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For each cusped hyperbolic manifold M, there is a canonical way of decom-
posing M into ideal cells, which we call the canonical decomposition of M (see [EP,
W]). If we could determine the combinatorial structures of the canonical decom-
positions, then we can solve the homeomorphism problems of these manifolds and
can also calculate the mapping class groups. In fact, by virtue of the Mostow rigid-
ity theorem, two such manifolds of dimension greater than 2 are homeomorphic if
and only if their canonical decompositions have the same combinatorial structures,
and their mapping class groups are isomorphic to the combinatorial automorphism
groups of their canonical decompositions.

The canonical decompositions are the geometric duals of the Ford domains
(see (EP, Section 4]). In the pioneering works [R2, 3, 4], Riley constructed the Ford
domains of several knot complements and computed their symmetry groups. In the
lecture note of Thurston [Th], we can find beautiful constructions of the hyperbolic
structures on the complements of some series of symmetric links as the unions
of two ideal polyhedra; most of these decompositions are in fact canonical. These
constructions were generalized by Hatcher [H], where he found the Ford domains for
several arithmetic link complements (see also [AR1]). Jorgensen [Jr] constructed the
canonical decompositions of the once-punctured torus bundles over a circle; their
combinatorial structures are nicely explained in [FH].

The computer program SnapPea developed by the second-named author de-
termines the canonical decompositions of cusped hyperbolic 3-manifolds, and it
quickly determines whether two such manifolds are isometric and computes the
isometry groups (cf. (W]). In particular, SnapPea can decide whether two hyper-
bolic links are equivalent and can compute their symmetry groups (see [AHW, HW]
and compare with [KS]). For example, it quickly tells us that the mutually mutant
knots, the Kinoshita-Terasaka and the Conway knots, are inequivalent by showing
that the canonical decompositions of their complements consist of 12 and 14 ideal
tetrahedra respectively; further it shows that their symmetry groups are trivial. It
seems to be very difficult to obtain these results by appealing to algebraic invari-
ants. (See [BS] for nice topological proofs of these results.) Thus SnapPea is a magic
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wand for practical knot theorists. However, there remain the following problems:

(1) Though SnapPea gives us the combinatorial data of the canonical de-
compositions, we cannot see the canonical decompositions. How can we see and
understand them?

(2) SnapPea does not tell us explicit information concerning a family con-
sisting of infinitely many knots, e.g., the family of 2-bridge knots. How can we find
the canonical decompositions of their complements simultaneously?

This paper is a progress report of our attempt to study these problems. In
Chapter I, we recall the construction of the canonical decomposition through the
convex hull construction [EP, W] and show that the decompositions of the comple-
ments of certain family of unusually symmetric links given by [Th] are canonical.
In Chapter II, we construct certain topological ideal triangulations of the 2-bridge
link complements imitating Jérgensen’s construction described in [FH]. We con-
jecture that these are the canonical decompositions; in fact, we have checked this
conjecture for the 2-bridge links with < 10 crossings by using SnapPea. We also
determine the hyperbolicity equations for these decompositions and discuss their
relations to Riley’s work [R1] on parabolic representations of 2-bridge knot groups.
In Chapter III, we present a few conjectures related to the alternating links and
unknotting tunnels, which arose from our experiments.

Chapter I. Basic constructions

I.1. Convex hull construction

The Minkowski space E™! is the real vector space R™*+! with the inner product
(X,¥) = =Toyo + T1y1 + - -* + Znyn. The set {x € E™! | (x,x) = —1,79 > 0} forms
the Minkowski space model for the hyperbolic n-space H". The radial projection
from (—1,0,...,0) to the unit disk in the plane zo = 0 gives an isometry of the
Minkowski space model with the Poincaré disk model, and the radial projection
from the origin of E™! to the unit disk in the plane zo = 1 with center (1,0,... ,0)
gives an isometry of the Minkowski model with the Klein model.

Let M be a cusped hyperbolic manifold, and choose horospherical cross sec-
tions of the cusps bounding equal volumes. The preimages of the cusp cross sections
in the universal cover H" form an infinite set, say S, of horospheres, invariant un-
der the action of the covering transformation group. In the Minkowski space model,
each horosphere is the intersection of H™ with a hyperplane, say W, whose normal
vector is lightlike; we associate to each horosphere the unique lightlike vector v
such that (v,w) = —1 for all w € W. Let V be the set of points on the light cone
corresponding to the horospheres in S. Then V is invariant under the action of
the covering transformation group. Let C be the closed convex hull of V in E™!,
Then 8C is the union of a set of rays {tv |t > 1,v € V} on the light-cone and
a countable number of n-dimensional faces; each n-dimensional face is the convex
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hull of a finite number of points in V, and the set of the n-dimensional faces is
locally finite in the interior of the light-cone [EP, Lemma 3.3 and Proposition 3.5].
Projecting the faces of 8C radially from the origin of E™! onto H", we obtain an
ideal cell decomposition of H™. This is invariant under the covering transformation
group and projects down to an ideal cell decomposition of M. This decomposition
does not depend on the initial choice of cusp cross sections, and it is called the
canonical decomposition of M. The same construction works even if we choose cusp
cross sections bounding not necessarily equal volumes, and the resulting ideal cell
decomposition (which depends only on the ratios of the volumes bounded by the
chosen cusp cross sections) is called a Euclidean decomposition of M [EP].

Next, we give a condition for a given ideal cell decomposition D of M to be
canonical. Let o be an n-cell in D and & a lift of o to H". Let vy,..., vk be the
points in V corresponding to the ideal vertices of &, and let & be the convex hull of
{v1,...,vk}. Then the following condition is necessary for D to be canonical (see
[EP, Proposition 3.5]):

(L1.1) The affine hull A(F) of 7 is a Euclidean n-space in E™!; i.e., the
restriction of the Minkowski metric to A(G) is positive definite.

In the following, we assume (1.1.1) is satisfied and call @ the Euclidean cell
corresponding to 7. Let 7 be an (n — 1)-cell of D, and let ) and o2 be the n-cells
of D incident to 7. Let &, 72, and T, respectively, be lifts of oy, o2, and T, such
that &, N &, = T. Let &,, 3, and 7, respectively, be the Euclidean cells in En
corresponding to &), &2, and 7. Then we need the following condition:

(I.1.2) The dihedral angle between &, and &, is strictly convex.

This condition guarantees that the set of the n-cells of D is equal that of the
canonical decomposition of M, so D is a subdivision of the canonical decomposition.
Thus, to conclude that D is canonical, we further need the following condition:

(I.1.3) D is the coarsest ideal cell decompositions among the ideal cell de-
compositions of M having the same n-cells.

For a general method checking the condition (I.1.2) using the concept of the
“tilt”, please see [We, SW|. We present here a criterion that is useful for constructing
the canonical decompositions of unusually symmetric hyperbolic manifolds. Sup-
pose (I.1.1) is satisfied. Then we can define the center o(g) of 7 as follows: Let p
be the unit normal to A(%) in E™!; ie., (p,p) = —1 and {p,x — y) = 0 for any
X,y € A(F). Then o(7) = p € H". It should be noted that o() is not necessarily
contained in &. If we choose a coordinate of E™! so that & lies in a horizontal
plane zo = constant, then p = (1,0,...,0). From this fact, we can see that o(5)
is characterized by the property that its hyperbolic distance from the horospheres
corresponding to the light-like vectors vy,..., v, are equal. Here v,,... , v are as
in the previous paragraph. This means that o(7) corresponds to a vertex of the
Ford domain in case D is the canonical decomposition [EP, Section 4}.
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ProprosiTION 1.1.4. Suppose D satisfies the conditions (1.1.1) and (I.1.3), and
suppose o(7) lies in the interior of & for any n-cell o of D. Then D is the canonical
decomposition of M.

Proor. Though this immediately follows from [SW, Theorem 3.1], we give a
direct proof here. Let 3,, &2, and 7 be as in (I.1.2). After a coordinate change we
may assume 7, lies in the horizontal plane zq = sg, where 3¢ is a positive constant.
By the assumption, we see 5, intersects the zp-axis; i.e. (0,0, ... ,0) € &,. Suppose
(1.1.2) is not satisfied. Then there is a vertex of 7, whose zo-coordinate is less than
or equal to sp. Perform a further coordinate change by a rotation about the xo-
axis, so that &; and &», respectively, lies in the half spaces zo/z; > sp/s1 and
Zo/%; < so/s) for some positive number s, such that s, < so. (see Figure I.1.1).

2o 4 Zo/T=2s0/s1 (0< 381 < s0)

AN )| (51 <5< s9)

»

Figure [.1.1

Then there is a positive number s (s < s < sp) such that the light-like vec-
tor (s,s,0,...,0) lies in the affine hull, say A,, of 2. Let (Zo,t1,... ,tn) be the
coordinate of o(,). Since (so,51,0,...,0) and (s,s,0,...,0) lies in A2, we have
—tosg+tisy = —tgs+t1s. Hence ty/tg = (51 —8) /(s —3) <0 < s1/80. This implies
that o(c;) & &2, a contradiction.

ReEMARK 1.1.5. It should be noted that the converse to the above proposi-
tion does not hold. In fact, the canonical decompositions of almost all hyperbolic
knots up to 10 crossings (see [AHW]) do not satisfy the assumption of the above
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proposition.

I.2. Some symmetric links

First, we describe the construction of the hyperbolic structures of certain fam-
ily of link complements due to Thurston [Th, Chapter 6]. To do this, we recall the
construction of alternating link complements due to {Me, Ta2, AR1, 2, P} following
the explanation by [ARL, 2. Let K be a prime unsplittable alternating link, and
denote a reduced alternating diagram representing K by the same symbol K. We
regard the diagram K as a 4-valent graph on the boundary of the 3-ball B3. Then
it determines a combinatorial polyhedron, which we denote by the symbol Bg.
Next, two-color the regions of 3By checker-board fashion using white and black as
illustrated in Figure 1.2.1, and assign ‘+' and ‘-’ to the white and black regions
respectively.

Figure 1.2.1

Denote the resulting combinatorial polyhedron by Bj};. We denote the combinatorial

polyhedron obtained from B}, by reversing the colors and signs by By. Each face
F; of B,i{ is a combinatorial n,-gon. with sign allocation o;, and we identify F;
with the corresponding face F, of Bf; by a rotation of o, 2%, where ‘+’ sign denotes
clockwise. Denote the resulting topological space by Mk, and let My denote Mg
with deleted vertices. Then the following holds (see [AR1, Theorem 2.1]):

Proposition 1.2.1. My is canonically homeomorphic to S — K. Each edge
of Mk corresponds to a crossing of the diagram K.

ExaMpLE 1.2.2. For each positive integer n, let K(n) be the link represented
by the braid (¢,05 ')™ (see Figure 1.2.2 (a)). This link is considered by [Th, 6.8.11]
and is the simplest alternating link obtained from the “basic polyhedron” (2 x n)*
(cf. [C]). This also belongs to the family of knots considered by {KS, Example 1.11];
in fact, K(n) = Sx(10,3) in its notation. If n > 2, S® — K(n) is obtained by gluing
two combinatorial polyhedra as illustrated in Figure .2.2 (b) (cf. [Th, 6.8.11}).
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(®)

Figure 1.2.2

ExampLE 1.2.3. For each positive integer n, let C(n) be the n-component
chain (see Figure [.2.3 (a)). If n > 3, §% —C(n) is obtained from the data illustrated
in Figure 1.2.3 (b). By shrinking each bigon to an edge, we obtain Figure 1.2.3 (c)
(cf. [Th, 6.8.1)).
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(a)

(b) (©)

Figure 1.2.3

ExampLE 1.2.4. For each even integer n > 4, let C'(n) be the link as il-
lustrated in Figure [.2.4 (a). Then we see S3 — C’(n) is obtained by gluing two
combinatorial polyhedra as illustrated in Figure I.2.4 (c) (cf. [Th, 6.8.5]).

Let K be one of the links K(n), C(n), and C’'(n) with n > 3. In the follow-
ing, we construct the complete hyperbolic structure on $® — K and determine its
canonical decomposition. Let P(n) be the ideal hyperbolic polyhedra as illustrated
in Figure 1.2.5 (a) or (b) according as K = K(n) or K € {C(n),C’'(n)}. Here we
use the Klein model, and each face is regular with respect to both the hyperbolic
metric and the Euclidean metric.
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(a)

Figure [.2.4

(@ (b)
Figure 1.2.5
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By Examples 1.2.2-1.2.4, S% — K is obtained from two copies of P(n) by gluing
their faces suitably. Since each face is regular, the gluing maps can be chosen to
be hyperbolic isometries. Choose 2n horospheres around the vertices of P(n) of the
same Euclidean magnitudes in the Klein model. Then the gluing isometries respect
the horospherical cross sections. Thus to see that these ideal polyhedra together
with the gluing isometries to give the complete hyperbolic structure of the link
complement, we have only to check that the total angle around each identified edge
is 27. But, this can be done by checking that the link of each edge in the cusp
cross section is as illustrated in Figure 1.2.6 (1) or (b) according as K = K(n) or
K € {C(n),C’(n)}. (See [Th, Chapter 6.8].)

T

K/
RN\

£

(a) (b)

Figure [.2.6

Moreover, we obtain the following:

ProposiTion 1.2.5. Suppose K = K(n, or K = C(n). Then;

(1) the above decomposition of S3— K into two ideal polyhedra is the canon-
ical decomposition, and

(2) Isom(S® - K) is isomorphic to O » Z2, Dan, or Dn x Z2 according as K
is K(3), K(n) (n > 4), or C(n). Here O derstes the octahedral group of order 24,
and D,, denotes the dihedral group of order 2r..

Proof. (1) follows from Proposition 1.1.4 together with the facts that (i)
the cusp cross sections determined by the pres=ing horospherical cross sections of
53 - K bound the same hyperbolic volumes =zud that (ii) the (Euclidean) center of
P(n) has the same hyperbolic distances frorr. ~he horospherical cross sections.
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(2) By (1), Isom($® - K) is isomorphic to the combinatorial automorphism
group of the decomposition, and it is easy to see that this group is isomorphic to
the group in the proposition.

REMARK 1.2.6. (1) The isometry group of the Borromean rings complement
had been calculated by Riley [R3, Section 3]. One can also find the calculation of the
symmetry group of the Borromean rings in {BS, Theorem 17.14] and (BZ, Example
2.2] by different methods.

(2) Isom(S® — C(n)) had been calculated by Neumann-Reid (NR, Theorem
5.1 (iv)] by a different method.

Suppose K = C’(n). Then S* — K shares the same fundamental regions with
S3 - C(n) (cf. [Wi]}, but the condition (i) in the above proof does not hold. So
the above decomposition of §3 — K is not canonical, however we can also see that
it is a Euclidean decomposition. This implies that the subgroup of Isom(S* — K)
preserving the cusp around the “central” component (i.e., the component whose
linking number with any other component is n) is isomorphic to Da,,. From this fact,
we can see that the symmetry group of K is isomorphic to Dj,,. By using SnapPea,
we can see that Isom(S® — K) & D,, and that the canonical decomposition of
S% — K is a subdivision of the preceding decomposition. In fact, it is obtained by
subdividing each P(n) as illustrated in Figure [.2.7 (a), and its edges can be seen

as illustrated in Figure 1.2.7 (b).
/i\
el

(a) ®)
Figure 1.2.7
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To close this section, we note the following proposition, which explains why
the canonical decompositions given in this section are not ideal triangulations:

PROPOSITION [.2.7. Suppose a cusped hyperbolic 3-manifold M admits an
isometry f such that the period of f is greater than 2 and that Fix(f) contains
a circle component. Then the canonical decomposition D of M is not an ideal tri-
angulation.

Proor. Let F be a circle component of Fix(f). Since the 1-skeleton of D is a
disjoint union of infinite geodesics, F is not contained in it. Suppose F' is contained
in the 2-skeleton of D. Then there is a 2-cell, say 7, of D, such that F N int(7)
contains a 1-dimensional component. Since f preserves D, we have f(r) = 7. So,
the restriction of f2 to 7 is the identity. Since f2 is orientation-preserving, we have
f? = 1, a contradiction. Hence, F is not contained in the 2-skeleton of D. This
implies that F intersects the interior of some 3-cell, say o, of D. Since f preserves
D, we see f(o) = 0. By the assumption, the restriction of f to o has period greater
than 2. Suppose ¢ is an ideal simplex. Then, by the above fact and the fact that f is
orientation-preserving, we see that f acts on the set of ideal vertices of ¢ as a cyclic
permutation of order 3. (Note that an isometry of an ideal simplex is determined by
its action on the set of vertices.) This implies that ¢ is a regular ideal simplex, and
int(o) N Fix(f) is a half line passing through an ideal vertex of ¢. This contradicts
the fact that F is a circle. Hence o is not an ideal simplex, so D is not an ideal
triangulation.

Chapter II. Presumably canonical decompositions of 2-bridge link
complements

II.1. Conway sphere and the diagram of SL(2,Z)

Let T be the group of isometries of R? generated by w-rotations about the
points of the integral lattice Z2. The pair (R?,Z?)/T is denoted by (S2, P) and
is called the Conway sphere. Then the following is well-known (cf. [HT], [BS,
Chapter 9]).

(i) The isotopy classes of circles in S — P separating P into pairs are in
one-to-one correspondence with QU {1/0}.

(i) The isotopy classes of arcs in S® — P joining one given puncture to any
of the other three punctures are in one-to-one correspondence with Q U {1/0}.

In either case, a representative of the isotopy class corresponding to b/a €
QU {1/0} is the projection of a line in R? of slope b/a (the line being disjoint from
Z? in (i) and intersecting Z? in (ii)). The number b/a € QU {1/0} associated to a
circle or an arc in (i) and (ii) is called its slope.

b

For each matrix A = d

in GL(2,Z), consider the linear automorphism
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of (R? Z?) defined by A(z,y) = (az + by,cz + dy). Since A is T-equivariant, it
mduces an automorphism of (52, P), which we denote by the same symbol A. Let

A be the transformation on Qu {1/0} defined by A(s) 51‘—‘:;1 Then A sends arcs

and loops in (S2, P) of slope s to those of slope of A(s). Note that A extends to an
automorphism of the hyperbolic plane H? = {z € C | Im(z) > 0} and the circle at
infinity 8H? = Ru {1/0} by the following rule:

c+dz

paray ifdetAd =1,
A(z) = i

€ rdetd=—1.

a+ bz

Consider the ideal triangle in H? spanned by the vertices {0/1,1/0,1/1}. Then
the translates of this ideal triangle by the action of SL(2,Z) forms a tessellation
of HZ. This is called the diagram of PSL(2,Z). Each ideal triangle T in the dia-
gram of PSL(2,Z) determines a '-equivariant triangulation Z(T) of (R?,Z?) and
a triangulation A(T) of (5%, P) as follows. By definition, the vertex set of T is
of the form {c/a,d/b, (c + d)/(a +b)}, where a, b, ¢, and d are integers such that
g.cd.{a,c} = g.cd.{b,d} = g.cd.{a+b,c+d} = 1. Then A(T) is the triangulation
of (R?,Z?) spanned by the three integral vectors (a,c), (b,d), and (a+b,c+d), and
A(T) is the quotient of A(T) (see Figure I1.1.1).

0/1

/o 170

0/1

A(T) with T = < 1/0,0/1, 1/1 > AT
Figure [I.1.1

It should be noted that A(A(T)) = A(A(T)) and A(A(T)) = A(A(T)) for any
matrix A in GL(2,Z) and for any ideal triangle T in the diagram of SL(2, Z).

II.2. Construction of the ideal triangulation
First, we recall the definitions of a trivial tangle and a rational tangle. A trivial
tangle is a pair (B3, t), where B is a 3-ball and ¢ is a union of two arcs in 83 which
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is parallel to a union of two mutually disjoint arcs in 8B3. A meridian m of (B3,t)
is a simple loop on B3 —t which bounds a disk in B3 separating the components
of t (see Figure I1.2.1). A rational tangle is a trivial tangle (B3,t) endowed with a
homeomorphism from 8( B3, t) to the Conway sphere (S2, P). The slope of a rational
tangle is defined to be the slope of its meridian.

Let K(p, q) be the 2-bridge link of type (p, g). Then it is obtained as the “sum”
of the rational tangles of slopes 1/0 and ¢/p; i.e., (53, K(p, q)) is obtained from the
rational tangles of slopes 1/0 and g/p by identifying their boundaries through the
identity map. (Note that each of the boundaries of the rational tangles are identified
with the Conway sphere, so the term “identity map” has a well-defined meaning.)

(8%

Figure I1.2.1

In the following, we consider only hyperbolic 2-bridge links; i.e., we exclude
(2, n)-torus links from our consideration. So we assume q # %1 (mod p). By re-
versing the orientations if necessary, we may assume further 1 < q < p/2. Then q/p
has the continued fraction expansion

q

_=[alva2!~" ,0.“]= 1 ’

’ a1+ ———7

02+"'+_
an

such that n > 2,a; > 0(1 € i € n), a; 2 2 and a, 2 2. Then we denote
K(p,q) also by Klay,...,a,). Put cx = Zf=la,~ (0 €k <n)and ¢c = ¢, Let
S = {T1,T>,...,Tc} be the sequence of ideal triangles in the diagram of SL(2,Z)
in H? as illustrated in Figure 11.2.2.

Let {r = ry,ra,r3} [resp. {r’ = r{,75,73}] be the vertices of the ideal simplex
T [resp. T.-,] satisfying the following conditions (see Figure 11.2.3).

(i) The edge 7273 [resp. r5rj] is the common edge of T; and Ty [resp. T,
and T}
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(i) The edge 7175 [resp. m] is the common edge of T3 and T3 [resp. To._,
and Tc_'z].

ay as
’—-—-A——\’—'—-’R
0 11 172 .. 1/ay fay, a2, as) (a1, ,aa_s]

0/1 e (G1r-.. 1]

——————

az Gn

Figure 11.2.2

Figure I11.2.3

Note that the triangles {T5,... ,T.._;} have a common vertex rem, if and only
if one of the following conditions holds. (See Figure 11.2.4 (a), (b) and (c)).

(II2.1) n = 3 and a; = a3 = 2. Then there is a unique common vertex
Ty = 7';

(IL2.2) n =2 and precisely one of a; and a; is equal to 2. Then there is a
unique common vertex, and it is equal to 7y = r§ or 3 = 71 according as a; = 2 or
Qs = 2.

(II.2.3) n=2anda; = a; = 2. Then there are two common vertices ry=r14
and 73 = r{.

If one of the above conditions holds, we say that q/p is ezceptional, and the
rational numbers associated to the common vertices are referred as the common
slopes. [There is a common vertex in case n = 1 too, however this does not occur
by our assumption that ¢ # 1 (mod p).]
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Figure [1.2.4
1/0 1/1 12
T Tin
0/1

0/1

n
1

on

Figure I1.2.5
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For each i (2 < i < ¢—1), consider the -equivariant trlangulablon A; A(T )
of (R?, Z?). Since T; and T;4+1 have two vemces in common, A. and A,.H have
two edge slopes in common. If we superimpose A,H upon A., we see an array of
tetrahedra, whose bottom faces form A and whose top faces form A,.,.l (see Figure
I1.2.5). We denote this array of tetrahedra by D;.

Consider 'D fori=2,3,...,c-2, and stack them up in order. Then we obtain
a set of layers of tetrahedra, whose bottom faces form 52 and whose top faces form
Ac_l By deleting the vertlces Z? from the above set of layers of tetrahedra, we
obtain a decomposition D of (R? — Z2)x[ into ideal tetrahedra. Here, (R2,Z2%)x [
is the pair of topological spaces defined as follows: If ¢/p is not exceptional, then
(R?,Z%)xI = (R? 2?) x I. Otherwise, (R?,Z2)x[ = {(R?,Z?) x I}/~, where ~
collapses x x I to a point for each point z on the lines in R? of the common slopes
which intersect Z2.

Let I also denote the group of homeomorphisms of (R?, Z2)x I generated by
m-rotations about px I, where p runs over Z2. Put (S, P)x[ = {(R2 Z?)xI}/T.
Then I preserves the decomposition D, and therefore its quotient D determines an
ideal triangulation of (S2 — P)x1I. The ideal triangulations of the faces (S* — P)x0
and (S? — P)x1 induced by D are given by the quotients A, = A/T and A._; =
Acy /T respectively.

Next, we define certain equivalence relations on A, and on A._;. To do this,
remember the vertex r = r; of Th [resp the vertex r’ = r{ of T.—y], and let ~
[resp. ~.] be the equivalence relation on A; [resp. Ac_ll generated by the followmg
elementary relation: Let ¥ and 7 be simplices of A, [resp. AC_I] such that 7N 7
is an edge of slope r [resp. '], and let f be a linear homeomorphism from 7 to
7 which is the identity on the common edge; then T ~, f(z) [resp. = ~ f(z)).
Since these relations are I-equivariant, they induce equivalence relations on A»
and A._;, which we denote by the same symbols ~, and ~,.. Let D be the ideal
simplicial complex obtained from D by performing the identifications induced by
the relations ~, and ~, on its faces Ay and A._; respectively. If necessary, we
denote D by D(p,q) or Dlay,... ,a,]. We have the following theorem:

Tueorem [1.2.4. D = D(p,q) gives an ideal triangulation of S* — K(p, q).
) To prove this theorem, we need the following lemma:

LEMMA 11.2.5. Let T be an ideal simplex in the diagram of SL(2,Z) with
vertices {s1,s2,53}. Let T* be the ideal simplez in the diagram of SL(2,Z) which
has the vertices {s2,53} in common with T, and let s{ be the remaining verter of
T*. Consider the space (S?, P) x I = {(R?,Z?) x I'}/T and the triangulation A(T)
of its face (S%, P) x 0. Let ~,, be the equivalence relation on (52, P) x 0 determined
by the slope s, as in the above. Put (B,k) = {(S%,P) x [}/ ~,,. Then (B,k) is a
rational tangle of slope s3; i.e., (B, k) is a trivial tangle, and the image of a line on
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R? x 1 of slope s} disjoint from Z? forms a meridian of (B, k).

Proor. We may suppose s; = 1/0, 52 = 0/1, s3 = 1/1, and s = 1/2. Figure
I1.2.6 describes the equivalence relation ~,,, and Figure I1.2.7 shows that (B,k) is
a trivial tangle. Its meridian is depicted in Figure 11.2.8, and we see that its slope
is 1/2 =s".

m

a=1/0 T T* 1/2=48 C

1/0

0/

Figure I1.2.6

dentify

Figure 11.2.7
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4

Lo d
—
—

slope 172

Figure [1.2.8

ReMaRrk I1.2.6. For i = 1,2,3, let v; be the union of two arcs on (S2, P)
which is the image of the union of the lines of slope s; in R? that intersect Z>. Let
¥ : (S%,P) x I — (B, k) be the projection. Then we have the following:

(1) ¥(m x1I)is a union of two once-pinched disks, such that (v, x )Nk =
V(971 x I) and ¥(v, x I)NEB = ¥(7; x 1) (see Figure I1.2.9 (a)).

(2) Suppose i =2 or 3. Then ¥(v; x I) is a disk, such that ¥(v; x [)Nk =
U(0vi x I) and ¥(v; x [)NIB = ¥(v; x 1) (see Figure 11.2.9 (b)).

@ ¥

Figure 11.2.9

We now prove Theorem [1.2.4. Let (M,K) be the space obtained from
(§?, P)x{ by performing the identifications on its faces (52, P) x 0 and (§2, P) x 1
induced by the relations ~, and ~, respectively. Then D gives an ideal triangula-
tion of M — K. Thus we have only to show M — K = S% — K (p, q).

Case 1. q/p is not exceptional. For i = 0, 1, let B; be the closed up compo-
nent of M ~ (§2 x {1/2}) containing the image of 52 x {i}, and put k; = B; N K.
Then by Lemma I1.2.5, (Bo, ko) and (B, k1), respectively, are the rational tangles
of slopes 1/0 and ¢/p. Hence (M, K) is homeomorphic to (S3, K(p,q)), and we
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obtain the desired result.

CaseE 2. ¢/pisexceptional. Let (z’{:f K) be the space obtained from (S2, P) x
I (instead of (S%, P)xI) by _performing the identification induced by ~r and ~,
and let ® : (52 PyxI — (M K) be the projection. Then the previous argument
shows (1\/!, K) = (53, K(p,q)). Let v be the image, in (52, P), of the union of the
lines in R? of the common slopes that intersect Z*. By the construction, we see
(M,K) = (M, K)/~, where ~ collapses ¥(z x I} to a point for each z € v. We
have only to show that <~ does not change the topological type of M-K. But, this
follows from the following facts, which can be proved by using Remark I1.2.6.

(1) Suppose (I1.2.1) is satisfied. Then ®(~y x I) is a disjoint union of two twice
pinched disks, such that $(y x [) N K = ®(8y x I}.

(2) Suppose (I1.2.2) is satisfied. Then ®(y x I) is a pinched disk, such that
S(yxI)NK=®@Byx1I).

(3) Suppose (I1.2.3) is satisfied. Then &( x I) is a union of two twice pinched
disks with mutually disjoint interiors, such that ®(y x I) N K = ®(0v x I).

REMARK [1.2.7. Ifn =1 (i.e., ¢ = 1), then <I>('yx I) is an annulus or a Mabius
band. So, (M K)/~ is not homeomorphic to M-K.

11.3. Isomorphism problem and the automorphism group of D

In this section, we solve the isomorphism problem of the combinatorial com-
plexes D(p,q)’s and determine the automorphism group of D(p, g). The solutions
for the case where p is odd are easily obtained if we use the following facts: (i) The
2-bridge knots and links are classified by Schubert [Sc}, (ii) the symmetry groups of
the 2-bridge knots and links are determined by Bonahon and Siebenmann [BS] (cf.
[Sal, 2]), and (iii} (2-bridge) knots are determined by their complements (see [Tal,
GL]). On the other hand, in this section, we solve these problems without appealing
to these facts. This is because the authors do not know whether a 2-bridge link is
determined by its complement among the 2-bridge links; furthermore, if it were
proved that the triangulation D is actually the canonical one, then our solution
gives an affirmative answer to this question and an alternative proof to the above
facts. By the way, we give intuitive pictures of the decomposition D (Figure I1.3.3).

First, we prove the following:

THeOREM I1.3.1. The sequence of positive integers, ay,az2,... ,@n, Up to in-
version, is cenonically determined by Dlay,a2,... ,an]. That is, two complezes
Dlai, ... ,an] and Dla},... ,a,,] are are combinatorially equivalent, if and only if
(@1,..-,an) is equal to (a},...,al,) up to inversion. Hence, D(p,q) and D(¢',¢’)
are combinatorially equivalent, if and only if p = p’ and either ¢ = ¢’ (mod p) or
qq’ = *1 (mod p).
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PROOF. We number the vertices of & — {T}, T..} as illustrated in Figure I1.3.1.

1 2 -1 €ra2 Ca-2+l cao2+2 cqo1—-1 c=c,

e e+l o+2 cz~1 [ Cn=t Cp-t+l ¢c=2 c~1

Figure 11.3.1

We denote the i-th vertex by s(i). Then each s(i) {1 < i £ ¢) is characterized by
the following properties:

(1) If1 < i< c—2, then s(i) is the vertex of Tiy; which is not a vertex of
any Tj ( 2 i +2).

(2) s(c—1) and s(c) are vertices of T._,, and s(c— 1) is incident on only two
triangles of <, whereas s(c) is incident on a,, + 1 triangles of Q.

Let (1) (1 €1 < c) be the union of the edges of D which are the images of
the edges of D of slope s(i). Let 7(i) (2 £1 < ¢~ 1) be the union of the faces of D
which are the images of the faces of D determined by A;. Let o(i) 2 <i<c— 2)
be the union of the tetrahedra of D which are the images of the tetrahedra of D;.
Then we see

(1) Each 7(¢) (3 £ ¢ £ ¢ — 2) consists of four faces, and each of r(2) and
7(c — 1) consists of two faces.

(2) Each o(i) (2 <i < e—2) consists of two tetrahedra. Foreach i (2<i <
¢ — 3), each tetrahedron of o(i) intersects each tetrahedron of o(i + 1) in a face
belonging to 7(i + 1). Each tetrahetron of o(2) [resp. o(c — 2)} intersects the other
tetrahedron of o(2) [resp. o(c — 2)] in the faces belonging to 7(2) [resp. T(c — 1)].

c(2) c(3) o(4) o(c-3) olc-2)
1) /\ \/ we-b
B ) 1(c-2)

Figure 11.3.2
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Let  be the 1-skeleton of the dual complex of D. Then, by the above facts,
we see (2 is as illustrated in Figure 11.3.2.

From the shape of (2, we see the following:

(1) The union 7(2) U T(c — 1) is characteristic in D; i.e., any combinatorial
automorphism of D preserves 7(2) U 7(c — 1).

(2) The order 7(2),7(3),...,7(c—1), and the order a(2),0(3),... ,0(c-2),
up to inversion, are canonically determined by D.

For the edge set, we can see the following:

(1) &(1) =¢&(cy) and e(c — 1) = e(c); each of them consists of one edge.

(2) Foreachi¢ {1,c1,c— 1,c}, (i) consists of two edges.

(3) For each i ¢ {1,c ~ 1,c}, &(i) is characterized as the set of the edges
which are incident on 7(i + 1) and are not incident on 7(j) for any j > i + 2. Note
that 7(1) is characterized as 7(c1), and 7(c — 1) = 7(c) is characterized as the set
of the remaining edges.

(4) For each i (1 < i< c), let d(i) be the number of dihedral angles around
an edge of £(#). Then it does not depend on the choice of an edge in £(i) and is
given as follows.

3 ifi=2+#¢,

4 ifi¢{2,c~1}and ¢+ 1 < i < epyy — 1 for some k,
d(i)=1¢ d4a; +2 ifi=1or e,

2a,+2 ifi=c; forsomek (2<i<n-1),

dan+2 ifi=c-1lorec

By (3), we see that the order £(2),&(3),... ,e{c~1), up to inversion, is canoni-
cally determined by D. Thus, together with (4), we see the sequence a;,ds,... , Gy,
up to inversion, is canonically determined by D. This completes the proof of the
first half of Theorem I1.3.1. The latter half follows from Lemma I1.3.3.

In the link diagram, the edges and the faces of D can be seen as illustrated in
Figure [1.3.3.

Let Aut(D) be the group of the combinatorial automorphisms of the ideal
simplicial complex D, and let Aut*(D) be the subgroup of Aut(D) consisting of
the orientation-preserving automorphisms.

THEOREM I1.3.2.

2, ®Z, if ¢* #1 (mod p),

Dy if either p is odd and ¢*> = 1 (mod p),
or p is even and ¢° = p + 1 (mod 2p),

Z2®Z2®Z; ifpiseven and g =1 (mod 2p).

Autt(D) =
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Aut™(D) ifq* # —1 (mod p),

Aut(D) = { D, if ¢* = -1 (mod p).

To prove this theorem, we need the following lemma. Though this is probably
well-known, we give a proof at the end of this section.

K[4,3,2,3]

11

€(1) = £(4) consists of one edge.
€(11) = ¢(12) consists of one edge.
€(i) consists of two edges (i # 1,4,11,12).

Two of the four faces in 7(3):

T
2
2 3

Figure 11.3.3
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LEmMma I1.3.3.
(1) The following are equivalent:
(a) ¢ = -1 (mod p).
(b) n is even and the sequence (ai,...,a.) is symmetric (i.e, a; =
Ansl—~i (1 S 2 S n))
(2) The following are equivalent:
(a) Either (i) p is odd andq® = 1 (mod p), or (ii) p is even and g° = p+1
(mod 2p).
(b) n is odd, a(ny1y/2 is 0dd, and (ay,... ,a,) is symmetric.
(3) The following are equivalent:
(a) p is even and q¢*> = 1 (mod 2p).
(b) n is odd, a(ny1)2 is even, and (a1, ... ,a,) is symmetric.

Before proving Theorem I1.3.2, we describe the elements. of Aut(D). Let X
and ¥ be the homeomorphisms of (R?, Z?) x I defined by

X(z.y)t) = (z + Ly)t), F((=).t) = (5 + 1),¢).

Then both X and ¥ are I‘-equwanant and they are compatible with the relations
Aoy ~p, and ~,.. Hence X and ¥ induce orientation-preserving automorphisms of
D, which we denote by X and Y respectively. We can easily see the following.

(1) The group generated by X and Y is isomorphic to Z, ® Z,.

(2) Foreachi (2 <i<c-2),both X and Y preserve o(i). The group (X,Y)
interchanges the tetrahedra of o(i).

Suppose ¢> = *1 (mod p). Then, by Lemma 11.3.3, the diagram Q has the
2-fold symmetry as illustrated in Figure 11.3.4. This symmetry is realized by the
matrix J defined by J = A~'JpA, where A and Jp are the elements of GL(2,Z)
which satisfy the following conditions. [In the following, {s;} denote the vertices of
S as illustrated in Figure 11.3.4.]

Case 1. The condition in Lemma I1.3.3 (1) is satisfied. Then A(s;) = 1 /0,
A(s2) = 0/1, and Jp = (‘1’ '01).

Case 2. The condition in Lemma I1.3.3 (2) is satisfied. Then A(s,) = 1/1,
fT(Sg) =1/0, 2(33) =0/1, and Jp = ([1) (1))

Case 3. The condition in Lemma I11.3.3 (3) is satisfied. Then .:f(sl) = 1/0,
;{(82) = 0/1, and Jo = (_01 ?)
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5

n:even

n : odd
a(n41)/2 : odd

n : odd
(n+1)/2 ¢ even

Figure 11.3.4

Let Z be the homeomorphism of (R2,Z2) x I defined by Z((z,y),t) = (J(z,y),
1-t). Then Zis [-equivariant and is compatible with the relations ~, ~,. and ~.
Hence Z induces an automorphism of D, which we denote by Z. We can see the
following:

(1) Z is orientation-reversing in Case 1, and it is orientation-preserving in
Cases 2 and 3.

(2) The subgroup of Aut(D) generated by X, Y, and Z is isomorphic to D,
in Cases 1 and 2. It is isomorphic to Z; ® Z; ® Z, in Case 3.

We now prove Theorem I1.3.2. Let f be an element of Aut(D). By the proof
of Theorem 3.1, f sends 7(2) to either 7(2) or 7(c — 1). Suppose f(7(2)) = 7(2).
Then f(o(3)) = o(3). By composing an element of {X,Y) if necessary, we may
suppose f preserves each of the tetrahedra of ¢(2) and each of the faces of 7(2).
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Note that the set of the edges of the faces 7(2) is equal to the union of £(2) = &(a;)
and £(3). From the proof of Theorem I1.3.1, we see no automorphism of D can
send £(2) to ¢(3). By using this fact, we can see that f is the identity on 7(2) and
a(2), so f is the identity. Hence, the original f is an element of (X,Y). Suppose
f(7(2)) = 7(c—1). Then by the proof of Theorem I1.3.1, the sequence a1,az, ... ,an
is symmetric. Hence the automorphism Z exists. By composing Z, we can reduce
this case to the case f(7(2)) = 7(2). This completes the proof of Theorem I1.3.2.

At the end of this section we give a proof of Lemma I1.3.3 following the ar-
guments of [HK, Lemma 2] and [Si]. To do this, we need the following sublemma,
which can be easily proved by induction.

SusLemMA 11.3.4. Letay,... ,a, be a sequence of positive integers such that
a) 2 2 and a, > 2, and put

p ry_(a 1\fax 1) fan 1
g s/ \1 0 1 0 1 0/°
Then the following holds:
(1) ps—gr=(-1)"
(2) p/22g2s,p/2272s.
(3) q/p = [01,02,. .. yan]y T/P = [anra‘n—l’ .ee 1al]: S/T’ = [01,02.. . 1aﬂ—'l]!
and 3/q = [@n,an-1,...,02).
Conversely, let p and q be positive integers such that p/2 > q. Then there
are unique positive integers r and s satisfying the inequalities in (2) such that

P can be ezpressed in a unique way as a

product (“1‘ (1)) (“12 (1,)(“1" (1,),whmalzz, a21(2<i<n—1),

and ap, > 2

ps — qr = 1. Further, the matriz

Proor orF LEmma I1.3.3. First, we prove that Condition (b) implies Con-
dition (a) in each of the three pairs. Suppose a; = an41-; (1 € i < n). Then,
by the above sublemma, we see 5 :) = (f Z . Hence, we have ¢ = s. Since
ps—gr = (—1)", we have ¢* = (—1)**! +ps. Thus we obtain the desired implication
in (1) from this identity where n is even. To prove the implications in (2) and (3),
assume 7 is odd, and put a* = a(,4,)/2- Then we obtain the desired implications
by the following claim.

CramM. Ifp is odd, then a* =1 (mod 2). If p is even, then a* = s (mod 2).
4 ﬁ ay 1 . a(n_‘)/g 1
Proor ofF CraiM Put - 6) ( 1 0) ( 1 YE Then

(lt; :) = (: g) ((Ii al‘) (g ‘;) . Hence, We have (i) p = a*a® + 2af8 =
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a*a’® (mod 2) and (ii) s = a*v% + 26y = a*y? (mod 2). So, if p is odd, then a* =
(mod 2) by (i). Suppose p is even. If a* = 0 (mod 2), then s = 0 (mod 2) by (ii).
Ifa® =1 (mod 2), then @ =0 (mod 2) by (i). Since aé ~ Fy = +1, we have y = 1
(mod 2). Hence s =1 (mod 2). This completes the proof of the Claim.

Next, we prove that Condition (a) implies Condition (b) in each of the three
pairs. Suppose ¢° = ¢ (mod p), where ¢ = £1. Let s be the integer such that
ps —¢* = ¢ Since p > 2g, we see 1 < s < q. Hence by Sublemma I1.3.4, we

P q _ a 1 . Qn 1 .. .
see (q s) = ( 1 0) ( 1 0) , Where a,,... ,a, are positive integers such

thata); > 2,a; 21(2<i<n-1), and a, > 2. By taking the transpose, we obtain

P g\_fan 1) fa 1 . . .
(q s) = ( 1 0) (1 0).By the uniqueness of the expansion, we obtain

@; = @n41-;. From this fact we obtain the desired implications.

I1.4. The induced cusp triangulation

Identlfy the strip Uf; T; with the rectangle I x I in R?, so that the edges 7373
and r5r}, respectively, correspond to 0 x I and 1 x I. This gives a triangulation
of I x I. Let G be the group of translations of R? generated by the reflection
across R x n (n € Z) and w-rotations about the vertices r; and r}. Then I x [ is
a fundamental region for G. Thus the above triangulation of I x I determines a
G-invariant triangulation of R?, which we denote by L'. Let £ be the G-invariant
triangulation of R? obtained from £’ by deleting the interiors of the translates of
the edges 772 and m (See Figure I1.4.1, where the first coordinate is magnified
by the scale 2. See also Figure [[.4.2, which is obtained by using SnapPea.) Let m
and ¢ be the elements of G defined by

8( )_{(z+4,y) if p is odd,
ny= (x+2,y) ifpiseven.

Let £ be the triangulation of the torus R?/(m, €) induced by C.

THEOREM I1.4.1. L is the triangulation of the peripheral torus (or each of the
components of the peripheral tori in case p is even) of S* — K(p, q) induced by the
ideal triangulation D.

Proor. For each i (1 < i £ ¢ — 1), let e; be the common edge of T; and
Tiv1. For each i (2 € 1 € ¢ - 1), let f; be the edge of & determined by f;, =
cl(aT (e;Ue;y1)). First, we look at a cross section around the ideal vertex px [ in
D, where p is a point of P. Let 5 € Z> beallftofp Foreachi (2 <i<c¢-2), let D;
be the image of the layer of tetrahedra 'D in D. Truncation yields four boundary
triangles around the vertex px [ in D,, and hence, it yields two triangles around the
vertex px I in D; (see Figure I1.4.3 (b)). The vertices of these two boundary triangles
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ron ]

T

Q)

T.

s R

mon 4 4

Triangulation of I x [

T I
AV
NN

'

Figure 11.4.1

qut!

Y

correspond to edges of ideal tetrahedra of D;, so each of them has associated to it a
slope in QU {1/0}. We see that the slopes of the vertices of one boundary triangle
form the vertices of T; and that the slopes of the vertices of the other boundary
triangles form the vertices of T;..; (see Figure I1.4.3 (a), (b)). Thus we identify the
former boundary triangle with a copy of T; and denote it by T;(i), and we identify
the latter boundary triangle with a copy of T;;, and denote it by T;+,(i). Then
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Figure [1.4.2

the link of pxI in D consists of the triangles {T}(i), Ti41(i) | 2 < i < ¢ — 2}. As
illustrated in Figure I1.4.3 (c), these triangles are glued together by the following
rule.

Ti(i) D ei(i) — ei(i + 1) C Tiga (i + 1)
Tis1(3) D €ig1(3) = €31 (1 + 1) C Tiya(i + 1)
Tiw1(d) D firr(B) = fiza(G+ 1) C Tip (i + 1)

Here e;(1), for example, denotes the copy of the edge e; in T;(i). By the first relation,
we see the union (J;_; 2T, (7) forms a strip which is homeomorphic to the substrip
Uf:g T of <. By the 5econd relation, we see the union U‘_., T:+1(i) forms a strip
which is homeomorphic to the substrip U‘_3 T; of Q. The last relation indicates
the  way how these two strips are glued together, and we see that the link of pxI
in D is obtained from the restriction of £’ to I x [0,2] by deleting T:.—, and g(T3),
where g is the reflection across R x 1, and by identifying (z, 0) with m(z, 0) = (z, 2).
Here, z varies over the points in [ such that both (z, 0) and m(:l:, 0) are contained
in cl(F x [0 2] = (Te=1 U g(T3))) (see Figure I1.4.4 (a), (b)

Let [,(1, 7) be the link of px[ in D, where p is the i xmage of an integral point
(2,7). Then the induced triangulation of the boundary tori is obtained from the
disjoint union of E(i, J) (0 £ 4,j £ 1) through suitable identifications of edges,
that is caused by the relations ~, and ~~ on A; and A..; respectively. This
identification is described as follows. Suppose r = b/a and r’' = b’ /a’, where a and
b [resp. a’ and ¥'] are relatively prime integers. By the definition of the slopes r and
', we see (a,b) = (2,1) = (0,1) (mod 2) and (a’, ') = (p,q) (mod 2). Then the
identification is as follows:
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(a)
-1 1/0 1/1 12
0/1
®)
Truncation of a Truncation of a
vertex of 15.- vertex of D4
©

ELO)

T}

Four boundary triangles Four boundary triangles

in the truncation of D; in the truncation of D;4;

Figure 11.4.3
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(i) 172(i, ) ~ 773, §)

(ii) r1r3(i, §) ~ 7175 (i, 5)

(iii) T273(i,j) ~ Tarz(i + a,j + b)
(iv) 2r3(i ) ~ Tirs i+ o', j + 8.

Here 7172(3, j), for example, denotes the copy of the edge 7175 in E(i. 3)- This can
be seen from Figure I1.4.5

UiZ2 1) UiZ2 T ()
(a)

®) ©
Figure [1.4.4
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reflection line
generating ~-
with r = b/a

We see
273(0,0) ~ Tar2(a, b)

Figure I1.4.5

Let £'(i,j) be the space obtained from Z(i, ) by the identifications (i) and
(ii). Then it is isomorphic to the quotient of E[ 1xR by the action of {(m) (see Figure
11.4.4 (c)). The identifications (iii) and (iv) induce the identifications on the four
strips £'(i,5) (0 < i,j < 1) as illustrated in Figure I1.4.6.

2o > (Y >
M)
%
N~

<

Figure I1.4.6
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Thus their developing images in the universal cover of the peripheral torus is ob-
tained from L|;,r by adding its images by the w-rotations about the points corre-
sponding to (the old) r; and r%. This completes the proof of Theorem I1.4.1.

II.5 Hyperbolicity equations

By identifying each topological ideal tetrahedron of D with a hyperbolic ideal
tetrahedron, we obtain a hyperbolic structure on the complement of the 1-skeleton
of D. For the structure to give the complete hyperbolic structure of $* — K(p,q),
complex parameters of hyperbolic ideal tetrahedra must satisfy the “edge relations”
and the “holonomy conditions” (see [Th, Chapter 4] or [BP, Section E.6.i]). In this
section, we write down these equations and reduce them to essentially a single
polynomial equation in one variable. We also discuss its relation to Riley’s work
[R1].

To do this, we use the Z2 & Zo-symmetry of D. In other words, instead of
working directly on D, we actually study hyperbolicity equations for the orbifold
D/(X,Y). Recall that D consists of (¢ — 3) pairs of ideal tetrahedra {o(i) | 2 <
i < ¢~ 2} and that, for each i (2 £ i < ¢ - 2), the group (X,Y) permutes the
tetrahedra of (i) and the stabilizer of each of the tetrahedra can be realized by a
hyperbolic isometry. So, we give the same complex parameters to the tetrahedra of
o(i), which we denote by the symbols w(i, 1), w(i,2), and w(i, 3); these are related
to each other by the following relations (see Figure [1.5.1):

Here the second index j is considered modulo 3.

Alm
w(i )
w(i,3)
/-w(i,2)
Fe
0| ew(i1) 1

Figure I1.5.1
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In the cusp cross section, these parameters are specified as illustrated in Figure
I1.5.2.

Figure [1.3.2 (a) n: even (=4)

Note that for each i (2 < i € ¢ — 3), there is essentially a unique vertex of
the induced cusp triangulation, such that the edge relation corresponding to which
contains the (i + 1)-th parameter precisely once and consists only of parameters
with indices < ¢ + 1. We call it the i-th edge relation. There remain two edge
relations. One of them consists of two (¢ — 2)-th parameters and one (c — 3)-th
parameter, which we call the (c — 2)-th edge relation. The other relation is called
the (¢ — 1)-th edge relation. The holonomy conditions are consequences of the edge
relations. This can be seen as follows: Let p be the holonomy representation of the
cusp fundamental group to Sim(E?), the group of the similarities of the Euclidean
plane E?, determined by a solution of the edge relations. Then p is equivariant with
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respect to the Z, @ Z,-action. This implies that Im(p) is contained in the isometry

group Isom(E?).

The i-th edge relation (2 < i < ¢ - 1) is given as follows, where we put

w(l,1)=1and w(c-1,1) = 1.

1]

Figure IL.5.2 (b) n: odd (= 5)
Case 1. ¢a < i < copyy for some r. Then

w(i = 1, Dw(i, 2)?w(@ + 1,1) = L.

CASE 2. ¢2r—1 < i < 3, for some r. Then

w(i — 1, Dw(i,3)%w(i + 1,1) = 1.
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Case 3. i=c¢;. Then

w(2,1) I_:[w(j,3)2 w(cy +1,1) = —1.

j=2

CaseE 4. i= ¢y, for some r. Then

C2r

w(cop—y — 1, 1) H w(F, 2)2 w(cer + 1, 1) =1.

Jj=carn

CASE 5. i=cp4 for some r (r # 0). Then

Cirst

w(ear = 1,1) ¢ [] w(5,3)? p wlezrsr +1,1) = 1.

j=car

CASE 6. i=c—1. Then

Cn—2

wien-1 = 1,1)¢ [ w(5,2)?} wlea —2,1) = —1if n is even,

i=Ca_;

Cn=2

wleasr = 1,1) ¢ [ w(5,3)?

J=tn-1

} w(e, — 2,1) = —1 if n is odd.
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Any solution {w(4,1) |2 <i < ¢ -2} € C - {0,1} of this system of equations
determines a parabolic representation of the link group (see [Ta2, Section 6]); it
determines the complete hyperbolic structure of the link complement, if and only

if Im(w(i,1)) >0(2<i<c~2).

We reduce the above system of equations to a single equation, which is repre-
sented by a rational function in one variable. Let ¢; = ¢;(z) be the rational function
in one variable z defined by the following recursive formula:

¢ =1,
2 =2,
bict \ @i — 1
(1 — ;)2
Pip1 = ¢ Gi-1
— i1
(1—-¢:)?

1

—¢i—1(l — @)

4 1 ¢. 2
(—‘—) if ear < i < Cap4 for some 7,

if c3r—1 < i < ¢y, for some r,

if i = ¢, for some r,

if i = cap4 for some r.
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We call the formula for ¢;,., the i-th recursive formula.

ProposiTioN I1.5.1.  The system of hyperbolicity equations for D (considered
over C) is equivalent to the following:

be-1(z) =1, @i(z)#1 (2<i<c-2).
Further, for each solution w, we have

$i(w) =w(i, 1) (2<i<ec—-2).

PROOF. Represent the complex parameter w(2, 1) by z, and put ¢; = w(3, 1)
(1 £i<c—1)anew. Then ¢, = 1 and ¢.; = 1 by the convention. We prove
that this new ¢; satisfies the above recursive formula by showing that (1) the i-th
recursive formula follows from the i-th edge relation (2 < i < ¢ — 2), and (2) the
(¢ —1)-th edge relation is a consequence of the recursive formulas and the equation
®c—1 = 1. If i is as in Case 1 or 2, then the i-th vertex relation clearly induces the
recursive formula for ¢;;,. To study Case 3, we need the following claim.

-1 . Ocl
CLamm. H;;z w(]n 3)2 = D30ey -1 "

Proor. By the j-th recursive formula (2 € j < ¢ — 1), we see

: a2 1 _ $i-19in1 D<i<e 1
w(]r 3) (1 - ¢j)2 ¢§ ( Srsa )
Hence, we see
-1 c—1
. ¢'—l¢'+l ¢l¢c ¢c
,3 2 _ J 2 — [ LI
,.=Hz w(3:3) 1;12 7 $aba-r Grbet

By using the above claim, we can see that the ¢,-th edge relation implies the
¢1-th recursive formula. To treat Cases 4 and 5, we need the following claim:

CLamM. (1) Suppose the i-th recursive formula holds for each i less than co,..
Then

car—1 _¢
w(czr-1 — 1,1) H w(j,2)? ) = —=2=,
j=cgr-1 ¢c"—l

(2) Suppose the i-th recursive formula holds for each i less than cap41. Then

C2ry -1

w(cer — 1,1) H w(j,3)% ) = =@ca+1

j=car ¢C2v~+l -1
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Proor. (1) By the car—)-th recursive formula, we see

(¢C:r-z - 1)2 — _¢Cir-l+l
¢C;,-_1 ¢czr-l )

Further, by using the j-th recursive formula (car_; +1 < j < ¢ — 1), we see

. ¢; —11°  dj_105m1
‘22= 7 = J 7 .
w(3,2) { . }

w(czr-1 = 1, )w(czr-1,2)? = Geyp_, -1

2
;
Hence . .
C2r— Cp—
' 2 r ¢J—1¢J+l ¢cz,_;¢c,,
H W(],Z) = H = ¢ P .
j=c2r—1+1 j=Car-1 c2r-14+1¥car—1
Hence

j=Car-1 ¢C2r—x ¢32r—l+l¢czr“l ¢C2r-l

car~1 _
w(czr_1—1,1){ I1 w(j.z)z}=—¢°"“+1 Pororferr  _ —ber

(2) can be proved similarly.

By using the above claim, we obtain the i-th recursive formula when 4 is as in
Case 4 or 5. We can see by a similar argument that the (¢ — 1)-th edge relation is
a consequences of the recursive formulas and the equation ¢..., = 1. Further, for
each root w of the equation ¢._,(z) = 1, we see ¢;(w) belongs to C— {0, 1} for any
i(2<i<c~2),if and only if ¢;(w) # 1 for any i (2 < i < ¢ — 2). This completes
the proof of Proposition IL.5.1.

To simplify the recursive formula of ¢;, we introduce some notations. Let k
be a non-negative integer, and let v = (vy,... ,v:) be an integral vector. Here, if
k =0, we regard v = 0, and if k = 1, we identify v with an integer v,. The vector

(v1,... ,Uk-1) is denoted by vg. For an integer w, put
v+w=(v,..., V=1,V + W),
vew=(v,...,u,w).

Let #(v) = ¥(v)(z) be a rational function in one variable z defined recursively by
the following formula.

Y(0)=0, ¥(1)=1 ¥(2)=1/z
(W(v) - 1)°

P(v+1) = v =) (v #1),
1
w(V@O) = m,

(v +1) [ () - 1)?
el =—05 (‘ Pv - 1>¢(v))‘
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Put a = (a;,as,...,a,), where a,,...,a, are as in Section II1.2. We say that
v = (v1,V2,...,V) is & subvectorof a,if k < n,v; =a; (1 £¢ < k~-1), and
1 < v £ ag. Put |v| = Z;‘ v;. Then we can easily obtain the following:

LemMma I1.5.2. Suppose v is a subvector of a. Then
v if dimv =0 (mod 2),
pv)=¢
/¢ ifdimv =1 (mod 2).

To express the rational function ¥(v) as a quotient of polynomials, we in-
troduce some notations. Let a(v) be an integer defined by the following recursive
formulas:

a(®) =1, alw)=w,

a(v & w) = wa(v) + alvo).
It should be noted that

Q(‘L'g, R 1vk)

oy, ..., vk)

Next, define ¢(v) € {x1} and é(v) € {0,1} for each integral vector v by the
following recursive formulas:

= [1)1,... ,Uk].

€(0) = +1,8(0) =0 (mod 2),
§(v+w) =6(v) +w (mod 2),
1 (mod 2) if e(v) = €{vo) = —1,
0 (mod 2) otherwise,

6(v®0)s{

_ -1 if e(vg) = +1,
«(v) = { (=1)%) if e(vo) = —1.

Finally, let f(v) = f(v)(z) be the integral polynomial in one variable z defined by
the following recursive formulas:

f@)=1,f(0)=0,f(1) =1,
f(v +1) = f(vo) f(v) — evo)z°(") f(v - 1),

f(v@0) = f(vo),
fivel)= f(v+1).

Lemma 11.5.3.  The following identity holds for any v (# 0).

0 SR 2O ()?
w(v) = 6(V0)6( )za(Ti)—f(v—o)z~ = G(VO)é( )zo(v)f(vo)Z '
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To prove this lemma, we need the following sublemma.

SuBLEMMA 11.5.4. The following identity holds for any v (# 0).

F(v)? = e(vo) ™22 "D f(vo)? = f(v = 1) f(v +1).

Proor. Put f(v,w) = f(vew), a(v,w) = a(vew), and §(v,w) = §(vow).
Then the sublemma is equivalent to the following identity:

(1) fviw =D f(viw+1) = f(v,w)? = —¢(v)* V22w f(v)2

We prove this identity by induction on the dimension k of v. First, note that the
following identity holds by the defining formula of f.

R G [

_ (f(V) —e(v)z2() )‘"" (f(v, 2) f(v,1) )
1 0 fv,1) f(v,0)/°
By taking the determinants, we obtain
fvow + 1)f(vow = 1) = f(v,w)® = e(v)*~ =DM f(v,2) f(v,0) - f(v,1)?}.
Hence, (1) is equivalent to the following identity.
(2) F(v.2)f(v,0) = f(v,1)* = —¢(v)* (@)1 0% f(y)2,

If £ =0,ie, v =0, then we can easily check this identity. Thus the identity (1)
holds in case dim v = 0. Suppose (1) holds for any vector of dimension . Let v be
an integral vector of dimension k + 1. By definition, we have

f(vs 0) = f(VO)r
fv,)) = f(v+1),
f(v,2) = f(V)F(v + 1) = e(v)z2™) f(vo).

Hence we have

L.H.S. of (2)
= F(V)f(v + 1) f(vo) = €(v)z*V) f(vo)? = f(v + 1)
= (v + D){f(v)f(vo) = F(v + 1)} — e(v)z*™) f(vg)?
= €(v0)z*) f(v + 1) f(v — 1) — e(v) 2" f(vo)?.
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On the other hand, we can easily verify ¢(vq) = —e(v)¥V¥)—w+1 Hence
L.H.S. of (2) - R.H.S. of (2)
= (vo)z® M f(v + 1) f(v — 1) = f(v)?} — e(v)z*) f(vo)?
= €(v0) 220" {—¢(v0)* 221 f(v0)?} — ()22 f(vo)?
— __{e(vo)G(V)-l-lza(v—l)-’-cx(vo) + E(V)Za(v)}f(Vo)"’.
Here, the second identity follows from the inductive hypothesis. On the other hand,
we can easily see ¢(vp)*(V)*! = —¢(v) and a(v) = a(v — 1) + a(vg). Thus the

above is equal to 0. Hence the identity (2) is verified. This completes the proof of
Sublemma I1.5.4.

Proor oF LemMma I1.5.3. If v = 0 or 1, we can easily verify the identity.
Assuming that the identity holds for v and v — 1, we prove that the identity holds
forv+1, vea0, and v & 1. By using the assumption and Sublemma I1.5.4, we see
(v)? — e(vo)* ™Mzt f(vo)?

za(v=1) f(vq)2

(v—-1f(v+1)
ze(v=Nf(vo)?
Hence, by using the inductive hypothesis again, we see
(¥(v) - 1)?

Pp(v-1)
_ v =1 fv + 1)}/ {220 7D fvo)*}
T e(vo)* VY fv = 1)2/ {220V f(vo)?}

2

_ 5(v—1) flv+1)
- €(V0) z{2a(v—»1)—a(v-2)}f(vo)2

flv+1)?
28 f(vo)?’

Y(v) =1 = e(vo)t L

= €(V0)6(v) f

Yv+1) =

- €(\,0)6(v+1)

Thus the identity holds for v + 1.
Next, we prove the identity for (v, 0). By definition and the inductive hypoth-
esis, we see

¥(v,0) = 1/9(v)
221 f(vo)
— s JVo)
TR
On the other hand, we can see
(o)’ = ¢(v)5(vo),

f(vo) = £(v,0),

a(v - 1) =—a(v,-1).
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Hence, we can see the identity for v 0 = (v,0), i.e.,

v 2
¥(v,0) = <<v>‘“‘°’z—a<{—-(—“f?f)(—v)2‘

Finally, we prove the identity for v & 1 = (v,1). By inductive hypothesis, we
have

f(v)?
=1 fv)?”

. v +1)?
Y(v +1) = e(vo)* “)z‘{((_"’fﬁf)?

P(v) = e(vo)é(")

Hence

(v +1)
Y(v)
fv+1)?
2l f(v)?
flv+1)?
220 f(v)Z°

(v, 1)

—G(VQ)

= 6(v)é(v.l)
This completes the proof of Lemma I1.5.3.
Hence, we obtain the following:

THeOREM I1.5.5. The system of hyperbolicity equations for Dla,,... ,an] is
equivalent to the following:

f(a)(z) =0,
f(¥)(z) #0 for any subvector v of a.

For each solution w of this equation, the complex parameter w(i,1) (2<i<c—2)
is given by

w__1{ : e
. P(v){(w) = e(vo)¥ )za(V‘(‘;,f)'E:(),)(w)z if dimv =0 (mod 2),
w(i, 1) =
1/9(v)(w) = €(vo)*¥) G f;:,ﬁ:‘;l(w)z if dimv =1 (mod 2),
where v is a subvector of a = (ay,...,an) such that [v| = i. Each solution w

determines a parabolic representation of the link group to PSL(2,C), and it de-
termines the complete hyperbolic structure of the link complement if and only if
Im(w(i,1)) >0(2<i<c-2).



434 MAKOTO SAKUMA and JEFFREY WEEKS

ExampLe I1.5.6. The 53 knot: This is the 2-bridge knot K(7,3). We see 3/7 =
(2,3] and

f2,1)=1-2, f(2,2)=1-2+42% f(2,3)=1-2+22%-23

The polynomial f(2,3) has a unique root w with positive imaginary part. This
solution determines the following complex parameters:

w(2,1) = w = 0.122561 + 0.744862;,

1- 2
w(3,1) = ¥(2,3)(w) = [(—l)(—;i)—] = —1/w? = 1.66236 + 0.562278i.
Hence, the above complex parameters determine the complete hyperbolic structure
of the knot complement. By calculating the tilts (cf. [We, SW]), we can see the

decomposition D is the canonical decomposition.

—/ ]
]
=
w(2,1)7
S
/"‘
wi(3, 1)~
]
7 —
S~
L
i —

Figure 11.5.3

ExampLe I1.5.7. The Whitehead link: This is the 2-bridge link K(8,3). We
see 3/8 = [2,1,2] and

f2,)=1-2z f(2,1,1)=1-z+2% f(2,1,2)=1—2z+222

The complex number w = (1 + ¢)/2 is the unique root of f(2,1,2) with positive
imaginary part. This solution determines the following complex parameters:

w(2,1) =w=(1+1)/2,

w(3,1) = ¥(2,1)(w) = [(-1)@] mu=ean
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Hence, the above complex parameters determine the complete hyperbolic structure
of the link complement. By calculating the tilts, we can see the decomposition D
is the canonical decomposition. It should be noted that D is a subdivision of the
decomposition of the Whitehead link complement into one ideal regular octahedron
given by [Th, Section 3.4].

Figure 11.5.4

The following lemma, which can be proved easily by induction, gives an esti-
mate of the numbers of the parabolic representations of the 2-bridge knot groups
arising from Theorem II.5.5.

LemMMa I1.5.8. Let a be an integral vector without negative entries. If a{a) is
odd, then deg(f(a)) = (a(a) —1)/2. If a(a) is even, then deg(f(a)) < (a(a) —2)/2.

S. Yamada kindly proved the following lemma at our request.

LEmMA I1.59. (1) The polynomial f(2,b) (b > 2) has no repeated roots.
(2) The polynomials f(2,b) and f(2,b') (b> b > 2) have no common roots.

This lemma says that we can construct precisely b number of parabolic repre-
sentations of a (non-torus) twist knot (i.e., the 2-bridge knot K (2b+1,b) with b > 2)
by the method of Theorem I1.5.5. This reminds us the result of Riley [R1] stating
that the knot group of the 2-bridge knot K (p, q) has precisely (p — 1)/2 number of
parabolic representations. This result leads us to the following conjecture:

ConJECTURE 11.5.10. Let a be an integral vector without negative entries.
(1) If a(a) is odd, then f(a) has no repeated roots.
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(2) For any subvector v of a, f(v) shares no common roots with f(a).

Chapter III. Related topics

III.1 Relation to alternating diagrams

In Examples 1.2.2 and [.2.3, the edges of the canonical decompositions arise
from the crossings of the alternating diagrams. For the canonical decompositions of
the links in Example [.2.4 and for the presumably canonical decompositions of the
2-bridge link complements, the arcs arising from the crossings of the alternating
diagrams belong to their edge sets. Further, computer experiments using SnapPea
tell us that the same results hold for many alternating links. Thus we would like to
propose:

CoNiEcTURrE IIL1.1. The arc corresponding to each crossing of a reduced
alternating diagram of a hyperbolic alternating link is isotopic to an edge of the
canonical decomposition of the link complement.

This conjecture is equivalent to the conjecture that the canonical decompo-
sition of a hyperbolic alternating link complement is a certain subdivision of its
decomposition into two ideal 3-cells described in Section 1.2. We hope this ap-
proach sheds new light on the Tait conjecture (which was proved by [MT] using
combinatorial methods) from the point of view of hyperbolic geometry.

III.2 Relation to unknotting tunnels

An unknotting tunnel for a knot K in 53 is an arc, say 7, properly embedded in
the knot exterior E(K) = c}(S3 - N(K)) such that cl(E(K) - N(r)) is a handlebody
of genus 2. Two unknotting tunnels 7, and r; for K are said to be isotopic [resp.
homeomorphic|, if there is an ambient isotopy [resp. homeomorphism] of E(K)
carrying 7, to 7. The unknotting tunnels for the torus knots and the satellite
knots were classified by [BRZ]| and [MS] respectively. Thus we may restrict our
attention to the hyperbolic knots for the study of unknotting tunnels. For the 2-
bridge knots, it is known that they have six unknotting tunnels in general, and
these are classified up to isotopy and homeomorphism (see [K, MS, U}). Further,
it is conjectured that these are the only unknotting tunnels for 2-bridge knots (cf.
[Mo}). To our surprise, these unknotting tunnels constitute very special edges of
the triangulations given in the previous chapter. In fact, these are the six edges in
€(1) = €(c1) and e(c — 1) = e(c) (see Figure 11.3.3). Computer experiments using
SnapPea tells us that the lengths of these tunnels (i.e., the lengths of the parts of the
corresponding geodesics outside fixed cusp neighbourhoods) are short; in particular,
one of the the upper or the lower tunnels is the shortest edge. These observations
support the results and conjectures presented by Adams [A]. Recently, the list of
the knots with < 10 crossings admitting unknotting tunnels was given by [MSY],
and it was observed that if an alternating knot with < 10 crossings admits an
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unknotting tunnel, then some arc arising from a crossing of its alternating diagram
forms an unknotting tunnel. These observations, together with Conjecture II1.1.1
seem to support the following conjecture: e

CoNJECTURE I11.2.1.  Any unknotting tunnel for a hyperbolic knot is isotopic
to an edge of the canonical decomposition.

This conjecture implies the following conjecture:

ConJECTURE I11.2.2. © Two unknotting tunnels for a knot are isotopic, if end
only if they are homotop:ic.

In fact, Conjecture II1.2.1 implies the above conjecture for hyperbolic knots,
whereas the results of [BRZ| and {MS] imply it for non-hyperbolic knots.
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