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A Montesinos link L = L(b; (a1, ),--+,(a,,B-)) with r branches is a link
in §? as illustrated in Figure 0.1 {cf. [BiZ1, BnS2, BuZ, M1,2, Z}).
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Here r, b, a;, and §; are integers, such that r > 0, a; > 2 and g.c.d.(a;, 5;) = 1
(1 £ i < r). The integers b, a}, a! in Figures 0.1 and 0.2 denote numbers of
right-hand halftwists. A box stands for a rational tangle as illustrated in
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Figure 0.2, where o and g are defined by the continued fraction
Bla = (a1 + (~aa + (as + (- (£aa) ™ -+ )71~ !

with a; = a; + af, together with the condition that a and g are relatively prime
and a > 0.

It was shown by Montesinos {M1] that the double branched cover M of §3
branched along L is the Seifert fibred space {~b; (01,0); (a1,61),- -+, (ar, B.)} in
the notation of [O]. The base orbifold of this Seifert fibred space is S3(ay, - -, a,),
the 2-dimensional orbifold with underlying space S? and with cone points of local
groups Zg,, -, Z,,. The covering involution 7 on M operates fibre-preserving; it
reverses the orientation of the fibres and induces a reflection through an equator
of the base orbifold, where all of the cone points lie on the equator. Since ($3, L)=
(M, Fiz(r))/T, we may regard (S°, L) as a 3-dimensional orbifold with underlying
space S° and the singular set L of cone angle m; we denote it by the symbol O(L).
Then by the preceding fact, O(L) has the structure of Seifert fibred orbifold
over the 2-dimensional orbifold D?*(a,-- -, a,), the 2-dimensional closed orbifold
with underlying surface D? and corner reflectors of angle 7/a,,- - - y7/a, in this
order. The fibred orbifold structure # : O(L) — D?(ay,---,a,) is completely
determined (up to orientation preserving equivalence) by the following data (see
(BnS1, D1]).

(0.1) The ordered set (B1/ay,B2/a1,"-,B-/a;) € (Q/Z)" up to cyclic per-

mutation and reversal of the order.

(0.2) The Euler number e(f7) = 1(b - 5_, B:/c).

We call a Montesinos link L spherical , if the double cover M is a spherical
manifold. Then the following properties are equivalent:

(i) L is spherical.

(i) m (M) is finite.

(iii) 2-37_;(1-1/a;) > 0, and L is not a trivial 2-component link.

(iv) Either r < 2 and L is a 2-bridge link which is not a trivial 2-component

link, or r = 3 and (&, a3,a3) = (2,2,n) with n > 2, (2,3,3), (2,3,4)
or (2,3,5).

If a Montesinos link L is neither spherical nor a trivial 2-component link,
then it is called sufficiently complicated. If r > 3, then the preceding data (0.1)
and (0.2) form complete isotopy invariants of L (see (BnS2, BuZ, Z}); and if L is
sufficiently complicated, then the symmetry group Sym(S*, L) = moDif f(S8%,L)
is isomorphic to Out(m(O(L))), the outer-automorphism group of the orbifold
fundamental group m;(O(L)) of the orbifold O(L) (see [BiZl, 2]). Using this
fact, Boileau and Zimmermann (BiZ1] have calculated the symmetry groups of
sufficiently complicated Montesinos links (cf. [BnS2]). For a spherical Montesinos
link, the above result does not hold.
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However a spherical Montesinos link L has a nice geometric feature; that is,
the orbifold O(L) admits a unique spherical structure. In other words, there is
an embedding of 7;(O(L)) into the isometry group IsomS? of $3, and O(L) is
equivalent to the quotient orbifold of $* by the action of m(O(L)); and such
embeddings of m; (O(L)) into IsomS? is unique up to conjugation. Moreover,
if we assume the orbifold uniformization theorem announced by Thurston [T2],
then it follows that Sym(S3, L) & moIsomO(L) for a spherical Montesinos link
L (Theorem 6.1).

The purpose of this paper is to describe explicitly the spherical structure of
O(L) for a spherical Montesinos link L, and calculate IsomO(L) (Theorems 3.4
and 4.1). Moreover, we give a description of the geodesic link L in §* which arises
from L as [ = p~'(L), where p : S* — 5% is the composition of the universal
covering projection S — M and the branched covering projection M — §3
(Theorem 5.3). For the case where L is a 2-bridge link, Burde [Bu2| has given
a topological description of I, and he used their linking numbers to get a new
proof of the classification of 2-bridge links {Bul]. So we think these geodesic links
are interesting objects.

This paper is organized as follows. In the first two sections, we review the the-
ory of fibred orbifolds and the geometry of S* following the article of Scott [St],
which serves a very comprehensive approach to the geometries of 3-manifolds. In
[St], a nice argument is given which lists all possible finite subgroups of IsomS3
acting freely on S* [St, Theorem 4.11]. But it does not give a sufficient condition.
So we follow and complete the arguments given there, and recover the classifi-
cation of such subgroups originally due to Hopf (H| and Threlfall-Seifert [TS].
In Sections 3, 4, and 5, we give precise descriptions of the spherical structure
on O(L), the isometry group IsomO(L), and the geodesic link L. In the final
section, we study the symmetry groups of spherical Montesinos links.

1. Fundamental facts about Seifert fibred orbifolds

In this section, we summarize fundamental facts concerning Seifert fibred orb-
ifolds and fix notations. A Seifert fibred orbifold is a closed oriented 3-dimensional
orbifold ©* together with a map 7 from O? to a 2-dimensional orbifold ©® which
has the following local property (cf. [BnS1, D1, T1]): Let U be a neighbourhood
of a point z of O, such that (U,z) = (D?,0)/G, where D? is the unit disk in
R? and G, is a finite group acting on D? orthogonally. Then the action of G,
on D? lifts to a product action of G, on D? x §', so that the following diagram
is commutative:

77 (U) == (D*x8')/G.
n | P
U = D*/G.
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Here we assume D?, S!, and D? x §! are given canonical orientations and the
upper isomorphism is orientation preserving.

If z is a singular point of O, then the local invariant of the Seifert fibration
n at z is defined as follows:

Case 1. z is a cone point with G, = Z, (a > 2). Let g be the generator
of G, which acts on D? as rotation by 2r/a. Then g acts on S! as 2nf/a -
rotation for some integer 8. Then the local invariant of  at z is defined to be
(a,8), where 8 is well-defined modulo a.

CASE 2. zis a corner reflector with G, = D,. Consider the subgroup D, N
S0(2) = Z,, and let 8 be as above. Then the local invariant at z is (a,3).
The actual calculation of local invariants can be done by the following lemma.

LEMMA 1.1. Let G be a finite group which acts effectively on D? x §! as
a product of rotations of D? and S'. Let a be the order of the action of G on
D?-factor, and let g be an element of G which acts on D? as rotation by 27/a.
Then g acts on S'-factor as rotation by 27k /|G| for some integer k. Then the
local invariant at [0] € D?/G of the Seifert fibration D? x §*/G = D?/G is equal
to (a,f), where 8 = k mod a.

Proor. If a = |G|, this lemma is nothing other than the definition of the
local invariant. If @ # |G|, consider the normal subgroup Gg of G consisting of
the elements which act trivially on D?-factor. Then G/Gq = Z, acts effectively
on (D? x S!')/Gp = D?® x (5§'/Gy). Now the desired result follows from this fact.

There is another invariant for 5 : ©* — O?, which is called the Euler number
of n and denoted by e(n). This invariant is determined by the following naturality
property (see {BnS1, D1, NR, RV, St}).

Lemma 1.2, Let ) : 55 — 5’ and g : Q% — Oi be Seifert fibred orbifold
structures on oriented giqsed 3-dimensional orbifolds 0? and ©° respectively. Let
p:0% = O andp: O — O be orbifold coverings such that np = pij. Let d
[resp. d] be the hornological degree of p [resp. the geometric degree of p|, and put

m = d/d. [Thus a regular fiber of ij covers |m| times a regular fiber of n.] Then
we have e(n) = (m/d)e(7).

As a special case of the classification theorem proved by [BnS1, D1], we have
the following.

ProposiTION 1.3. Suppose n and n' be Seifert fibrations on oriented 3-
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dimensional orbifolds, such that their base orbifolds are diffeomorphic and their
underlying surfaces have no more than one boundary component. Then if the lo-
cal invariants of corresponding points are equal and the Euler numbers are equal,
then n and 1’ are equivalent.

In this paper, we use the following notations and facts:

(1.4) S(e;(@1,81),- - (@r, Br)) denotes the Seifert fibred orbifold with base
orbifold $%(ay, - - ,a,), Euler number e, and local invariants (ay,01), - - ,(ar, Br)-
Put d; = g.c.d(a;,5:), o} = a;/d;, and B} = B;/d;. Then the singular set consists
of the singular fibers for which d; > 2. The underlying space is the Seifert fibred
manifold S(e;(a},B8),- -, (a’,8.)). If we use the notation of [0}, it is described
as {V'; (01,0);(a},8),--+,(a’, B.)}, where b' is an integer such that e = —(b' +

(1.5) D(e;(a1,B1),--,(ar, Br)) denotes the Seifert fibred orbifold with base
orbifold D*(a;, - - ,&,), Euler number ¢, and local invariants (a1,61), - -, (&r, 8r).
The underlying space is the 3-sphere S, and if g.c.d.(a;,0;)) =1 for1 <i<r,
then the singular set forms the Montesinos link L{b; (a1,51),- -, (ar,8,)), where
b is an integer determined by e = 3(b— Y, Bi/ai)-

(1.6) D*p;ai,---,a,) denotes the 2-dimensional orbifold obtained from
D?*(a,,---,a,) by adding a cone point of local group Z, in the interior of the
underlying disk. If ©® is a Seifert fibred orbifold over D?(p;ay,---,a,) whose
local invariant at the cone point is (p,q). Then the underlying space |0?| is the
lens space with =, (|0°|) = Z, where p’ = p/g.c.d.(p, q)-

(1.7) Letq: O® — O? be a Seifert fibration. Then 7 induces an epimorphism
from m, (|©O%]) to = (|O?)).

2. The geometries of S? and §?

Following [St] (cf. [M2]), we describe these geometries by using quaternions.
Let H be the quaternion skew field, and identify S™ (n = 1,2, 3) with subspaces
of H as follows. .

(2.1) 5*={geH||g|=1},
(2.2) 5% = {g€ H||g| = 1, Re(q) = 0},
(2.3) S'={ze Cc H||z| =1}.

Here, for a quaternion ¢ = a + bi + ¢j + dk (a,b,¢,d € R), |g| denotes the norm
va? + b + ¢® + d? , and Re(q) denotes the real part a of g. Every quaternion ¢
can be expressed as ¢ = z; +225 (2,22 € C), and we regard C as a subspace of
H by identifying z € C with z+0j € H. Thenorm| |induces a metric on H, and
S® (n =1,2,3)have induced metrics. The group S acts on itself by conjugation
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and leaves S? invariant. Thus we obtain an epimorphism ¥ : 8§ — Isom*5?,
with Ker(y) =< —1 >, by letting

(24) P(g)(z) =gzg™' (g€ S*, =z€S?).

Let a be the antipodal map on S2, i.e. a(g) = —¢. Then I somS? is the direct
product of Isom* 5% and the group < a >= Z;. To understand the isometry
¥(q), note that any unit quaternion ¢ is written as

(2.5) g = cos 8 + gosiné,

where 6§ € R and g € S%. [Thus Re{go) = 0 and Re(g) = cosd.| Then we see
that ¢(g) is the rotation of $? of angle 26 with axis go. In particular if g € 52,
then 1(q) is the 7 -rotation of §? with Fiz(¥(q)) = {+q}.

Now we give precise descriptions of regular polyhedral groups. Let P be a
regular polyhedron inscribed in $2, and let Vp, Ep, and Fp be the subsets of 52
which are the images of the sets {the vertices}, {the centers of the edges}, and
{the centers of the faces} under the projection P — $? from the origin. We denote
the subgroup of Isom*S? = S0O(3) consisting of the elements which preserves a
regular polyhedron P by the same symbol P. Then the binary polyhedral group
P* = ¢~1(P) C S° consists of the elements of the form (cos £* + gsin £2) |
where g € VpU Ep U Fp; k and «a are integers such that 0 < k < a, and «a is the
order of a vertex, 2, or the number of edges of a face according as ¢ belongs to

. Vp, Ep, or Fp. We denote the tetrahedron, the octahedron, and the icosahedron
by the symbols T, O, and I respectively.

PROPOSITION 2.6. The following is the list of finite subgroups H of Isom*
S? up to conjugation, the quotient orbifold S*/H, and the normalizer N(H"*) of
H* =¢~Y(H) in S°.

H STH N(H)
Z, (n>2) | S%n,n) Ds
D, (n>2) |S*2,2,n) [D3, if n>2
0O if n=2
T 572, 3,3) o
9] 5%(2,3,4) o’
T 5%(2,3,5) T

Here Dg denotes the subgroup < S',j >, and we assume Z;, C S' and D, C
Dgs; thus Z, =< w > and D, =< w,j > where w = e*/™, We also assume
D3 = {£1,4i,1j, 2k} C T* C O°. Thus the vertez set Vo of the octahedron O
is {i,xj, £k}, and the tetrahedron is situated so that Er = Vp. | See Figure
2.1, where we draw a cube which is a dual of 0.
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Proor. The list of finite subgroups of IsomS? can be found in [Wo, Section
2.6]. If H* = Z; (n > 2), then the fixed point set of the action H = Y(H*)
on §% is {+i}. Thus if ¢ € N(H*), then v(g) preserves {+i}. If ¥(q)(i) = 4,
then ¢ € S7; and if ¢(g)(i) = —i, then ¢ € S'j. Hence N(Z2) C S' U §'j.
Thus we obtain N(Z;) = S' U §1j, since the converse implication is trivial. If
H* =D, (n 2> 3),then +iare the only points of $? with isotopy group Z,, under
the action of /(D). Thus by the above argument, we see N(D;,) C S' U S!j. By
considering. the image of j € D under conjugations, we obtain N (D;) = D3,.
If H* = D;, then it is clear that O* C N(D}). Since Dj is characteristic in O*,
the proof of N(D3) = O* is reduced to the praof of N(0*) = O°. Similarly the
proof of N(T*) = O* is reduced to the above. If H* = O* [resp. I *], then Vo
[resp. V7] is the set of points with isotopy group Z, [resp. Zs) under the action
of H. Hence any element of N (H*) preserves Vg [resp. V1] and hence preserves
the regular polyhedron O [resp. I]. Thus we have N(H*) = H*.

Next we describe the geometry of S3. Let ¢ : §3 x §% — Isom*S3 be the
homomorphism defined by

(2.7) #(a1, 0:)(0) = qrags”.
Then ¢ is an epimorphism and Kerg =< (-1, —1) >2 Z,. Let c be the orienta-

tion reversing isometry of S* defined by ¢(g) = ¢~*. Then I'somS? is a semi-direct
product of Isom*S® and the group < ¢ >= Z,; moreover we have

(2.8) cp(q1,q2)c™ = (g1, ).
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Let h : S — 5% be a map defined by h{q) = ¢ 'ig. Then h gives the Hopf
fibration; the fiber A~!(h(q)) through ¢ is equal to S'q = ¢(S*,1)q.

LemMa 2.9. (1) An isometry ¢(qi,q:) preserves h, iff @ € Dg = S'U
S'j. If ¢ € S! [resp. q1 € S'j |, #(q1,q2) preserves [resp. reverses| the fibre
orientation, and the action on the base space S? induced by ¢(q1,q2) is ¥(q)
(resp. (as)a].

(2) An isometry ¢(q1,92) (g1 € Ds) preserves the typical fiber h'(i) =
S, iff (g1, 92) € (S* x S*)U(S*j x S'j). Moreover there is a (closed) tubular
neighbourhood V' of S' = h~'(i), such that there is an orientation preserving
diffeomorphism V = D?® x §! with D? the unit disk in C, which satisfies the
following condition: Let (wy,w:) be an element of S* x S'. Then the action on
V & D? x S' induced by ¢(wi,w;) is L(w}) x L{wn@y). Here L(w) (w € §')
denotes a restriction of the map on C induced by multiplication by w.

ProoF. (1) can be proved by direct calculation.

(2) Note that the Hopf fibration h is equivalent to the fibration & : §* — CU
{oo} defined by k(21 +235) = 23/ 2. Let € be a small positive real number and put
D,={z€C||z| <€} and V =h~1(D,). Then V is a tubular neighbourhood

.of §' = h~1(0), and we can find an orientation preserving diffeomorphism f :

V — D, x S! which satisfies the following conditions:

(i) pof = h|v, where p is the projection D, x S! — D.

(i) f(z+ 0j)=(0,z2) for any z € S'.
Now the desired formula follows from the following identities.

Hwr, w2)(21 + 227) = vz + Wwaz2j,
il(¢(w1,wz)(21 + zaj)) = Ugil(h + z25).

We now describe the finite subgroups of IsomS? acting freely on S? following
the arguments of [St]. Let G be such a subgroup, and put G = ¢~(G), H} =
pi(G) < 8% (i =1,2), where p; is the projection of S® x S to the i-th factor.
Since G is conjugate to a subgroup of S! x §* [St, Theorem 4.10], we may assume
H} = Z; < S! for some integer n. Hence, by Lemma 2.9, the Hopf fibration
induces a Seifert fibration 7 on M = 5%/G over the 2-orbifold O® = §2/y(Hj).

THEOREM 2.10. ({H, Tsl. The following is a list of finite subgroups G of
IsomS?® acting freely on S® up to conjugation, and the quotient Seifert fibred
spaces M = §3/G.

Type 1. G = ¢ < (W, w9?) > with w = e™/?. Here p is a positive
integer and q is an integer relatively prime to p. In this case M is the Lens space

g ety
¢
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L(p,q), and the Seifert fibration 7 is given by S(d2/pa; (p3, —72), (p2,gr2)) where
& =g.cd(p.g—1), p» = p/d;, g2 = (g — 1)/d3, and gar; = 1 mod p,.

Type 2. Either (2-)) G = ¢(2;, x D;) where g.c.d.(m,2a) = 1, or (2-
ii) G is a diagonal subgroup of indez 2 in $(Z3, x D) where m is even and
g-c-d.(m, @) = 1: To be precise, let v, : Z2m — Z2 andy3: D}, — D3 /22 = Z, be
the natural epimorphisms, and put A(2;3,, xD3) = Ker[yx7z : 25,xD — ).
Then G = ¢(A(Z;,, x D2)). In these cases M = S(-m/a;(2,1),(2,1),(a,8))
where 8 = m mod a.

Type 3. FEither (2-i) G = ¢(Z;, x T*) where g-.c.d.(m,6) =1, or (3-ii) G is
a diagonal subgroup of index 3 in #(23,, x T*) where m is odd and m = 0 mod 3:
To be precise, let , : Z3m — Z3 and v : T* — Z; be natural epimorphisms, and
put A(Z3,, x T*) = ker[yy x 7, : 23, x T* — Z3]. Then G = ¢(A(23,, x T*)).
In these cases, M = S(—m/§; (2, 1),(3,82),(3,83)). Here B, = B3 = m mod 3 if
G is of type (3-i); and B; # B3 mod 3 if G is of type (3-ii).

Type 4. G = ¢(2; x 0*) where g-c.d.(m,24) = 1. In this case M =
S(-m/12;(2, 1),(3,82),(4,8;)), where B2 = m mod 3 and B3 = m mod 4.

Type 5. G = ¢(2;, x I') where g.c.d(m,60) = 1. In this case M =
S(-m/30;(2,1),(3,8:),(5,0;)), where B2 = m mod 3 and B3 = m mod 5.

REMARK 2.11. (1) Suppose M is not of type 1, and let f be a regular fibre
of M. Then the order of £ in 7y (M) is 2m. If M = S(-m/a;(2,1),(2,1), (e, 8))
with @ odd, then the order of f in Hy (M) is also 2m. Otherwise it is m. In
particular, the order of f in H, (M)is<2,if m =1, that is Hy = 2.

(2) There are slight errors in the statements of [0, p.112 Theorem 2 (ii)

and (jii)]. They should be read as follows:

(i) M = {b;(o;,O);(Z,l),(Z,1),(a3,ﬂ3)}. Let m = (b+ 1)ag + 85; if
(m,2a3) = 1, then m(M) = C,, x Dio, (= Zm x D7, in our no-
tation), and if m = 2*m’ (k > Lm' = 1 mod 2), then we have
1l’1(M) = Cmv X D;"‘”a;' ’

(iii) M = {b;(01,0);(2,1),(3,62),(3,85)}. Let m = 6b+ 3 +2(Bs + Bs); if
(m,12) = 1 then m (M) = C,, x T, and if m = 3*m’ (k>1,m' £
0 mod 3), then m(M) = Cpno x T"

8.34+1°

Proof of Theorem 2.10 continuing [St, Section 4]. In [St, Theorem 4.11], a
detailed list of all possible finite subgroups of Isom$® acting freely on 53 is
given. What we have to do is to find 3 explicit condition for a group G in the
list to act freely on S?, and to identify the quotient manifold. Every group G in
the list is of the form as described just before Theorem 2.10, and the orbifold
M = §/G admits a Seifert fibration n which is of the form (1.4). We explain
how to obtain the local invariants and the Euler number of 5 through an example.
Let G be a diagonal subgroup of index 3 in #(Z3,, x T*) where m is odd; this
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belongs to Scott’s list. Then the base orbifold ©? of the corresponding Seifert
fibration is S?/4(T*) = 5%(2,3,3). The two cone points of O® with local group
Z3 are the images of Vr and Fp(C S?) respectively. Pick a point v of Vr; then
—v belongs to Fr. For ¢ = %1 let T*(ev) = {g € T* | ¥(qg)(ev) = ev} and
G(ev) = {9 € G | g(h~*(ev)) = h~*(ev)}. Then we see T*(v) = T*(-v) = Z;
and G(v) = G(~v) = {¢(q1,92) € G | g2 € T*(v)}. By applying a suitable
conjugation, we may assume v = i, T*(tv) = T*(+i) =< w; >, and G(%v) =
G(%i) =< ¢(w}, 1), $(wy,w3) >, where w; = e"/*™ and w; = e™/3, By Lemma
2.9, there is a closed tubular neighbourhood V' of A~!(v) and an orientation
preserving diffeomorphism V 2 D? x S!, such that the action of ¢(wj,1) and
@(wy,wa) on V corresponds to id x L{w}) and L{w?) x L(w)&:) respectively. Note
that |G(v)| = 6m and L(w?) x L{wy@;) = L(e*""/3) x L(e**{1~™)/6m)_Hence, by
Lemma 1.1, the local invariant of p at [v] € ©? is (3,8+) where 84 = 1-m mod 3.
To obtain the local invariant at [~v] € O® consider a conjugation by ¢(1, j). Then
it maps the fiber h=}(-v) = h~!(—~i) to h~!(i), and maps the group G(—v) to
< ¢(wi, 1), ¢(wy, @) >. Thus, again by using Lemmas 1.1 and 2.9, we see that
the local invariant of n at [-v] € O? is (3,8-) where f_ = —1 — m mod 3.
Similarly, we see that the local invariant at the cone point with local group Z; is
(2,8), where 8 = m mod 2; so it is (2,1). Hence we see the Seifert fibred orbifold
M is S(e;(2,1),(3,84),(3,8-)) where 1 = *1 — m mod 3, and e is obtained
later. The singular point of this orbifold is empty, iff B+ # 0 mod 3, that is,
m = 0 mod 3. This is a necessary and sufficient condition for G to act freely on
S3. Finally we calculate the Euler number e. To do this, consider the following
commutative diagram of fibred orbifolds:
P

. sy

TR

4

52 —— SY(T)

Here p and p are the projections, and we see that the degrees of § and p are
|G| = 24m and |T| = 12 respectively. Hence by Lemma 1.2, we have e(n) =
(2m/12)e(h) = —m/6. This completes the analysis for a diagonal subgroup of
index 3 in ¢(Z;,, x T*). Other groups can be treated similarly.

3. The spherical structures on spherical Montesinos links

Let L be a spherical Montesinos link, and recall the orbifold O(L) (see Intro-
duction). In this section, we show that O(L) admits a unique spherical structure.
Since the double branched cover M of S* branched along L admits a unique spher-
ical structure, it suffices to show that there is an order 2 element 7 of Isom*M
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unique up to conjugation, such that (M, Fiz(r))/r = (5°, L). To do this we iden-
tify M with 5°/G, where G is a subgroup of IsomS® as described in Theorem
2.10 and we use the notations given there. Thus M is the Seifert fibred space
S(e; (al)ﬂl)l (az.ﬁz), (a31p3))) where (alyaha:!) is equal to (I,Pz,m). (2: 2) a)l
(2,3, 3), (2,3,4) or (2,3,5), according as G is of type 1,2, 3,4, or 5.

First we show the existence of such an isometry 7. By (1.5), it suffices to find
an isometry 7 of M which satisfies the following two conditions:

(3.1) 7 preserves the Seifert fibration n: M — O and reverses the fibre-

orientations.

(3.2) Let 7 be an involution on O? induced by 7. Then ©? [F=D*(ay, az, a3).

Let 7 be a Lift of 7 to the universal cover S of M such that Fiz() # 0, and
let (q1,42) be an element of S x S$3 such that 7 = #(q1,92). Then we have

(3.3) g1,92 € $2 C $%, and (g1, ) € MG). Here MG) denotes the normal-

izer of G in §% x §3.

This can be seen as follows: Since #* = 1, we have (¢?,¢2) = £(1,1); on the
other hand, since Fiz(7) # 0, we see ¢; and ¢, are conjugate in §3. These implies
g? = ¢¢ = —1, since ¥ # id. This is equivalent to the condition ¢y,9; € 5? (cf.
(2.2)). The condition (g1, ¢2) € M) is equivalent to the condition that a1, q2)
is a lift of an isometry of M. By Lemma 2.9 (1), the conditions (3.1) and (3.2)
are equivalent to the following conditions:

(3.1 ¢ € 8.

(32) S/ <$(H;), ¥(g:)a >= D*(ay,02,03).

Note that e*j = ¢®/?je~%/2 and H; = Z;. Hence there is a conjugation
of §% acting trivially on Zy, which sends ¢; to j. Thus (3.1) may be replaced
by the condition that ¢, = j. The condition (3.2)' is equivalent to the following
condition: The involution 1(g; )a preserves each of tie orbits of the singular points
under the action of (H3) on S2. [For example, if G is of type 3 ~ 5 and H,isa
polyhedral group P, then it requires that (gs)a preserves the subsets Vp, Ep,
and Fp of $%] Thus we see that condition (3.2)' is equivalent to the following
condition according as the type of G:

Case 1. Gis of type 1.
(a) Ifps =1, then q; € S2.
(b) If pa > 2, then ¢, € S%j.

Case 2. G is of type 2 and H; =< wa,j >, where wy = e*ila (a>2).
(a) Ifa=2,then g, € Vp.
(b) Ifaiseven and a > 4, then ¢; € Z2j.
(c) If aisodd, then g; € Z; /i, where /&; = ™/,

Case 3. G is of type 3, then ¢; € Ep
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Case 4. G is of type 4, then g3 € Vo U Eo

Case 5. G is of type 5, then ¢; € Ey.

Further, it is easily checked that if ¢, satisfies the above condition, then ¢(q:, ¢2)
= ¢(j,q2) belongs to MG). Thus 7 = ¢(j, g2) satisfies all demanded conditions,
and it gives the desired isometry 7 of M. Moreover the conjugacy class of 7 in
IsomM determined by ¢(j,¢2) does not depend on a choice of g;.

Next, we prove the uniqueness of 7. In fact we prove that if v is an order 2
element of Isom* M such that M/v is a homology sphere, then v is conjugate to
an isometry which satisfies the conditions (3.1) and (3.2). Then it follows that
v is conjugate to the isometry r just constructed. Let v be such an iéometry.
Since M/v is a homology sphere, we see Fiz(v) # 0, and hence there is a lift
7 of v to the universal cover S of M, such that Fiz(¥) # 0. Let (q;,¢2) be
an element of S3 x §3, such that # = ¢(q1,gz); then it satisfies the condition
(3.3). We show the condition (3.1)' is achieved. Recall that Hy = Z;. Suppose
n = 1, then since ¢, € 52, there is a conjugation of 5% acting trivially on H;
which sends ¢, to j. Thus we may assume g, satisfies (3.1)'. Suppose n > 2,
then ¢ € M(Z:) = S U §'j (cf. Proposition 2.6). To treat this case we use the
fact that v, = —id where v, is the isomorphism of H,(M) induced by v (cf. [Br,
p-119 (2.2)]). Suppose (3.1)' is not satisfied; i.e. ¢; € S'. Then T preserves the
fibre-orientations of n by Lemma 2.9 (1), and hence the order of the regular fiber
in Hy(M) is equal to 1 or 2. Thus if M is not a lens space, we have n = 1 by
Remark 2.11 (1), a contradiction. Suppose M is a lens space L(p, ¢), and recall the
Seifert fibration 7 given in Theorem 2.10 (1). If p; = 1, then H; (M) is generated
by a regular fibre, and therefore H;(M) = 0 or Z,. Then we see (p,q) = (1,0)
or (2,1), and Hy =< w1, -1 >= Z;. [Recall the notations in Theorem 2.10.]
Thus we have n = 1 and a contradiction. If p > 2, then consider the homology
classes 3, and s, represented by the singular fibres. Here the orientations of the
singular fibres are inherited from those of fibres of the Hopf fibration. Then both
s and s; are generators of Hy(M) = Z, and we have s; = ¢s;. Since v, = —id,
weseep=1or2if v.(s;) = 51, and ¢ = -1 mod p if v.(51) = 32. In either case,
H} =< w91 -1 >= Z;; a contradiction. Thus we have proved that ¢, satisfies
(3.1). Finally we show (3.2)' is achieved. Suppose (3.2) is not satisfied. Then,
for the 2-orbifold ©@?/p, we see either |0?/p| = RP? or ©*/p is isomorphic to
D(ps; -), D(a; 2), or D(2;3). In any case M/v has a nontrivial homology by (1.6)
and (1.7). Thus we have proved the desired result. By noting (1.4), we obtain the
following,.

TrEOREM 3.4. Let L be a spherical Montesinos link. Then the orbifold O(L)
admits a unique spherical structure. Moreover, the spherical structure is given by
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the following subgroup T' < §% x $3, for which we have #(T) = =, (O(L)) and
S3/¢(I) = O(L). )

Typel. L isa 2-bridge link of type (p,q). Then I =< (w?*},w971),(4,7) >
where w = e™/P,

Type 2. L = L(~b;(2,1),(2,1),(a,B)). Putm = (b+ 1)a + 8 and Vs =
em’/za.

(i) Suppose g.c.d.(m,2a) = 1. Then
o { < Z3 % D3, (G, /ani) > if a is odd,
- < Z;, x DZ,(j,7) > if a is even.

(i) Supposem is even and g.c.d.(m,a) = 1. Then T =< A(Z;3,,x D),
(3, Vaj) > .
Type3. L=L(-b;(2,1),(3,82),(3,8)). Put m = 6b+3+2(B, +83), and
let g2 be an element of Egp.
(i) Suppose g.c.d.(m,12) =1, Then ' =< Zop xT*,(3,q2) >.
(i) Suppose m = O0mod 3 and m is odd. Then I' =< A(Zs,, x
T.)t (Jl 92) >.
Typed. L = L(-b;(2,1),(3,8:), (4,83)). Put m = 12b+6+40; + 38, and
let g2 be an element of Vo U Eo. Then T =< 27, x 0°,(j,42) >.
Type 5. L = L(-b;(2,1), (3,ﬂ;),.(5,ﬂ3)). Put m = 305 + 15 + 108; + 60,
and let q; be an element of E;. Then T =< Z3, x I*,(j,q2) >.

Remark 3.5. The above proof also shows that, O(L) admits two different
Seifert fibrations if Hy = Z;. In fact, 7 = ¢(j, ¢2) is conjugate to ¢(i, ¢2) in this
case, and hence O(L) admits a Seifert fibration whose base orbifold is S <
Y(H3),%(g2) > (cf. (3.2)'). Precise description is given as follows (cf. (1.4) and
[M2, pp.170-171}).

Type 2 case. 5(-1/2;(2,1),(2,0),(2a,1 — a)) with a odd, or S(-2/e;
(2,0),(2,0), (@, 2)) with a even. Then L is the union of the (2, a) torus link and
the “core of index a”.

Type 3 case. S(~1/12;(2,0),(3,1), (4, -1)). Then L is the (3,4) torus knot.

Type 4 case. S(-1/6;(2,2),(3,2),(4,2)). Then L is the union of the (2,3)
torus knot and the “core of index 2”.

Type 5 case. S(-1/15;(2,2),(3,2),(5,2)). Then L is the (3,5) torus knot.

PROPOSITION 3.6. Suppose the ezterior of a spherical Montesinos link L is
a Seifert fibred space, then either L is a (2,n) torus link or one of the links listed
in Remark 3.5.
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Proor. It is well-known that the exterior of a 2-bridge link is a Seifert
fibred space, iff it is a (2,n) torus link. Thus we may assume L is not of type 1.
By [BuM], either (1) the Seifert fibration 7 on E(L) extends to that on §°, or
(2) L is an “earring”, that is, an unknotted circle together with a finite number
of meridian loops. If (2) holds, then the double branched cover M of (5%, L) is
a connected sum of projective spaces; thus L is a trivial knot or a 2-component
Hopf link. Suppose (1) holds. Then 7 lifts to a Seifert fibration 7 on M which is
preserved by the covering involution 7. Note that the base orbifolds of 5 and #} are
orientable, and 7 preserves fiber-orientations of 7. Then the preceding argument
using Remark 2.11 (1) shows H{ = Z}, and we obtain the desired result.

4. The isometry group of O(L)

In this section, we prove the following theorem:

THEOREM 4.1. Let L be a spherical Montesinos link. Then the isometry
group of the spherical orbifold O(L) is as follows according as the type of L (cf.
Theorem 3.4).

Type 1. Ifg= %1 mod p, then

S'ix Z, p:odd 23,
S'ix(Z20 2;) p:even 22,
S'x Dy p=2,
(5! x SY)x(Z)* p=1.

Isom*O(L) = {
IsomO(L) =
Isom*O(L)ixZ; = {

Suppose ¢ &£ +£1 mod p, then

IsomtO(L)x2: = Dy ifq® =~-1modp,

IsomO(L) =
! (Z) {Isom"'O(L) if ¢* # —1 mod p.

Z;® 2, ifg’#1modp,
Isom*O(L) = D, ifp if odd andq’;zlmodp
or p is even and ¢° =1 mod 2p,
(2,) if p is even and ¢* = p + 1 mod 2p.

Type 2 (i). IsomO(L) = Isom*O(L) is given by

a>3 a=2
m#1 2,0 2, Z3® Dy
m=1 STxZy if a is odd, STix(2; @ D,)
S' (23 @ Z3) if @ is even.
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Type 2 (ii). IsomO(L)=Isom*O(L)= 2, ® 2,.
Type 3 (i). IsomO(L) = Isom*O(L) = { 4 SZZ: :}"g iy
Type 3 (ii). IsomO(L) = Isom*O(L) = Z,.
Types 4 and 5. IsonO(L) = Isom*O(L) = {.‘Sz':lng :;2: :’

PROOF. Put I' = ¢(F) = m(O(L)) < Isom* $*. Since an isometry of O(L)
lifts to an isometry of the universal covering orbifold §* of O(L), we have iso-
morphisms;

IsomO(L) 2 MT)/T, Isom*O(L) = N*(T)/T,

where M(T) [resp. N'*(T')] is the normalizer of T in IsomS® [resp. Isom* S3|. By
(2.8), we see IsomO(L) = Isom*O(L) if L is not of Type 1. Let M) be the
normalizer of I in $3 x S3.Then we have Isom*O(L) = MT)/T.

If L is not of Type 1, then IsomO(L) can be calculated from the following
lemma.

LEMMA 4.2. The nomalizer N(f‘) is given as follows according as the type
of L. Here Dg =< S};),i > with S5y = {cosf + jsinf | 6 € R}.
Type 2.

a>3 a=2
m#1|D; "% D3 |D;.. x O°
m=1| D5 x D3, [ D x 0O

) o [ D3 x0" ifm#£1,
Type 3 (i). MI)= {D'Smx 0" ifm=1,
Type 3 (ii). M) =< T, (va1,0) >, where VoL = e™/%™ and g is an
element of T* such that 13(0) = 1 € Z;.

. D3 o i 1,
Type 4. JV(I‘)={ Dinor mZEL

Tyees. MO ={pin5T dnzy

Proor. IfLisof Type4or5,thenl = D7, x P* where P = O or I according
as L is of Type 4 or 5. Thus M) = N(D2,) x N(P*) and we obtain the desired
result by Proposition 2.6 and the fact that if m # 1 then m > 2.If L is of Type 2
or 3, then M) is a subgroup of N(T)x N(F;) where I; = pri(l) < S3(i =1, 2);
and we can obtain the desired result through case by case checking.



182 SAKUMA, M.

Next we consider the case where L is the 2-bridge link of type (p, @)- Then

& =< (W, w11, (-1,-1) >,

P =< (@, 0?™),36.5) >

where w = e"/?.
First, we treat the case where ¢ # *1 mod p. We consider the following
subgroups of Isom$3.

Ir=¢ < S x 8, (3,5) >
T+ = ¢(Ds x Ds),
I=< ¢(Ds X Ds),c> .

LemMa 4.3. N*(T') and M) are subgroups of It and T respectively.

ProoF. Put p; = p/g.c.d.(p,g+1) and p-= p/g.c.d.(p,q- 1). Then py,p2 >
1 for ¢ # +1 mod p. Since G is “characteristic” in T, we see M) < MG) <
N(23,) x N(Z3,) < Ds x Ds by Proposition 2.6. Thus A*(T) < I*. Let 7 be
an orientation reversing isometry of S° belonging to MT). Put 7 = 7¢, then
v0 = (@1, @) for some (g1,42) € S* x 5°. By (2.8) and the above argument, we
see g; € Ds. Thus we have 7o € I+ andsoy € T.

By the above lemma, it suffices to calculate the normalizer of T in Z. To make
calculations smoother, we identify S with {(z),22) € C* | |21]*+|z:|* = 1} where
(21, 22) corresponds to z; + 227, and introduce the following notations:

(4.4) L(wy,ws), where wy,w;3 € 5!, denotes the isometry of S§3 which sends
(21,22) to (w121, w322). Then we see Hlwy,we) = L(w @2, wiw2).

(4.5) J = ¢(j,i). Then we have JL(wy,wa)J ™ = L(@1,@,), and J? = 1.

(4.6) J1 = ¢(1,5). Then we have J1 L{wy,w2)J7t = L(ws, w1), LIt =1,
and J} = L(-1,-1).

(4.7) cL(w,ws)c™ = L{@y,wa), eJci=J.

Then we have

G =< L(w?,w?) > where w = e™"/?,
T =< L{w?,v?),J >,

IF =< L(S* x §*),J >,

Tt =< L(S! x §'),J, s >,
IT=< L(S' x §*),J, J1,¢>.
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Let N (T), M*(T) and MT) be the nomalizers of I' in Iy, I" and 7 respec-
tively.
Lemma 48. (1) Ay (T) =< L(w,w?), L(1,-1), L{~1,1),J >
2) AHT)= <NF(T), 71 > ifg* =1modp,
2) - NH(D) otherwise.
<N¥(['),Jic> ifg®=-1modp,
(3) Mr)= ’ .
NE(T) otherwise.
Proor. (1) This follows from the following fact. Let (w;,w2) be an element
of S x S*, then )
L(w;,w2)J € MT)
= L(wl,w,) € N(P),
& L(w},wg)J = L(w;,ws)JL(wy,w2)” ! € T,
& (vl wl)e< (w? w?7) >,
& (w;,wg) e< (w,w"),(l, —1), (—-1, 1) >.
(2) By (4.6), we see
J1 € N(I‘),
& LW, w?) = HL(w?,w?)J e,
& (w,w?) e< (v?,w??) >,

& ¢° =1 mod p.

Since N* (T)2N§ (T) iff J; € MT), we obtain (2).
(3) By (4.7), we see cL(w?,w?)c! = L(@?,w??) ¢< L{w?,w??) >, since
g # +1 mod p. So ¢ ¢ MT). By (4.6) and (4.7), we see
Jice A/(I‘),
& JycL(w?,w?) e ! = L(w?,@?) €< L(w?, w??) >,
& ¢* = —1 mod p.
From the above facts, we obtain (3).

Now IsomQ@(L) can be calculated from the above lemma. More precisely, its
generators and the actions of the generators are given as follows. Here the last
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column represents the image of (S, L) by the action of corresponding generators.
Note that L has one or two components according as p is odd or even; and in case
p is even, K; and K, denote the components of L which are suitably oriented
(cf. [BuZ, Sbj).

Subcase 1. p is odd.

IsomO(L) | Generator | Action

@ Z+lmodp | 2,02, L(1,-1) [(S% -L)
L(-1,1) |(s*,-L)
¢ =1modp Dy Ji ($°,L)

L(1,-1) |(S%,~L)
¢*=-1modp D, L(1,-1)Jic [(-S°,L)
L(1,-1) [(s%,~L)

Subcase 2. p is even.

IsomO(L) Generator Action
¢ Z+tlmodp Zy ® Z, L{w,w?) (S°, K,, Ky)
L(ls—l) (Sz’_Kl”'KZ)
q2 =1 mod 2p Z,®Z; B Z,y N (SJ,KI,Kz)

Lw,w) | (S% K2, K)
L(1,-1) [(5%, -K1,~K;)

¢ =p+1mod2p Dy Llw,w?)J; | (5°,—-K2,K))
L{w,w?) (S%, K3, K))
¢ =-1modp Dy L{w,w%)Jic [ (-5°, K2, -K})

L(w,wq) (SsaKhKl)

Finally, we treat the case where ¢ = 41 mod p. It suffices to consider the
case ¢ = 1 mod p. Then I’ =< (1,w),(j,j) > with w = e**/?, We can see the
following;

< 8 % 23,,(,3) > ifp:odd 23,

< Syi > xDj, if p : even,
Then IsomO(L) can be calculated from the above and the fact that O(L) admits
an orientation reversing isometry, iff p = 1,2.

5. The geodesic link

In this section we give a description of the geodesic link L in §% which is
obtained from a spherical Montesinos link L through the procedure explained in
the introduction. To do this, we use the description of the space of all geodesics
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in S° given by [GW]. Note that the quaternion skew field H has the structure
of the 4-dimensional metric vector space spanned by the orthonormal vectors
1, i, j and k. Each oriented geodesic in S determines an oriented two plane
through the origin in H, that is, a point in the Glassmann manifold Ga(R*) of
oriented 2-planes in H = R®. Let P be an oriented 2-plane in R*, and let {u,v}
be an ordered orthonormal base of P. Then the exterior product u A v does not
depend on the choice of {u, v}, and we denote it by the symbol wp. Then the
correspondence P +— wp determines an embedding G;(R*) — A?R!. Let E,
[resp. E_| be the subspace of A2R* which is the +1 [resp. —1] eigen space of the
* operator (cf. [GW, p.115]). For each element g of 2 ¢ H = R*, let el and ¢
be the elements of A?R* defined by

ef = ;{1 ++(1Ag),
& = {1 Ag) ~*(1A Q).

Then E, and E_ are spanned by {e], ef, et} and {e], e; ,e; } respectively. Note
that these six vectors are mutually orthogonal and have length 1//2. Let Si and
S2 be the sphere of radius 1/v/2 about the origin in E, and E_ respectively.
Then the following holds ((GW Lemma 5.2]).

Lemma 5.1. Gy(R') = S2 x §2,

For example, the oriented plane P spanned by the ordered base {1, ¢}, where
g € S® C H(cf. (2.2)), corresponds to (eF,e7) € S2 x §2,since 1A g = et +e;.

To describe the action of IsomS® on Gy(R?), we identify 5% with the sphere
S? C H through the correspondence S% 9 ef « g € §%. Then we have

LEmMMA 5.2. Let (q1,q2) be an element of §3x §3. Then the following holds.

(1) Let ¢.(qu,qz) be the homeomorphism of G3(R*) = 52 x §? induced by
$(91,92)- Then ¢.(q1,02) = ¥(q1) X P(aa)-

(2) Ezpress q; = cosé; + sind;§; where §; € S? for i = 1,2. Then &1, q2)
has a nonempty fized point set, iff 6; = 8; mod 2r. Moreover, if this condition
holds, then Fiz(#(q1,q2)) is the geodesic represented by +(di,d:) € S3 x S2.

PROOF. (1) Let ¢(q1,q2) be the linear map on A?R* which is induced from
the linear map ¢(q1,¢2) on R* = H that is defined by (2.7). Since ¢(g1,43) is
orthogonal and orientation-preserving, $(ql,qz) is orthogonal and preserves the
eigen spaces By and E_. Thus ¢.(g;,q;) is a product of orthogonal maps of S3
and 52. We prove (i) ¢.(g,q) = ¥(g) x ¥(q), and (ii) the action of $.(g, 1) [resp.
#.(1,9)] to S2-factor [resp. S2-factor] is the identity. Then (1) follows from these
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facts. For u € S?, we have ¢(g, g)(1 A ) = glg~! Aqug™! = 1Aqug™. From this
identity we have (i). To prove (ii), let ¥ be the homomorphism 5 — IsomS2
defined by ¥(g) = the action of ¢.(g,1) to S2. Then we have only to show that
K ers@{:l:l}. We show i € Ker¥. By direct calculation, we see #(i,1) fixes ],
e; and e . Then it follows that the restriction of ¢(i,1) to E_ is the identity,
and therefore i € Ker®. This completes the proof of (1).

(2) There are elements u; and u; of §° such that ¢ = w ey’ and
g2 = %26'u;}. Then ¢(q1,q2) = B(u1, u2)P(e™, %% )p(ur, u2) ™. We see (i)
#(e'® i) has a fixed point, iff 6 = 6, mod 2, and (ii) if 6, = 6, mod 2m,
then Fiz(¢(e'®, 1)) is the (unoriented) geodesic represented by *(i,i). Now
the assersion follows from (1).

Let L be a spherical Montesinos link and L be the corresponding geodesic
link in S%. Then each component of L is the fixed point of an isometry 7 of
oder 2 which is a lift of the covering involution 7 of the double branched cover
of (S%,L). Suppose 7 = ¢(q1,qz), then g and ¢, are elements of S? c S by
(3.3), and the geodesic Fiz(7) is represented by +(q1,92) € 53 x 52 by Lemma
5.2. Hence the geodesic link L is the union of geodesics which are represented
by the subset ' N (S? x §?) of §3 x S2 = G2(R*). This set can be obtained by
the argument of Section 3. To state the result, we need the following notations.
For a natural number m, let Cr = {w"j | 0 < r < m ~ 1}, where w = €™/,
S° denotes {k, —k}. For the octahedron O, we consider the decomposition of Eo
into the disjoint union of the subsets Eg ) (r = 0,1,2) as illustrated in Figure
5.1,

° |
K A (0)
E = {0}
/ ‘!) ® (o)
. > ESV) = (o)
-~ l g
.\0‘4"/. el2) (A}
/ A ©
\ o
r'd
Fig. 5.1

THEOREM 5.3. Let L be a spherical Montesinos link. If we orient L suilably
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and give L the induced orientation, then the oriented geodesic link L is ezpressed
as follows as subsets of S3 x S2.

Typel. {(wij,wij)|0<r<p—1}, where (w;wy) is (e2™(a+1)i/?, e?=(9-1)i/p)
or (exla+1)i/p ex(a-1)i/P) gocording as P is odd or even.

Type 2 (i). Cum x {C2qo U §°}.

Type 2 (ii). {Cam X C2a} U {wC3m x {k}}, where w = emi/2m

Type 3 (i). Cpm X Eo.

Type 3 (ii). {Crm xS W{wCmx ES JU{w?Cru x ED}, wherew = evi/m.

Type 4. Cm x {Eo U Vp}.

Type 5. Cm X E;.

Since I has many components, it seems complicated to draw I in general;
however, if L is of type 1, then we can do that by noting the following fact: Each
component K of L intersects S! and S! j at {+w[} and {+wjj} respectively,
where r is an integer. Figure 5.2 gives the geodesic link obtained from the 2-
bridge knot of type (5, 2).

Fig. 5.2
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6. The symmetry groups of spherical Montesinos links

In this section, we assume the orbifold uniformization theorem announced
by Thurston [T2] and prove the following.

TueoRreEM 6.1. Let L be a spherical Montesinos link. Then the symmetry
group Sym(S*, L) of L is isomorphic to my(IsomO(L)).

Proor. If the exterior E(L) of L is a Seifert fibred space (cf. Proposition
3.6), then we can calculate Sym(S®, L) by using [Jo, Proposition 25.3], and obtain
the desired result. So we assume E(L) is not a Seifert fibred space. Since E(L)
does not contain an essential torus by [BnS2, Theorem 9.12], L is a hyperbolic link
by the uniformization theorem of Thurston (cf. [MB}); that is, int E(L) admits a
complete hyperbolic structure of finite volume. By [Wa), Sym(S?, L) is isomor-
phic to the subgroup of Out(mwi(E(L))) consisting of those elements which pre-
serve the meridians. Since Out(m (E(L))) = Isom(int E(L)) by Mostow’s rigidity
theorem (cf. [T1]), Sym(S3, L) is realized as a finite group action S on (53, L).
Let M be the double cover of S® branched over L, and let & be the group consist-
ing of the lifts of elements of S to M. Then the covering involution 7 generates a
normal subgroup of & such that §/<r> 2 . Since 7 has a 1-dimensional fixed
point set, it follows from the orbifold uniformization theorem [T2], that Sis geo-
metric. Thus we may assume & C IsomM. Then we have S/<r> C IsomO(L).
Since S realizes the full symmetry group, we have S/<7> = IsomO(L). This
completes the proof.

Together with Theorem 4.1, this determines the symmetry groups of spherical
Montesinos linikks. In particular, it follows that Theorem 1.3 of [BiZ1] also holds
for spherical Montesinos links with 3 branches. That is;

THEOREM 6.2. For a spherical Montesinos link L = L(b; (a;, 1), (a2,8),
(a3,83)), there is an ezact sequence:

1 — Zz — Sym(8%,L) — D.(61/e1, B2/ 02, B3/as) — 1.

Here D (01/a1,B2/a2,B3/a3) denotes the group of those (dihedral) permuta-

tions of the components of the vector v = (B1/a1,B2/aa,83/as) € (Q/ Z)® which
preserve v.

AppuicATION 6.3. The knots 8,9 and 83¢ in the table of [Ro] are the spher-
ical Montesinos links L(0;(2,1),(3,1),(3,2)) and L(1;(2,1),(3,1), (3,2)) respec-
tively. Thus their symmetry groups are isomorphic to Z;; the generators are
realized by strong inversions of the knots. Thus it follows that 8,0 and 839 have
no free periods. This had been announced in [Sa] (cf. [KS]).
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Finally, we note that the symmetry groups of 2-bridge knots and links are
already determined without appealing to [T2]. For 2-bridge knots, it is reported
that Conway calculated the outer automorphism groups of their knot groups (see
[GLM]). In [BnS2}, Bonahon and Siebenmann determined the symmetry groups
of 2-bridge knots and links using the result of Schubert [Sb] that the 2-bridge
decompositions of them are unique up to isotopy. In it, the symmetry groups of
all algebraic links except Montesinos links with 3 branches are also determined.

[Biz1)
[Biz2]
(BnS1)
[BnS2

(Br)
(Bul]

[(Bu2)
[BuM]

[BuZ)

()
(D1]

(D2]
[GW]

[GLM]
(HK]

(¥]
(1

[Ks]
(M1]
{M3]

(MB]
[NR]

(o]
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