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In this paper, we consider the following problem:

Problem. For a link L in 83, can we 8See all symmetries of L

simul taneously?

The meaning of this problem varies according to the interpretation
of the word "sgsee" and "symmetiry". We interpret the term "symmetry" in
two ways:

(1) A rigid symmetry of L; that is, a finite subgroup of Diff(Sa,L).
(2) The symmetry group Sym(Sa.L) = nOthf(Sa,L).

There is a close relation between these two interpretations of
"symmetry"”. In fact, if L is an unsplittable link whose complement
does not admit a circle action, then we almost have the following one
to one correspondence (cf. [BZ2,Theorem 2.11):

(0.1) {Finite subgroups of Diff(Sa,L))/conjugation
«~— (Finite subgroups of Sym(Sa.L))/conjugation

In fact Borel's Theorem (cf.[CR)) and the result of [FY] say that the
restriction of the natural map nO:Diff(Sa,L) — Sym(Sa,L) to a finite
subgroup of Diff(Sa.L) is injective; and the results of [Z1,Z2] say
that each finite subgroup of Sym(Sa.L) has a unique "geometiric"
realization. Moreover, [Th3)] asserts that any orientation preserving
finite group action on (SS.L) is "geometric".

The term "see" also is interpreted in two ways:

(1) See in the standard 3-sphere; that is, 33 equipped with the
standard Riemannian metric.

(2) See in the smooth 3-sphere forgetting the metric.
Thus the precise meanings of the problem are as follows:

(1) 1Is there a representative L* c 83 of the link type (L]
determined by L c 53, such that any rigid symmetry (up to conjugation)



3
is realized as a group of isometries of the standard 3-sphere S

resprecting L*?

(2) Does the symmetry group of L have an isometric realization?
That is, is there a representative L* ¢ s8 of the link type (L1,
for which there is a homomorphism n:Sym(SS,L*)—*Isom(Ss.L*) such
that the following diagram is commutative?

n
piff(s®,L*y —38 syms3,L% = sym(s®, L
v g

& n
Isom(SS,L*)

Here !som(S3,L*) is the group of isometries of 83 respecting L*.

(3) Does the symmetry group of L have a smooth realization?
That is, does the natural homomorphism nO:Diff(Sa,L) — Sym(SS.L)
have a right inverse?

An affirmative answer to Problem (2) implies an affirmative answer to
(3) and an almost affirmative answer to (1) because of the corre-
spondence (0.1). For some classes of links including 2-bridge knots
and nonelliptic Montesinos links, Problem (2) is proved to be
affirmative (see [BS,BZ1]). However, the following observation implies
that Problem (2) is negative in general.

Observation 0.2, 1If Sym(Ss,L) has an isometric realization, then
it is a finite group.

This follows from the fact that Isom(Sa,L) is a closed subgroup of
the compact Lie group Isom(SS), and hence it has only finitely many
connected components. If L is hyperbolic, then Sym(S3,L) is
finite by Mostow's rigidity theorem; however, if L is non-hyperbolic,
then Sym(Sa,L) is infinite in general (see Section 1). In Section 2,
we calculate the symmetry group of a certain knot K, and show that for
this knot Problems (1) and (2) are negative, but (3) is positive
(Proposition 2.7). So we cannot see all rigid symmetries of KX
simul taneously in the standard Riemannian 3-sphere, but if we forget
the metric, we can do so. In Section 3, we partially generalize the
above result and show that Problem (3) is positive for a certain class
of links with infinite symmetry groups (Theorem 3.1). In Section 4, we
determine all unsplittable non-hyperbolic links whose symmetry groups
are finite, and show that their symmetry groups have isometric
realizations (Theorem 4.1).



1. Dehn twists along an essential torus.

Let T be a separating incompressible torus in a Haken manifold /.
Then M4 1is decomposed into a union ”0 v Ix[0,1] v ”1 where TIx[0,1]
is identified with the regular neighbourhocod of T and Hi n Ix[(0,11]
Tx{i} (i = 0,1). We identify the universal cover of T with Rz and
nl(T) with the action of 7% on Rz; thus 7 is identified with

RZ/ZZ. For each element o« of nl(T), let Da be an element of
Diff(M) defined as follows:

f Dalﬂi = id”i (i = 0,1),

D,([1,1) = (1Z+e(t)F1,t) for each ([F1,1) € (R%/22)x10,11.

Here ® is an element of ZZCIR2 corresponding to o, and [Z1 denotes
the point of R%/2® determined by I € RZ. ¢ 1is a smooth function on
R such that ¢(-=,0] = 0, ¢(l,=) = 1, and w'[O,l] is increasing.

We call Da the Dehn twist along T in the direction o. Let 92 be
the subgroup of noDiff(M) generated by Dehn twists along 7. Then we
obtain the following (cf.[Jo,Si}).

Lemma 1.1, 9 = M (TY/{Z(r (M ))+Z (R (M)}, where Z( ) denotes the
center of a group.

Proof. Pick a base point for nl on 7Ix0, and identity nl(H)
with the amalgamated free product n.(M.) *x n,(M,)>. Then, for each

1770 n, (T) 11
o € nl(T), we have
- J . .
(Da)*(z) = 1 T if x € nl(ﬂo) (i)
aze” ! if z e mCH ) (ii)

Assume that Da is isotopic to id. Then the isomorphism (Da)* of
nl(H) induced by Da is an inner automorphism by an element, say 8,
of nl(M). Then by (i), B 1is an element of the centralizer of

nl(HO) in nl(H); which is equal to Z(RI(MO)). Similary, by (ii),

B-la is an element of Z(nl(Ml)). Hence, by (W, Corollary 7.51], Da
is isotopic to id, iff there is an element 8 of Z(nl(Ho)), such that
8" ly € Z(my(H,)). This condition is equivalent to the condition that o

is an element of Z(nl(Mo))'Z(nl(Ml)). Thus we obtain the desired
result.



Let %X be the subgroup of noDiff(M) generated by diffeomorphisms
of M which preseve ”i (i=0,1), and let A be the subgroup of
noDiff(Ho,T)x noDiff(Ml,T) consisting of all elements ([fol.[fll)
such that f0|T is isotopic to fl‘T' Then we have the following exact

sequence:
Lemma 1.2. 1 — 2 — £ — A— 1,

Proof. This follows from the following two facts: (1) If two
diffeomorphisms which preserve T are isotopic, then there is an
isotopy between them which preserves T (see [W, Proof of Theorem
7.11). (2) Any diffeomorphism of 7Tx[0,1], which is the identity on
the boundary, is isotopic to a Dehn twist relative to the boundary.

2, An example.

Let K, be a 2-bridge knot of type (p,q) with q° ¥ 1 mod. p,
and K be an (untwisted) double of Kl' Then K is contained in a
p» and the exterior E(K) = SS-N(K) of K
is decomposed into a union E(K) = ”0 v Tx(0,11 v ”1’ where ”0 = V-
K> and Ml = E(Kl) = Ss-ﬁ(V). Here N( ) denotes a regular
neighbourhood; and for each i = 0, 1, the intersection ”i N Tx[0,11
is equal to Tx(i}), which we denote by Ti' Let I and m be the
logitude and the meridian curves of K1 lying on 7. Note that Mi
(i=0,1) are hyperbolic manifolds (see [Th2]); so we can identify them
with the complements of open cusps of the correspending complete
hyperbolic manifolds. Thus each Ti admits a Euclidian structure (see

[Th21); that is, I and m of nl(Ti) (= nl(T)) correspend to trans-

solid torus V with core K

lations of the Euclidian plane Rz by certain vectors Zi and ﬁi

respectively, and Ti is identified with the quotient R2K<T£, i£>.

Lemma 2.1. (See Figures 2.1 and 2.2.)
(1) n.DiffM.,T.) = IsomM.,T.) = <fIf%=1> @ <hlh®=1>, and the
0 0’° 0 0'° 0 1

restriction of them to TO are given by f[i] = [% * iﬁol’ RLZ1 = [-z3.

(2) ® DiffH,,T)> = IsomcH T = <glg® = 1> ® <klk® = 1>, and the

restriction of them to Tl are given by g[i] = [3 + %71]. k[z1 = [—3].

Proof. These follow from Conway's calculation of the outer-
automorphism groups of the 2-bridge knot groups (see [GLM]) and
Property P for 2-bridge knots ([Tal) (or the recent result of [GL]).



Fig. 2.1 Fig. 2.2

Thus, the group A defined in Section 1 is given by

A= <(F,id), (id,g), h,k)> = (Z.)3.

2
Since T is characteristic and Z(m (M) =1 (i = 0,1), we obtain the
following exact sequence by Lemmas 1.1 and 1.2.

(2.2) 1l — 92 — noDiff(E(K)) — A — 1

Sl i 3

nl(T) (Z.)>

2
The precise presentation of this group is obtained from its smooth
realization. To see this, note that each Ti has a collar neighbourhood
Ci in ”i on which Isom(ﬂi,Ti) acts as a product action. Choose any
Euclidian torus 7T = R2/<T,i>. Then the linear map of R which

sends I and =m to Ti and ii respectively induces an affine
equivalence between two Euclidian tori T and Ti (¢ = 0,1). By the
uniqueness of smooth structures on 3-manifolds (cf.[Ll), we may assume
that the smooth structure on E(K) 1is obtained from those on ”0' Ml
and 7x[0,1}, by identifying Tt c ”i with TIx{i} € Tx[0,1] through
the above affine equivalence and by using the equivariant collar
neighbourhood Ci of Ti and the product structure of 7Tx[0,1) (cf.
(H, p.184]). For a vector o € Rz, let D(®), S(@) and R be the

diffeomorphisms of 7Tx[0,1] defined as follows:

D@)([Z),¢) = ([Z + o(t)xl,t),
S@) LTI, E) = ([2 + 1,1),
R(LZ1,t) = ([-Z1,t).

Let F, G, and H be maps of E(K) defined as follows. (Note that

they are elements of Diff(E(K)) by the preceding remark on the smooth
structure on EX).)



R - _-) o -
FIHO = f, F|”1 = id, F|Tx[0,1] = D(-m/2)-S5(m/2),
Gly, = v Gly = & Clrxro,13 = DT/,
H|M0 =k, H|M1 =k Hlrgpo,13 = R
Put L =D, (= idﬂou D1y v th1> and M =D (= idHOU Dm) v idﬂl).
Then we have the following equality in Diff(EK)):

2.3y F2 =41 6% =1L, 4% =1,

(F,G1 = 1, [H,F1 = M4, tH,G} = L1,

Here [X,Y1 denotes the commutator XYX“!v™l of X and Y. Moreover,
L and M generate a free abelian subgroup of rank 2 in Diff(E(K)),
which is invariant by the inner-automorphisms induced by F,G, and H.
In fact, we have

(2.4) (LMl =1, lF = id, lG = id, lH = -id.
Here, ty denotes an inner automorphism X—rYXY-1 on <L,M>=2®1Z
induced by Y ( = F,G or H). Thus the subgroup % of Diff(EK))
generated by (L, M,F,G,H) satisfies the following exact sequence;
1 — <L H> — @ — (22)3 — 1.

St

I®Z
Hence the natural homomorphism from ¢ to noDiff(E(K)) is an
isomorphism by (2.2). Thus @ gives a realization of nODiff(E(K)),
and its presentation is given by (2.3) and (2.4). Clearly % extends
to a group of diffeomorphisms of the pair (SS,K), and hence Sym(Sa,K)
= noDiff(E(K)) has a smooth realization. From the group presentation,
we can determine all torsion elements of Sym(SS.K). In fact we have

the followings:

(2.5) The set of all torsion elements of Sym(S3.K) is the
disjoint union 92H U 9GH v 9FH U 9FGH.
(2.6) Each element of 9H (resp. 2GH, 9FH, and 9FGH) is conjugate

to H (resp. GH, FH, and FGH). Moreover, H, GH, FH, and FGH are not
conjugate to each other.

In conclusion, any finite subgroup of Sym(S3,K) is conjugate to
precisely one of the subgroups <H>, <GH>, <FH>, and <FGH>. Further,
each of them has an isometric realizations as illustrated in Figure 2.3.
Here H and GH give strong inversions of K, and FH and FGH real-
izes the cyclic period 2 of K. No two of them can be seen simultaneous-
ly in the standard Riemannian 3-sphere. In fact, any two nonconjugate
torsion elements of Sym(Sa,K) generate infinite subgroup, which has



no isometric realization by Observation 0.2. We summarize our results.

Proposition 2.7. (1) Sym(S3,K) has a smooth realization; but it
does not admit an isometric realization.

2) Sym(Sa,K) has precisely four finite subgroups up to
conjugation, and each of them has an isometric realization. But no two

of them have simultaneous isometric realizations.
]
-

< FH > b < FGH >

<H> < GH >

Fig. 2.3

Remark 2.8. (1) For any integer =m, there is a knot whose symmetry
group has more than 7 number of subgroups of order 2 up to
conjugation [Sa, Claim 2]. The knots constructed in it alsoc have the
property (1) of Proposition 2.7 by virtue of the following Theorem 3.1.

(2) In [Sa, Theorem 1), we gave a sufficient condition for a knot
K to have the "universal" rigid symmetry; that is, a finite subgroup
¢* of Sym(Ss,K) such that any finite subgroup of Sym(SS,K) is
conjugte to a subgroup of G¥.



3. Manifolds of split hyperbolic type.

A compact 3-manifold M4 is said to be of split hyperbolic type,
if there is a collection J§ of disjoint tori in int# such that
intM-3 is a complete hyperbolic manifold of finite volume (cf.[Sil).
We prove the following theorem.

Theorem 3.1. (1) Let M be a compact 3-manifold of split
hyperbolic type. Then noDiff(ﬂ) has a smooth realization.

(2) Let L be a link whose exterior is of split hyperbolic type.
Then Sym(SS.L) has a smooth realization.

Proof. (1) As in Section 2, M 1is obtained from a disjoint union
of compact manifolds ﬁ U Ix[0,1]1 by glueing their boundaries. Here ﬁ
is obtained from a (possibly disconnected) complete hyperbolic manifold
of finite volume by delating open cusps which are invariant by the
action of the isometry group. Note that the components of Sﬁ admi t
Euclidian structures which are invariant by the action of Isom(ﬁ). On
the other hand J is a disjoint union of copies (Ti} of a Euclidian
torus T = Rz/Zz, and each boundary of JIx(0,1] 1is identified with a
component of aﬁ via an affine transformation. Let ﬁ be the subgroup
of Isom(ﬁ) consisting of those isometries which extend to
diffeomorphisms of M. Then by Mostow's rigidity theorem and an

argument similar to that of Section 1, we obtain the following exact
sequence:

1 — 9 — nDiff ) — A— 1.

Here 9 1is the subgroup generated by Dehn twists along &, and is
isomorphic to the free abelian group of rank 23| (see [Jo, p.1881).
(191 denotes the number of connected components of 5.) Let o be

the subgroup of Diff(Ix(0,1]) which is generated by the following three
types of diffeomorphisms:

(1) (affine automorphism)Xxid.
(2) The map D(a) (& € Rz) defined in Section 2. Here we assume

that the smooth function ¢ wused to define D(x) satisfies Q(l1-%t) =
1-@9(t) for any teR.

(3) The diffeomorphism: ([Z),t) — ([Z1,1-%).
Let ¥ ©be the subset of Diff(M) consisting of all elements (F)
wvhich satisfy the following two conditions:

(1) Flﬁ is an element of A.

(2) Since all components of J are copies of the Euclidian torus



i i ff(Ixt0,11) for each
T, FITiX[O,ll determines an element of Diff

component Ti of 9. We require that this elememt belongs to 4.

Clearly ¥ forms a subgroup of Diff(M). We claim that % gives a
smooth realization of noDiff(M); that is, the natural map 9% —
xoDiff(M) is an isomorphism. We first prove the surjectivity. It is
clear that any Dehn twist along J is realized by an element of %. So
we have only to show that the map % — nODiff(M) — 3 s surjective.
For an element f of ﬁ, there is a diffeomorphism 7 of M, such that
?'ﬁ = f. For each Ti cJ, let fi be a diffeomorphism of Ix[0,11]
determined by ?|T£x£0,1]' Since f € Isom(®), the restrictions of 7,
to the boundary components of 7Tx[0,1] are affine automorphisms. That

o Ay €GL2,D) and &g, &, € R%, such that

o' %
([AO(§>+EOJ.80),

> 9
(LA, (#)+3,1,8,). Here (g,,6,} = (0,1).

is, there are A

fi([21,0>
fi<[§J.1)

Since fiITXO and filTXl are isotopic, we have AO = Al € GL2,2).

Let Fi be a diffeomorphism of 7Tx[0,1] defined as follows:

FUIZ1,1) = (LAG(E)+@(1-DR+@ (818, 1,8, t+E,(1-t))
Then Fi is an element of & and FilTx(O,l} = filTX(O,l)‘ We use the
same symbol Fi to denote the map Tixto,ll - ?(TiX[O.ll) (= TjX[O.IJ
for some J) determined by Fi € 4. Then Fi and f are identical on
9(I;x00,13). Thus f = f|ﬁ together with (F.) determines a diffeo-
morphism F of M. Clearly F 1is an element of % and is mapped to
f by the natural map 9 — 4. Hence the homomorphism % — noDiff(H)
is surjective. Finally we show the injectivity. Suppose that an
element F of ¥ 1is isotopic to the identity. Then, by Mostow's
rigidity theorenm, F|ﬁ = id|ﬁ. Moreover for each Ti c9, FITix{O,IJ is

isotopic to the identity relative to the boundary. Note that, if an
element of 4 1is isotopic to the identity relative to the boundary,
then it is the identity. [Here we use the condition @(1-%t) = 1-¢({).]
Therefore, F'TiX[O,IJ = id, and hence F = id. This completes the

proof of Theorem 3.1 (1).

(2) Since Sym(S%,L) is a subgroup of n Diff(ECLY), it acts on

E(L) by the above proof; and clearly, this action extends to a smooth
action on (SS,L).



4. Unsplittable non-hyperbolic links with finite symmetry groups.

In this section we determine the links with the above property. Let
L be such a link, and consider the torus decomposition (see
(Ja,Jo,Thl)) of E(L). Then, by Lemmas 1.1 and 1.2, one of the
following holds:

(1) E¢L) is a Seifert fibered space without essential tori.
(2) E(L) 1is decomposed into a union of two Seifert fibered spaces
without essential tori.

1f L satiesfies (1), then L is a sublink of the Seifert link
represented by the diagram «B-Tkﬂﬁ. Here we use the notation of
1

{EN)J, and p and ¢q are relatively prime integers. Sym(Sa.L) is a
certain subgroup of nODiff(E(L)), which can be calculated by (Jo,
Proposition 25.3). If L satisfies (2), then L is obtained from two
links satisfying (1) by a splicing operation (see [EN,Proposition 2.1)).
Its symmetry group can be calculated by using the results of Section 1.

Theorem 4.1. Let L be an unsplittalble non-hyperbolic link whose
symmetry group is finite. Then L is equivalent to a "suitable" sublink
0of one of the following graph links:

(I (I 1 97 1 Iy @
1 p p’ P p’

Here we use the notation of [EN), and p and ¢q (resp. p° and q°)
are relatively prime integers, such that q'-p"pg # 0 in Case [, and
pp’-99° # 0 in Case II. Moreover Sym(Sa,L) can be realized as a
subgroup of Isom(Sa).

In the following we give the symmetry group of L and a precise
construction of a representative L* of L which allows an isometric
realization of the symmetry group. To do this identify 53 (resp. sy
with the unit sphere in c? (resp. €), and let S1 (resp. 32) be the
great circle San(CxO) (resp. Ssn(OXC)). Let ¥ be an embedding of
sixs! into Isom(Sa), given by ?(al,az)(zl,zz) = (@,Z,,0,2,). Put T
= Im¥, then T consists of all isometries of s% which preseve S
and its orientation for i = 1,2. Let C
of §° given by the following formulas:

i
1° 02 and R be the isometries

1)
Then the above isometries together with T generate the subgroup of
Isom(S3) consisting of all isometries which preseve SIUS2 (cf.
Figure 4.0).

Cl(zl,zz) = (zl,zz), Cz(zl,zz) = (Z 22)’ R(z1'22) = (zz,zl).



Fig. 4.0

For relatively prime integers p and q, let Tp q:S1 - Isom(Sa) be

the effective isometric S1 action on SS, defined by Wp q(a) =
?(ap aq) If neither p nor q 1is 0, then its orbit space is 82,

and the map Wp q:S3—aCU{m) = 82 defined by w (z z2) = zp/z gives

. 1 _ 1 _
the quotient Tap. Moreover, ¢p q(O) = Sl’ wp q( ) = 52, and for any

z € C\(0), ¢; q(z) forms a torus knot of type (p,q).

Case I L is a suitable sublink of L = Slu Kp qU 82’ where
’
p q = ¢ (1). (See Figure 4.1.) 1Ignoring the orientations, we may
assume pzqzo (cf.[EN, Theorem 8.1]), and this case is divided into the

following subcases:

(I-1) p>@>1 and L is a sublink of E containing Kp,q'
(I-2) p>q=1 and L is a sublink of L containing Kp,q V) 32.
(I-3) p=1, q=1 and L = 3-component Hopf link.

(I-4) p=1, q=0 and L = Q5.

(I-5) L =8 or S1 V) 32; that is, a Hopf link with a (£2)

1
components.

Fig. 4.1




Then Sym(SS.L) is as follows (cf.[Jo, Proposition 25.31).

I-1 | 1-2 | I-3 | I-4 | 1-5
2 3 2. ~
z, ' @p?| b @y’ @p? it o=
(= DSXZZ) D4 if u =2

Here Dn is the dihedral group of order 2n. The representative
of Z is given by

-1 . _

51 U wp’q(l) Vv 32 in Cases I-1 (and 5),
S1 U w;fq(I{ U w;%q(-l) in Cases I-2 and 4,
U?:O %;lq(mj) with © = ezxp(2r/-1/3) in Case 1-3.

The representative L* of L 1is given as the corresponding sublink of
L*. Then L™ allows an isometric realization of Sym(Ss,L). In
fact, except in Case I1-5, Isom(S3.L*) is a semi-direct product of

ImTp q and the following subgroup, which is isomorphic to Sym(SS,L):

I-1 | I-2 1-3 | 1-4

2
«€,C,> | ¥(-1,13,C,C,> | ¥ (0,0),C,C,,R> | ®(-1,1),0,,C,>

In case 1-5, Sym(Ss,L*) is a semi-direct product of T and <Cl,02>

lad

> 2 > . -
= (22) or <Cl’02’R> = D4 according to u =1 or 2.

Case I. L is a suitable sublink of L = Slu Kp’qu K<p,q;p",9") U 32,
where Kp,q = w;fq(l) and K(p,q;p",q°) is a (p°,q9") cable of Kp,q’
and q'-p°pq # 0. (See Figure 4.2.) We may assume pP>q>1 and p’20.
This case is divided into the following subcases:

(I-1) p°>1 and L contains K(p,q;p’,q’).

(I-2) p’=1 and L contains Kp qu Kp,q;1,9").
(I-3) p’=0 and L contains Kp qU K(p,q;0,9°).

Fig. 4.2




Note that the boundary 7T of a tubular neighbourhood of Kp q whose
1]

interior contains K(p,q:p’,q9°) gives the torus decomposition of E(L).
By using the results of Section 1, we have

1q’-p’ pql in Cases -1 and 3,

syms3,Ly = in
Dzlq'-p'pql in Case [-2.

In fact, the subgroup 92 of Sym(S3,L) generated by Dehn twists along
T is a cyclic normal subgroup of order Idet[ ;, g?]l = |q°-p°pql, and
the group A introduced in section 1 is 22 [resp. (22)2] in Cases
I-1 and 3 [resp. Case [-21. To construct the representative Z* of

Z. choose an equivariant tubular neighbourhood N(Kp q) of Kp q =
] ]

¢p1q(1). and a coordinate SlxD2 for N(K q)’ such that the

restrictions of Wp q(a) (aesl) and C C to N(Kp q) are given as

follows:

pq

¥y (a)(zl,z ) = (oz, 0" 'z

P.q 2 1° 2

= 1,02 ~
0102(21’22) s (zl,zz). for each (zl,z ) € S xD° = N(Kp’q)

2
For & = + or -, let Ks(p.q;p ,9°) be the circle {(ap ,eaq )laesl)

on SlxD2 = N(Kp q) c 83. Then L¥ is given by
-1 * M 4 rd » —
81 v wp,q(l) UK (p,qip",q") U 32 in Cases I-1 and 3.
S, VU K.(P,4:1,4°) U K'(P,qi1,¢°) US, in Case I-2.

The representative L* of L 1is given as the correspending sublink of

*. To see this, let 2* be the subgroup of Isom(S3,L*) n Ime q

consisting of the isometries which preserve each component of L*.
Then = Zl -p’pq| and is generated by Tp q(m) where o =
emp(2n/—_/lq -p’pPql), and it gives a reallzatlon of 2. In Cases I-1 and
3 (resp. I-2), Isom(Ss.L ) is generated by 2* and {0102) (resp.
q(/a), €,C,)) and realizes Sym(S3,L>. Here Ja = exp(n/-1/1q"-p°pql).

Case M. L is a suitable sublink of L = S v K;lé K(Z)p,u S where

(1) _ (2) _ -1
Kp q = ¢p q(1/2) K pr = wq.’p,(Z), and pp’ qq # 0. (See Flgure 4,

3). We may assume p2p 20, and this case is divided into the following
five subcases:

(-1 p=p°>1 and L containes K;I;U K(z)p
(-2 p>p’=1 and L containes K;lé K(z)p,u S
(I-3) p=p’=1 and L = L.

(I-4) p>1>p°=0 and L containes K;I;U K(Z)p,u S

(I-5) p=p’=0 and L ZC@.
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Note that the inverse image T of the unit circle in C by Wp,q (or
wq’,p’) is a torusSin E(L) which gives the torug decomposition of

E(L). Let SymO(S ,L) be the subgroup of Sym(S“,L) which preserve
each of the pieces of the torus decomposition of E(L). Then we have

the following:

(1) SymO(Sa.L) = {0 in Cases I-1 and 4,

lpp"+qq” |
D2|PP'+QQ'I
29Dy 1 pp*+qq” |
The subgroup 92 generated by Dehn twists along 7T 1is a cyclic
normal subgroup of SymO(Sa,L) of order Idet[ g. g,]l = |pp'-qq°|.
(2) 1f (p,9) = (p",%q°) and either L =L or K;f;u K;??p,,
then Symo(SS,L) is a subgroup of Sym(SS,L) of index 2. Otherwvise,

Ssym(s3,L) = Symo(SS,L).

in cases -2 and 5,
in case [I-3.

If (p,q) # (p",-9°), then the representative Z* of L is given as
follows:

-1 -1 .
S1 U ¢p’q(1/2) U ¢q,’p,(2) v S2 in Case I-1,4 and 5,
-1 -1 -1 .
Sllu ¢p’q(1/2) v $q,’p,(2) V) ¢q.,p,( 2) in Case @-2,
- -1, -1 -1 _ . _
Wp’q(I/Z) v ¢p,q( 1/2) v *q',p’(z) U *q’,p'( 2) in Case [-3.

If (p,9) = (p°,-9”), then I* is obtained from the above by replacing

_ . - - ) 3 .

¢q',p’ (—wq’_p) with ¢q,p‘ Here ¢q,p is the map S"—(U{»)}) defined
Z _ (3 19,,P z . .

by ¢q,p(zl'z2) (22) /zl. Note that ¢q,p is a quotient map of the

S1 action V¥ . The representative L* of L 1is given as a

q,-p ~
corresponding sublink of L*. To see this, let 2¥ be the subgroup of

Isom(Ss.L*) N T consisting of the isometries which preserve each

component of L¥*. Then 9* = Imy N Im?q. =7z

D,q ,p’ Il pp’ -qq° | and it is



generated by ?p q(m) (or Tq, p.(m)). where o = exp(2n/-1/1pp°-qq’ ).

* 3 %
2* gives a realization of 2. The subgroup lsomo(Ss,L ) = Isom(S™,L )
N <T,Cl,02> is equal to

<Tp q(m) C C > in Cases -1 and 4,
W Vo), C C > in Case 1I-2,
p,q
Y D q(/—) ? ,(/—) €,C,> in Case -3,
(Wp q(m) C C > = (C C > in Case 1II-5.

IsomO(Sa.L*) realizes Sym (S L ) and if (p,q) # (p’,xq"), then it
is the full isometry group Isom(S L ). If (p,q9) = (p°,9°) (resp.
(p,q9) = (p",-q9°)) and L satisfies the condition (2), then
Isom(Sa,L*) is generated by R (resp. ClR) and Isomo(sa,L*).
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