjugate to [; (1)}
(4) Tr(Aa,B)= -1 (resp. 0, 1), ¢ff (a,B)=(1,1) (resp. (1,2), (1,3)).
(s) If ITrcﬂl,B)l 23, the purely cyclic part of the infinite continued
fraction representing e(Aa,B) ig given by the following formula up to
eyelic permutations:
[a,181) if B<o,
(1,(8°4)) Zf a=1 and B=2s,
[2,(8°2)] if a=2 and B23,
(i,(2-2),1,(8°2)] %f 023 and g23.

Proof. (1) follows from Lemma 4 (1). (2),(3), and (4) are trivial.
(5) By direct calculation, we can prove that e(Au,B) is represented
by the following infinite continued fraction:
[-1,(iB1+1),1,181] if a=1 and B<0,
[-1,1,(a-1),181,6] if «22 and B<0,
[(-B+1),(8-3),i,(B°4)] if a=1 and B25,
{-8,1,1,(8-2),2] if a=2 and B23,

[-8,(a-1),1,(B-2),1,(a22)) if a23 and B23.

Now, Theorem 4 in the introduction and Theorem 5 below are immediate

consequences of Lemmas 7, 8, and 9.

Theorem 5. Let A be a matrix of SL(2,Z). Then M, i8 a 2-fold
branched cyclie covering of Ss, iLff one of the following conditions holds:
(1) -2s7r(4)s1,



173

(2) Tr()=2 and Coker(A-I) T Z or ZGZZ

(3) ITr(4)1 23 and there is a pair of integers (a,B), such that o =
Tr(A) +2 and the purely ecyclic part of the infinite continued fraction
representing 6(A) 18 equal to that representing B(Au, B)’ which is given

by Lemma 9 (5), up to cyclic permutations.

-5 3 ~ . el
Example 1. Let 4 = [ 3 _5]. Then HI(MA) -Z@le, S0 MA satisfies
the necessary condition given by Theorem 1. Nevertheless M‘4 is not a 2-

fold branched cyclic covering of SS. In fact, Tr(4) = -10 and 6(4) = /96/6

= [l,i,l,l,:"’]; so A does not satisfy the condition of Theorem S.

Example 2. Let M be a torus bundle such that dimQHl M;Q) 22. Then
M is a 2-fold branched cyclic covering of Ss, iff HI(MJ is isomorphic

to ZeZ or ZeZsZz.

Now we will give a list of orientable torus bundles ¥, such that

dimQEI(M;Q) =1 and l:Z’oz'IEI1 (M) ]| £20. To do this, we need the following

lemma, which is proved by direct calculation.

Lewma 10. (1) For a matrix A of SL(2,1), the following hold:
(i) dﬁ"QHl(MA;Q) 22, iff Tr(A)=2,
(ii) If Tr(A) =2, then lToz'El(MA)I = |Tr(4) -2| and DA 18 equal

to |Tord,(M,)| '{lTorHl CANE: 4},

(2) Let m be an integer such that |m| 23, and let £ be the first
root of a polynomial p::r:2 +qx+r such that q2 -4pr = n® - 4. Define A(E)
to be the matrix ((m:g)/z (m-s)lz}' Then A(E) s an element of
SL(2,2), Tr(A(E)) =m, and 6(A(E)) =&.
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Thus to classify torus bundles A M, such that ITorHI(M)I =n, we have
only to classify quadratic irrationalities which are roots of quadratic

polyﬁomials whose discriminants are equal to n(n4).

In the following 1ist, the torus bundle Ma 8 is denoted by (a,8).
N P
A torus bundle MA’ which is not a 2-fold branched cyclic covering of 33,
is represented by 4, and the purely cyclic part of the infinite continued

fraction representing 6(4) is written on the right of 4.

.

Hl ) Torus bundles

Z (1,3]) (195)
2022 (1,2)3 (1,6);'(2’3)
Zozs (1,1), (1,7)
2024 (0,28+1) where BeNu{0}, (1,8)
Zel,e1l, (0,28) where BeNu {0}, (2,4)
Zezs (11'1): (119)5 (3:3)
2026 (1,-2), (1,10), (2,5)
ZeZ, (1,-3), (1,11)
ZeZ8 (1,-4), (1,12), (3,4)
2022024 , (2,-2), ‘(2:6)
ZeZ, - (1,-5), (1,13)
-5 3] ** . 31 *% .
ZeZ el, [3 _2] i, [; ;] (3]
20210 (1,"6), (2,'3)9 (1:14)’ (2:7)
ZeZn (1,-7), (1,15}, (3,5)
-SV 3 * - - * o a
29212 (1,'8): (1:16), [8 _S] [1,1,1;2], [7 3] . [314]
2022916 (2,-4), (2,8), (4,4)
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5 7 - .
20213 (1,-9), (3:'3): (1:17): (7 10 [1:2:2:1]

29214 (1,-10), (2:’5]3 (1318): (2:9)3 (3:6)
_8 3 % - . 7 3 ¥ o o
Zozls a,-11), (1,19), [13 ._5} (1,1,1,3]1, [23 10] [3,5]
ZoZ  (1,-12), (3,-4), (1,20), (4,5)
ZeZ,0Z, (2,-6), (2,10) ' |
-7 4 * o o 9 4 * . 5 81 ** .
ZeZ,01, [12 -7] [1,2], [20 9] [4), [s 13} (1]
ZoZ ., (1,-13), (1,21), (3,7), [“7’ ;} (1,2,2,i]
7 9} 2 :
ZQZIS (11'14)5 (2:'7)3 (1;22): (2,11), (10 13} [1,2,3,1]

-8 3] * .- . 10 3} * .o s
Zel 01, (21 _8] (i,1,4,1), [33 10] (6,3)
ZGZlg (1,-15), (3,-5), (1,23)
-9 5 * . .
ZQZZO (19"16)) (1324), (3)8): [16 ,9] [1:231’3]
11 8) * s s 9 4] ** s

. -13 8] ** .
ZeZ,02,, (2,-8), (4,-4), (2,12), (4,6), [ 8 _5] (1}

Remark. For a matrix 4 dotted by * (resp. **), the equation AP =

pal holds, where P= [3 _g] (resp. [i _2]); so it can be seen that M,

is a 2-fold branched cyclic covering of a certain lens space which is not
SZXSI, from a similar argument to the proof of Theorem 2. Furthermore we
can see that MA is a Zziazz-branched covering of Ss, from a similar ar-
gument to that of [5]. On the other hand, it can be seen that, there are
no such equations for the matrices which are not dotted by * or **, and the
corresponding torus bundles are not 2-fold branched cyclic coverings of the

lens spaces other than SZXSl

10 13
o(a) = (i,2,3,1] and 8(4"1)=[-1.4,3,1,1,3]); so 4 is not conjugate to A™".

. In particular, for the matrix A==( 7 9],
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Addendum 1.

From Lemma 3, it can be seen that every closed orientable 3-manifold has
a surface bundle as a 2-fold branched cyclic covering. In other words,
every closed orientable 3-manifold is a quotient. space of a surface bundle

by an involution.
Addendum 2.

F. Raymond and J.L. Tollefson asserted that a certain family of surface
bundles {M¢} admit no nontrivial pericdic maps in their paper "Closed 3-
manifolds with no periodic maps" Trans., A.M.S. 221 (1976). Nevertheless,
it appears not to be valid. Here we show that {¥,} are 2-fold branched cy-
clic coverings of SS, and therefore they admit nontrivial involutions.

The surface homeomorphism ¢ is defined by the notion of a twist map.
For a simple closed curve ¢ on Fg’ let t¢{e) be the twist map about ec.
We adopt the convention that #(¢) moves points on a direct line segment
which is approaching ¢ to the right. Now consider a closed orientable
surface Fg (g23) embedded in ‘R3 as illustrated in Fig. 3, and let

{ai’bi (1si<g)} denote the set of simple closed curves shown.
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Fix a set {nl,'°-,ng} of arbitrary but distinct positive integers, each
greater than 2, and define ¢ to be the homeomorphism of the surface
-n 0+1

obtained by setting ¢ = nizlt(a£)°t(bi) . To adjust these notations

to the notations used in 81, we identify [RS,FQ,{ai,bi}) in Fig. 3 with

CRs,Fb,{li,mi}) in Fig. 4 by an orientation reversing homeomorphism of Rs.

the base point

Fig. 4

Then t(ai] {resp. t(bi)) corresponds to t(li)-1 (resp. towi)'l); so ¢

n.-1
corresponds to &' = Hizlt(li)'lotOni) v, Generators of the fundamental

group "I(Fb) are taken as illustrated in Fig. 4, and we use the same sym-
bol Zi (resp. mi) to denote the element of "I(Fé) corresponding to the
loop Zi (resp. mi). Let us look at the automorphism of nl(Fb) induced
by the twist maps t(Zi) and t0wi). Each generator is fixed by t(li)#

except m, which is mapped to Zimi

and tUni)# sends Zi to mili and

n.-1
fixes the remaining generators. So we have ¢§(Zi) = (limi] b Zi and
r - ! . 3 3y -
o#(mi) = limi’ and ¢ 'HI(EQ)'*HI(FQ) is represented by the matrix A¢, =

-1
n, n.-l -1 -2|fn. n.-1}f-1 -2
gl l i 1 -
siﬁl[l 1 }. Note that [ 1 1’[1 1 }[ 1 1] An£+3,l’ where

Ani+3,1 is the matrix given by Theorem 2 and Ani+3’l is conjugate to
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. ni-l

1 1

4 -1

"1:+3»1 } 1s conjugate to 1ts 1inverse;

by Lemma 4. So the matrix [

this contradicts Lemma 1 of the preceding paper of Raymond and Tollefson.
The above observation in cooperation with Lemma 3 provides a candidate
for a link in Ss which has Mq) = M¢,) as the 2-fold branched cyclic
covering. Consider two pairs ot“ manifolds (Vl’Sl (n1+3,-°-,ng+3)) and
(Vz,Sz(l,"-,l)) defined in §1. Let f: 3V1+3V2 be the homeomorphism
corresponding to the standard Heegaard splitting of 53_ Let L be the
link 8F, vdF, in VI;VZ T 5,

clic covering M of. .S'3 branched along L is an Fg-bundle with mono-

Then, by Lemma 3, the 2-fold branched cy-

dromy ¢ = Yilof-lwzof, where Y, and Y, are homeomorphisms defined in

the proof of Lemma 3. We claim that M is homeomorphic to Mrb" To prove

this, we show that ¢# is conjugate to @é in Aut(‘lrl(i'g)]. It can be

seen that fy, Y,, and Y,, are given by the formulas f,(2;) = Wimi.ﬁi’
- ne+2 — =
Fylmy) = WoliWos Y1y (Rg) = Womy = Ly, Yy (mp) = Womaby, Yoy (1;) =
— == gl
Wizimi”i' and  Y,, (mi) = W W, where W, =T ,7'=1ij,7""3’23" Furthermore

. 2 k7
the relations f#z = Yis = Y-:;# = Id and f#(Wi) = Yy (W;) = Ypu(Wy) = W,

(ni*'zJ

T, and ¢,(m.) =

"
3|

hold. From this it can be seen that ¢#(Zi)'
n.+1

m; v Zimi' Now let ¢ = Hizlt(li)'lﬂt(mi)"z. Then, by a direct calcula-

tion, we have 4)# = w;lﬂbﬁ;ow#. Hence, by a well-known theorem of Nielsen,

¢ is isotopic to lb'lub'oip; so M is homeomorphic to M,.
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Addendum 3.

Here we give an affirmative answer to the following problem (Problem 25
"
of Knot Theory, Proccedings, Plan-sur-Bex, Switzeriand 1977, Lect. Notes

in Math. 685, Springer-Verlag, 1978, p.311")

Problem. Do there exist links in S° with the same comlement which
are distinguished by the first Betti numbers of their 2-fold branched

covers?

Consider the link Kz 2 defined in the introduction. It is equivalent
F ]
to the link as i#llustrated in Fig. 5 (a). So it can be seen that its
complement is homeomorphic to the complement of the link K' as illus-

trated in Fig. S (b).

{(v) k'

(a) KZ’ 2

Fig. 5
The 2-fold branched cyclic covering of Kz 2 is a torus bundle whose
first Betti number is equal to 2. On the other hand, the 2-fold branched
cyclic covering of X' is homeomorphic to RPS#RP3#RP3; so its first

Betti number is equal to 0. This gives an affirmative answer to the

preceding problem.
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