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The Homology Groups of Abelian Coverings of Links

By Makoto SAKUMA

For the infinite cyclic covering space fm of a knot complement, let ¢
be the automorphism of 51&@) induced by a generator of the covering
transformation group. Then ¢ -1 ‘is an isomorphism (Milnor [8]) and the
first homology group of the k-fold cyclic branched covering space is iso-
morphic to Coker(tk- 1) (Gordon [3]).

In this paper we study the universal abelian covering and the cyclic
coverings of a link, and establish properties corresponding to the above
(Theorems 4 and 6). Furthermore we give a geometrical interpretation to
the Hosokawa polynomial (Theorem 1) and simple proofs of the theorems of
Hosokawa and Kinoshita [6] about the first homology groups of cyclic

branched coverings of a link.

The following notation will be used:

R[zl, .n,xn]: the free R-module with free basis :cl,'",xn .

< TysoeT, >R: the R-submodule generated by Tys0ee,T,
Rﬂ:cl,u-,zn]: the polynemial ring in Ziyeee,T, over R,
Rcl,-o-,xn>: the Laurent polynomial ring in Zy,°c,x, over R,
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érderR M: a generator of the order ideal of an R-module ¥,

|4]: the number of the elements of a set 4,

Mat(m,R): the ring of (m,m)-matrices over R,

f.: the homomorphism between homology groups of spaces induced by a

continuous map f.

1. Let L = Kluxzu"-ul{u be an oriented link of u-components in 33,

¥ a regular neighbourhood of L, and write X = SS -int N. By Alexander

duality the first integral homology group HI(X) is <t1,'",tu| tt 3 tJt.

1s 4,7 <u>, where t; is the meridian of Ki and the linking number

Zk(ti,KJ.) = 61:,.7' . We define the group homomorphisms Y, Y, Yk’ q and Py

so that the following diagram is commutative:

S

H(X)—+<t>-—l<——»<t|t~1>

n
Here Y is the abelianization, q(tl

n ooy

1---tu“) - M oand p(t) = t.
The symbol Au (resp. A, A,'() denotes the integral grdup ring of HI(XJ
(resp. <t >, <t'| tk=1 >), and the ring homomorphism between the group rings
induced by a group homomorphism will be written by the same symbol.

Let fa (resp. fm. fk) be the covering space of X. corresponding to Y
(resp. Y, Yk) and Zk the k-fold cyclic branched covering space of 53
obtained as the completion of ik‘ Then by the action of the covering
transformation group, &, (;a) (resp. H*(fw), H*(fk), E‘(Zk)) has a natural
A (resp. A, Al'c’ A,'() -module structure. The symbol ¢ (resp. pk) also de-

notes the natural projection ¢q:X +X, (resp. pk' 1 X, > Xp).
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2. First we consider relations among Hl(Xa), HI(XN) and Hl(Xk)-

The fundamental group 1r1 (X} has a presentation:

>¢

< zl’...’xu’al’...’an_u I rl’co-,pn-l )

such that ¢(a:i) is represented by a meridian of Ki’ Y(¢(:t:i))=ti and
y(¢(aj)) =1, Let W be the cell complex associated wiih the presentation.
That is, the cell complex W consists of a single vertex e, oriented
1-cells z’l‘,"',:c;,a‘l',"-,a;;w and oriented 2-cells r‘l‘,-",rr‘:_l attached
to the l-skelton according to the relations. Then by the van Kampen theo-
rem there is a canonical isomorphism ¢ : “l (W,e)-'nl(X), such that lb([::é])
= ¢(a:_2) and xb([a;]) = ¢(aj), where [:c;!] {resp. [a'j}]) is the element of
™ (W,e) represented by the oriented loop a:;.* (resp. a}] in W.

Let ﬁa (resp. 'ﬁm, ﬁk) be the covering space of W corresponding to the
group homomorphism vye} (resp. Yoo0, Ykolb). There is also a canonical iso-
morphism between the first homology groups of ﬁa (resp. ﬁm, 'f/k) and ;a
(resp. fn, fk). Therefore we identify them from now on.

The chain complex (c,,(ﬁa),aa,,.) (resp. (c*(p”zw),am,*), (c,,('ﬁk),ak,*) )
associated with the cell complex ﬁa (resp. 'ﬁm, ﬁk) is a free Au (resp. A,
."-.]'(] -chain complex. That is, Cm(;}a) =0 (mz23), sz_ﬁa] = Au["',rg,--'],

€YD = Alenizt,eeeiat, ], (W) = A fe] and

Yo¢

L]
Q
N
"3
~3
8
[=3]
3]
-c{,&ooo-eﬂooo
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Yo

8
L]
-

]

(e),

1)

...Q, “aot
]
—

where 3/3z7: and 9/ aaj are Fox’s free derivatives. Substituting Au by
A (resp. A,'(] and y by vy, (resp. Yk), we have the formulas for (C,,('IL),
w +) (zesp. (C, W ) ak +)) (see Gordon [4] Section 6).

Let q: C,,(W)-*C (W) (resp. Py : C,,(W)-*C ( )) be the chain map in-

duced by the natural projection gq: Wa+ Fla° (resp. Py: Vw-* Wk) .

Lemma 1. The following hold:

(i) Xer 3w = A[.r ~x‘l‘ °--,:n* x*]al\[a* see, ;_u],

(ii) q(Xer aa Y= - DAz - 24,0 :z:l“x :c*]sl\[a* vee, *_ 1,

(i) KXer ak,l = < tmcek 1 Al'c
where tracek 1+t1+t2+---+tk 1

* * coe -t % oo *
@ Aplx3 - =, = %) - @}l 0 A} [a], sy 1

(iv) < tracekx" >,2¢< tracek::‘l* >7 37 where 1 is the ring of integers,
Ay

(v) pk(Ker aw'l) = A;'([xi-x'l',---,z* xlleA [a* see, 1,

and pk(Im aw’z) =Im3d

a*
-y

(vi) q(Im aa’z) = Im 3

© 2 k,2'

Proof. (i) By changing basis of 01(37 ') s

f zi 3\ (t-l‘
A ot
"”z.‘”l ¢
W | Fp-@ =] 0 | Ced
*
4 | |
o 0
L %u ) L

(i) follows from the fact that A has no divisor of zero.
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(ii) Let o be the element of Ker aa written by:
2

1
L] 3 * 4 moH A
Q= fl(tlx"':tu)xl “"E f‘l:(tl’...,tu) (x‘l: -xl) "’.f gj(tl.”',tu)aj .
=2 J=1
Since 8a 1(ct) = 0, we have

]
(8) 'fl(tll'..’tu) (tl - 1) = ifzfi(tlp'.':tu)(ti - tl).

" By substituting t, for t in (#), we see f(8,++=,£) =0. For any fixed
J (2sjsu), if we replace t; with t for every i (£%J) in (#), we
obtain -fl(t,---,tj,---,t)(t -1 = fj(t,---,tj,-",t)(tj - ). Since
'Z<t,t'7.> is U.F.D., t-1 divides fj(t,-",tj,-“,tJ and therefore divides
fj(t,"-,t). Thus the implication c is proved.

To prove the convers implication >, we have only to show that
(z-1) (x;'!-zi*) belongs to gq(Ker aa’l). Let B = (t1 - l):cg - (ti - l)::l*,
then aa’l(B] =0 and g(B) = (t - 1) (a:;_! - zf).

(iiil) Tt will be noticed that (t-1)f() =0 iff tmcek divides f(t),
for any f(&) in Ak' Using this fact, (iii) follows from the' similar ar-
gument to the proof of (i),

(iv) follows from that t-tmcek = tmcek in Al'c'

(v) follows from (i),

(vi) follows from the fact that q and Py are onto.

Theorem 1. The following hold:
(i) The A-module Hl (fm] has a square presentation matriz:

o, ar, |Ya?
A (%) = 3. a » 2Sisyu, 1sjsn-y, 1sl<sn-1,
i g

and orderﬁﬁl(fé) = (t-1A(t,*++,t) where A(tl,'--,tu) 18 the Alexander

polynomial of L.
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(ii) The A-module g4l x a) has a square presentation matriax:

, o, o, Yt . .
Aa(t)= mﬁ’vj , ZS‘LSIJ, 15,7571-].1, lsan-l,

and order ll (X ) = V(¢); the Hosokauwa polynomial of L (Hosokawa (51).
Furtheremore the following sequence i8 exgoct:

0—— q ) ) —— BB )—— (/t-n*1 .

Proof. (i) follows from Lemma 1 (i) and det A(8) = (t-1)A(L,+-,2)
(see Murasugi [9] Chapter V Proposition 3.1 }.

(ii) Since (t- l)A[x‘z'-z;,-",zﬁ -xi‘] is isomorphic to a free A-module
A[y;,---,y;] of rank u-1 by sending .(t- 1) (a:g-:c;) to y_’,_!, Lemma 1
(ii) implies the following exact sequence:

A ()
A[l"* RS ]] "A[yzo"':y ,a* "'»a* ]_""q.tﬁ (;/)—»0

Hence 4 (t) is a relation matrix for q"Hl(;a)’ and

order ,,H (X )

"

det 4,(t) = (1/t-1)"Ydet 4 (#) = (1/t-1)"2az, 8

(]

V().

From Lemma (i) and (ii), the following sequence is exact:
0— qKer 3, ) — Ker 3, | — (A/t-1" ! o,
Factoring this sequence by q(Im aa,z) = Im aw’z , We see that
0 —— g (W) —— B () — (/t-1¥" 1, g
is exact. This completes the proof.

Corollary. The following hold:
(1) rankd (X)) = mnkAq,al('ia) = nullity 4, (¢) = mullity A (t).
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Particularly Hl (;w) 18 a torsion A-module if and only Zf V(&) # 0.
(ii) If V(2) # 0, then
(a) mkzﬁl(im) = deg V() +u-1, \
) !11 (;w) i8 torsion free as an abelian group, tf and only if the great-

est common divisor of the coefficients of V() 1is equal to 1.

Proof. These follow immediately from Theorem 1 and the results of

Crowell [1].

Theorem 2. (Shinohara and Sumners [12] Theorem 5.2 (i))

~ ~ ~ % ~
”1("79 = < tmcek:c’l* >AI" ® pk*Hl(Xoo) =7le HI(Xeo) / (t - l)Hl(Xw).

Remark. Geometrically, tr-aceka:; is represented by a meridian of the

branch line_ above Kl.

Proof. The first equality follows from Lemma 1.

The short exact sequence of chain complexes:

k
- -1 -~ P -
0—0,&) —— @) —Ew 0, @) — 0

implies that pk*Hl(Zn) = Hl(zn) / (tk- l)Hl(im). This completes the proof.

3. For a knot, Hz(fm) =0 and ¢-1: Hl (f('m)*fll (wa is an isomorphism.
In this section we study corresponding properties for a link.

We apply the Mayer-Vietoris theorem to 5‘” constructed by using a con-
nected Seifert surface, then obtain the following exact sequence:

V-V

0 —— (X ) — 9 — A9 » 8 X )—— 0

where V is the Seifert matrix and g is the size of V¥V (see Rolfsen [11n.

Since gQ is a exact functor and Q<t> is P.I.D., where Q is the field
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of rational numbers, we have the following:

d

Theorem 3. The relation H (X_;Q) 3 Q<t>® holds, where

d = mullity(tV-V') = rank,#) (%) = mullity 4 (2).

Theorem 4. Concerning t-1:H (X)~H (X,), the follawing hold:

(i) Ker(t-1) = j,,Hl (32»), where J 18 the inclusion map J: a??;;”rw,
and rankzl(er(t -1) =u-1-4d,

(i) Im(t-1) = q,,alcia).

Proof. The short exact sequence of chain complexes:

~ t-1 ~ p
00— C, (X)) —— C, (X)) -+ C,(X) >+ 0

induces the following long exact sequence:

t-1 p,i2

0 — H, (X)) — H,(X)—— &,(X)
3, - t-1 - Psy 3 %
— H (X)) — H,(X) — #,(X) > Hy(£).

(1) EI(X) is a free abelian group of rank u -1 generated by [Kix aDZ]
(1sisy), vhere 1(1:’<D2 is a regular neighbourhood of Ki and xixavz
is its boundary. Let F be a Seifert surface of I, K;: = Fn(Ki » anz), and
1'?1': a lift of K;:' in fm. From the definition of 82, it can be seen

that 3, ([K, x 0°]) = [R}] € j,,a;(a?rm). Hence Ker(t-1)=Im 3,=jH, (3%,).
mnszer(t -1)

n

mkzIm 32 = rcmkzliz(X) -rankZKer 32 =p-1- mnkZIm Pay

"

W~ 1- rankCoker(t - 1 : H,(%,) 5, (%))

M- 1- rankaCoker(t - 1: Ez(f«,;Q) +H, *_;Q).

Since H, (X_:Q = <>, Ccoker(t-1: Hy(X,:Q) ~ &, *;Q) = .
m n-y ~
s - A _ mi . #
(ii) Let « ifzfi ®) (::i :cl) +j§lgj(t)aj be an element of Hl x),

then the following hold:
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ceIn(t-1) T ac Ker p,,

u BRI
Pyy(@) = igz(t"tl ) =1

++

b f'L(l) =0, 2sixy

T t-1 divides fi(t)’ 2575y
-

P

ae q*Hl (fa).

4. Since zk is the completion of 7k,
= X 4 :
Hl (Zk) Hl (Xk) /< tmceka:i, lsisyp >

s ot :
where < tmcekxz, 1€sisyp >Z =< tmaek t,» 1sisy >A]'<'

Theorem 5. (Shinohara and Sumners [12] Theorem 5.4. (i)) The Sfollowing

sequence i8 exact: 00— Z¥ Hl( })— H (Zk)——» 0.

Proof. Since the homomorphism Qpes * H (3 )->H (X), where q : 7{'@-»}( is

the covermg projection, maps tracek 4 to tf, Gp< trace,x%, 1sizy >7

ai
k5L
= < tk' 1sisy >, = T 2%, Hence < tmceka:;!, lsisy >5 =z This com-

pletes the proof.
Now we obtain the following theorem:
Theorem 6. H (Z ) -11 (X ]/traceH (X)

Remark. For a knmot, t-1 : Hl('fm) -+ Hltfm] is an isomorphism and
: ~. .k ~ - ~ k ~
(t - Vtrace, #) X)) = (¢°- DH,(X). Hence B (E) 5B (E) /¢ -8 (&Y

(refer to Gordon {3]).

mn

Proof. From The‘orem 2, }11 (Xk) < tmcekxl >A ,,< ® pk*ﬁl (Xm) and

2 : = # A _ pt 2 >
< traceka:i, 1sisp >AI'< < tmcekxl >AIEQ< tracek(xi xl), 28ty

A,'('
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From Lemma 1 (v), < tmcek[z;!-z;), 2si<yp > ’,c c pk*HI(XmJ' Hence

Hl(Ek) = Hl(fk) /< tmcek:cé, 1<y >A1'c

pk*Hl(;m) /< trace, (x¥-=4), 2<isy >’,<

"

- ~ . k ~ .
2H @)/ < tracek(z;:-a:;), 2<isp > - I)HI(Xm)} .
Thus we have only to prove:
. N ~ =
< tmcek(xg-xf), 2sisy >A + (¢ - I)Hl (Xw) = tmcekﬂl(xm).

From Lemma 1 and the fact that tk-l = (¢~ l)tmcek, the implication <
follows. From Lemma 1 (i), Hl (?[m) is generated by {xg-x;, a&!, 2sisy,
1si<n-yp}., From Lemma 1 (ii) and Theorem 4, a';. € q,iHl (Xa) = (¢t~ I)Hl(Xm).

Hence a;. = (t-1)a for some a in Hltfm), therefore traceka‘. = (tk- Da

LX)

is contained in the left hand side. This completes the proof.

5. Now using the previous results, we give alternative proofs of the
theorem of Hosokawa [5] on V(1) and the theorems of Hosokawa and Kinoshita

[6] on Hl(zk). We need the following lemma.

Lemma 2. Let M be the A-module presented by a square matriz A(t) 1in
Mat(m,A) whose elementary divisors are el(t), eztt),---, em(t) and
det A(t) = A(t) = ayt"+a 1l +a, with aa #0. Let f(¢) =

k k-1

cot + clt

tecre beman element of A. Then the following hold:
(1) rankyM/ f(t)M = iflacei(t),f(t)), where Ble,(t),f(t)) is the
number of common roots of ei(t) and  f(%), x
(1) If ey = ferl = 1, then M/ f(tdM| = |zl='llA(wz)| vhere w,

(1<2sk) are roots of f(t).
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Proof. (i) Let T = C<t>, where C is the field of complex numbers.

m
Since T is P.I.D., MgC = oT/< e;(t) >,. Therefore MgC/f(t)(MQC)
i<l
m .
= oT/<e. (B),f(t) >p- If w, . are common rcots of e.(¢) and f(%),
i=1 Z i,d i

<o (81,7(8) >p = < It -uy

)>I" Hence
n
rankz M/f(t = I'kac M?C/f(t) (Mgc) = ile(ei(t).f(t))-

(ii) Let A(%) = tdAo+td'l.41+ e +Ad, where A.eMat(m Z). 1f 'Ic

|ckl 1, the Z-module ¥/ f(t)¥ has the following relation matrix R in

Mat(m(k +d),Z7):

{ 3
A 4gq ot 4y, | o
.. .. k- row 8

* A e s e A J

Ra d “d-1 0
ckE ck-IE ¢ . . coE: oo
., . ., d- row s

i ckE' ck_lE * e . col-.‘ J

Thus the proof of (ii) is reduced to the following sub-lemma.
k
Sub-lemma. detR=1*n A(w;).
1=1
Proof of the gub-lemma. Consider the polynomial ring
- zﬂ-u,aé";.,m,wz',---ll where 1s%,jsm, Osssd, 1slsk, and P<t>

the Laurent polynomial ring over P in one variable. Let

A' = (a(s) ) € Mat(m,P), 0<ssd,

A'(8) = tdA6+t Yge . +4} € Mat(m,B<t>),
A'(t) = det A'(t) ¢ P<t>,
k ko, kel
and f'(t} = I (¢- wl) ’t +cl't + 00 +c;2 € P<t>,
1=1
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Let R' e Mat(m(k + d),P) be obtained from R by rewriting As by Aé,

ci'by c{. If we add (the g-th " coZumn") x (mi)s'l (2s8sd) to the

" n
first colwm , we see;

' A’ () ‘ [ 4'w)) ’
mi’% ' () 0
: ’ '
R! ~ wik_lA , (mi) ] ~ : # .
0 .
\ 0 ) { 0

Hence A'[wi) = det A'(wi) divides det R' in P for each 1 (1< 1<k},
k

Since A'(mi) (1s1sk) are relatively prime, n A'(wi) divides det R'
1=1

in P. Comparing the coefficients, we see det R' = 1 A’(wi). The proof

1=1
of Lemma 2 is complete.

Let us study VY(1). From Theoren 1 and Lemma 2,
V| = |8, &) 7 (- DaB &)

Consider the following commutative diagram:

0 — 4.8, (3%,) 7,&) — g &) ———— 0
| £-1 Ve o1 | -1
0— 7,8, (X)) Q&) — g8 X)) —— 0.

| l

~ ~

GuB GF) — B ®) / (¢ - DB E) — ady B/ (- gy X) — 0

0 0 0
From Theorem 4 the first and the second rows are exact. Since t-~1=0:

51(87‘”) »Hl(a’fm), the first column is exact, and obviously_: the other col-
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umns are also exact. Hence the third row is exact (see, for example,

MacLane [7] p.50). Since Hl@w) / (&t - 1)H1(im) % Ker(d, : #,(X) + ﬁo(}w))

from the exact sequence in the proof of Theorem 4, we see:

9l (XD /(8- D, (X)) = Ker 3, / In(pyod,),

where [%1'] t, tl 1
Pyods | ¢ =v|: ], il =] ey,
[X1] t, t, 1
Tk (K, ,K) (P#4)
and U= (1, .), z..={ J .
+J tsd - LIk, K) (i=4)
s#i e

From the above it follows that any principal sub-matrix of U is a relation

matrix of q*ﬁltfa) / (t- l)qiﬂl(fa). Thus we have the following:

Theorem 7. (Hosokawa [S] Theorem 1) V(1) <is equal to any principal

minor determinant of U.

Next we study Hl (Zk). Consider the following exact sequence:

g —mmm——

0 —— g, (%) + 8 &) —— (/t-¥l—— g
1 trace, l trace, 1 trace,
0 —— ¢4, (%) — B F)—— (/t-n*1l—— g

| |

— q (X )/ trace,q i) (X)) — K, (L) —— /" ——

} . !

0 0 0 ’
The first and the second rows are exact from Theorem 1, the second column
is exact from Theorem 6,. and obviously the first and the third columns are

exact. ' Therefore the third row is exact. From Theorem 1. and Lemma 2, we
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obtain the following theorem.

Theorem 8. (Hosokawa and Kinoshita [6] Theorems 1 and 2)

(i) |#7 (Zk)l = kM 1| l'l ( )|, where w; are k-th roote of 1 distinet
from 1,
n-1
(ii) mnkz Hl( ) = fla(ea,i(t],tmcek], where ea,i(ﬂ are elementary

divisors of Aa(t).

Remark. From Theorems 2 and 5 and Lemma 2, we see that mnkz Hl (Ek) =

n-1
I B(e (t),tk- 1) - (u - 1), where e, i(t) are elementary divisors of
1=l :

A,(t) ( Theorem 2 in [6]).
Corollary, :mnkz Hl (zk) 2 B(V(t),tmcek).

Remark. Though Theorem 3 in [6] says that runkz Hl(}:k) -3 B(V(t),t’_(— 1),

it is incorrect. For example, Whitehead link has A_(t) = ((¢-1)%) and

ranky H () = B((t- l)z,tmcek) =0, but B((t-1)2, tk- 1 = 1.

We close this paper by proving the following result obtained by Murasugi

and Mayberry [10].
Theorem 9. If zkazlil(zk) = 0, then |TorZHI( o= l n V(w)

Proof. From Theorem 2, Toz=Z chxk) = ?orz(Hl(Xm) / (t - l)H1 x.)).
By the similar argument to the proof of Theorem 8, we obtain the following

exact sequence:
E(?)/(tk-l) BEX)— 8,G)/ *-na Gy)— 21— o
948 (X, 9.8, (X, 14 1% :

Since (tk-l)Hl(fm) = tmekq*al(;a) from Theorem 4, the following
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sequence is exact:

00— q*ﬂl(;a) /tmcekq*ﬂl(i{'a)—» Hl(iw) / (tk~ I)Hl(fm)_’ Z“‘1—+ 0.

On the other hand, from the proof of Theorem 8, we see that

q*al(;?a) /tmcekq,,al()?a) is finite iff rank, H(Z) = 0. Hence

Torz Hl (Xk) = q,Hl (Xa) /tmcekq,,lil (Xa)’ if mnkz Hl [Ek) = 0, Now this

theorem follows from Lemma 2,
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