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For a knot K in S3 and a rational number r, let M(K, r) be the closed 3-
manifold obtained by Dehn surgery of type r on K. K is said to have Property
P, (n e Z\{0}), iff M(K, 1/n) is not simply connected, and K is said to have Prop-
erty P,iff K has Property P, for any ne Z\{0}. A link L in S? is said to have
Property P*, iff every Dehn surgery of S® on L does not produce a fake homotopy
3-sphere (cf. [23]).

Montesinos [13] studied the relationship between 2-fold branched coverings
and closed 3-manifolds obtained by Dehn surgery on links with symmetry. In
particular, he showed that every simply connected 2-fold branched covering of
§3 is homeomorphic to S3, iff every strongly invertible link has Property P*.
(See p. 227 of [13). Note that the term “Property P in [13] means Property P*
in this paper.) Hence, by the positive solution of the homotopy Smith conjecture
[20], it follows that every strongly invertible link has Property P*. Nevertheless,
it remains open whether every strongly invertible knot has Property P.

In this paper, using the techniques of Montesinos [13] and the homotopy
Smith conjecture, we prove the Property P conjecture for some classes of knots
with symmetry — a class containing all 3-strand pretzel knots of odd type (The-
orem 1), and a class containing all 2-bridge knots (Theorem 2). (For 2-bridge
knots, the Property P conjecture has been proved by Takahashi [21].)

We apply our method to the knots in the knot table which were not proved
by Riley [17] to have Property PP (which is stronger than Property P). Through
it, we can conclude that all knots in the table with 9 crossings or less except 8,5,
93, and 9;, have Property P (see Section 7). (The exceptional knots 8,, 9;, and
9,5 are the only knots with 9 crossings or less, which are non-invertible (see

5. 71.)

1. Dehn surgery on periodic knots

Let L=0OUK be a 2-component link in S? with O a trivial knot, and let
n(n>1) be a positive integer relatively prime to A=/k(0, K). The n-fold cyclic
branched covering Y°,(0) of S* branched along Ois again a 3-sphere, and the lift,
C.(L), of K to 3,(0) is a periodic knot of period n. (By [20], every periodic knot
is so obtained.) Let N(K) be a regular neighbourhood of K, which is disjoint
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from 0. For an integer k, the homology sphere M(K, 1/k) is obtained from
§3—int N(K) by sewing a solid torus. Let Wy(L) be the knot in M(K, 1/k) given
by 0<S3*—int N(K)cM(K, 1/k). [Hereafter, for a 2-component ordered link
L=K, UK, in 53 we use the symbol C,(L) (resp. W,(L)) to denote the lift of K,
in 3(K,) (resp. the knot K, in M(K,, 1/k)).]

The following is a generalization of Theorem 2 of [13].

PROPOSITION L. For an integer q, M(C,(L), 1/q) is the n-fold cyclic branched
covering of M(K, 1/nq) branched along W,(L).

PrRoOF. Let p be the covering projection ¥ ,(0)-S3, and let N(K)=
p~WN(K)). Then N(K)is a regular neighbourhood of C,(L), which is invariant
under the Z,-action on 3(0). Let ¢ and m be a preferred longitude (see p. 31
of [19]) and a meridian of N(K), and let £ and i be a lift of £ and m respectively.
Then - and 1it are a preferred longitude and a meridian of N(K) respectively, and
their homology classes satisfy the equations py([£])=n[£¢] and Pa([i1])=[m]
in H,(0N(K)). Now, M(C(L), 1/q) is obtained from ¥,(0)—int H(K)and a
solid torus T'by identifying their boundaries, where a meridian i of 7 is identified
with a simple loop on AN(K) representing the homology class q[i]-!-[n’z]e
H,\(0N(K)). It can be seen that the Z,-action on dN(K)=4aT extends to a free
Z,-action on T, such that T/Z, is again a solid torus T. Thus we obtain a Z,-
action on M(C,(L), 1/q), such that

(1) Fix(Z,) = p~'(0), and
@ M(C(L), l9)]Z, = (Z,(0)—int N(K))/Z,u T} 2,
=(S*-imtNK) U T.

Here a meridian g of T'is identified with a simple loop on dN(K) representing the
homology class ng[£]+[m]e H,(ON(K)), since p.([i])= Po(gL €1+ [M]) =
nq(€]+[m] in H,(ON(K)). This completes the proof.

From the above, we have the following proposition.

ProposiTION 2. C,(L) has Property P, (g€ Z\{0}), iff K has Property P,
or the knot W, (L) in M(K, 1/nq) is non-trivial.

ProoF. This follows from the positive solution of the homotopy Smith Con-
jecture [20] and the fact that the homomorphism n,(M(C,(L), 1/g))-n,(M(K,
1/nq)) induced by the covering projection is an epimorphism.

ExaMpLE . The knot 8,4 is a periodic knot of period 4. Let h bea periocid
map on S realizing the 4-fold symmetry. Then the knot 8ys/P =S¥ h2=83is a
figure-eight knot, which has Property P by [1, 3]). Hence 8, has Property P.
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ExaMPLE 2. Let L=0U K be a link as illustrated in Fig. 1. Then C,(L)
is a figure-eight knot (see Fig. 2). :

ol
®

Fig. 2

Since K is a trivial knot, M(C,(L), 1/q) is the 2-fold branched covering of S3
branched along the knot W, (L), which is obtained from O by (—29) right-hand

full twists along K (see Fig. 3).

(~2q) right-hand |
[~ full twists W, (D)
e LD — x
|

Fig. 3

The Alexander polynomial of W, (L), which is calculated in Example 4 of Section
3, is nontrivial. So, we can conclude that the figure-eight knot has Property P.

2. Dehn surgery on strongly invertible knots

Let O be a trivial knot in S?, and let J be an arc in S3 such that Jn 0=4J.
The 2-fold branched covering 3 ,(0) of S? branched along O is a 3-sphere, and the
inverse image, I(J), of the arc J in ¥ ,(0) is a strongly invertible knot. (By [24],
cvery strongly invertible knot is so obtained.)

Montesinos proved that M(I(J), r) (re Q@ U {0}) is a 2-fold branched covering
of §* (see Theorem 1 of [13]). Let F{J) (ge Z) be the branch line of the
branched covering M(I(J), 1/g)—S3. Then, by the homotopy Smith conjecture
[20], we have the following.
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ProposiTiON 3. I(J) has Property P, (g€ Z\{0}), iff the knot F(J) is
nontrivial,

Here, we describe the branch line F (J) according to [14] (cf. [12]). Let B
be a regular neighbourhood of J, such that O intersects B in two disjoint proper
arcs (see Fig. 4). Then the inverse image B of B is a regular neighbourhood of
1(J), which is invariant under the nontrivial covering transformation t (see Fig. 5).

t
\ B B
b 1 I
Y /
- ” ,/ I Z
Fig. 4 : Fig. 5

Let £ be a preferred longitude of B, such that ((£) n £=0, and let y=p(£), where
p is the projection 3, (0)—S? (seg Fig.'s 4, 5 and 6). Let D, be a homeomor-
phism on B as illustrated in Fig. 6.

0nB <4 i
rotate w

D

e

Fig. 6

Y -

Then the branch line Fy(J) is given by
F(J)=(0-=OnintB) u D;0NB)<(S*-B)u B=S3.
Let Ly(J)=0uUyand L,(J)=F,(J)Uy. Then, we have

{ WlLo(J)  (g=2k)
WLi(J)  (g=2k+1).

F(J) =

q

(Recall the definition of W,( ) given in Section 1.)
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EXAMPLE 3.‘ Let O and J be a trivial knot and an arc in S3 as illustrated in
Fig. 7. Then I(J) is a figure-eight knot (see Fig. 8).

Fig. 7

Fig. 8

The knot F(J)=(0—(0n int B))u D;%O n B) is illustrated in Fig. 9.

" (-q) right-hand
half twists

Fig. 9

Y

IR

The Alexander polynomial of F(J), which is calculated in Example 5 of Section 3,
is nontrivial. So, we can again conclude that the figure-eight knot has Property P.

3. The effect of the transformation W, ( ) on the Alexander polynomials

As discussed in the previous sections, the Property P conjecture for periodic
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knots and strongly invertible knots is reduced to proving the nontriviality of knots
obtained from certain 2-component links through the operation W,( ).

In this section, we give formulas of the Alexander polynomials of such knots,
one of which was formulated by Kidwell [8].

Let L=K, U K, be an oriented ordered link in an oriented S3. Recall that
W,(L) denotes the knot K, in M(K,, 1/k). Tf K, is a trivial knot, Wi(L) is a knot
in S® obtained from K, by (—k) right-hand full twists along K,. Let a(x, »)
be the Alexander polynomial of the link L, A=/k(K, K;), and 4,(r) be the Alex-
ander polynomial of the knot Wy(L). In case =0, define a polynomial A(?) as
follows. Let V=M(K,, 0)—int N(K,), where N(K,) is a regular neighbourhood
of K, and let ¥ be the infinite cyclic cover of V corresponding to the composite
homomorphism m,(V)— Z of the abelianization and 7: H (N2 Z®Z— Z where
7 carries the meridians of K, and K, to a generator and zero respectively. Define
A(?) to be the determinant of a square presentation matrix of the Z{ty-module
H (V) (see Section 2 of [9]). We call A(f) the At-polynomial of L.

ProrosiTION 4. (1) (Corollary 3.2 of Kidwell [8]) In case 150, we have
AL =4(1, 17*%)]p,(1), where p(£)=(*—1)[(t~1).
(2) In case A=0, we have 4,(1)=4q(t) +kA(1).

REMARK. Since the polynomials 4,(f) and A(r) are well-defined only up to
units of the group ring Z{t», there remains some ambiguity in the formula (2).
The precise meaning of it is as follows: For a suitable representation of the
polynomials

A() = ao +"§.oa;(t‘+f") and  Aq(t) = bo + ?_ob.(ﬂﬂ-'),

we have 4,(1)=(by+ka,) +‘>Zo(b,+ ka)(# +171).

Proof. (1) This is a generalization of the Torres’ formula, and, in fact, is
proved by Kidwell [8] by using it.

(2) . To prove this formula, we use arguments of Kojima-Yamasaki [9] and
Rolfsen [18]. By [18], there are disjoint solid tori Ti,..., T, in S* and a self-
homeomorphism h on S3—int (T, U --- U T), such that

(1) I(K,) is unknotted in S3,
(2) Ik(T,, K\)=Ik(T,, h(K,))=0 for all r,
‘(3) h@T)=0T, and Ik(y,, T,)=+ 1, where u, is a meridian of T, and s, =
h(n,).
Since h(K,) is unknotted, the infinite cyclic cover of S*—int h(N(K,)) is

p: R x D2— St x D2 = §? — int h(N(K,)).
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Since Ik(h(K,), K,)=0 (resp. Ik(T,, h(K,))=0), a lift N(K,) (resp. T,) of N(K,),
a regular neighbourhood of K, (resp. 7;), is homeomorphic to D2xS'. Let ¢
be a generator of the covering transformation group, ¢ and m be a preferred
longitude and a meridian of K, respectively, and £ (resp. i, jit) be the lift of ¢
(resp. m, u!) to 3N(K,) (resp. aN(K,), oT,). Let E,=M(K,, 1/k)—int N(W(L)),
where N(W,(L))is a regular neighbourhood of the knot W,(L), and let E, be the
infinite cyclic cover of E,. Then ¥V (resp. E,) is obtained from R!xD? by
removing each int t( N(K,)), int #(T}) (i, j € Z), and sewing back a solid torus so
that its meridian coincides with £ (resp. t{(ké+m)) or t//I, (resp. t/i}). Then,
by Proposition 4 of [9], H,(F) has a presentation matrix

a b
( c” D)

where b=(b,,..., b,), e=(cy,..., ¢,), D=(dg) ;s rgn

with a=3 k(60 R)0, b= ) Ik(é, #TY, ¢, = (i, tR)e,

dy =T k(i 1T,

Here K, is the lift of K, to N(K,), and /k( , ) is the linking number in R! x D2,
By [18], D is a presentation matrix of H,(E,). Recall that, in constructing E,,
the meridian of the solid torus attached to dN(K,) is identified with k&+#i.
From this fact, we can see that H,(E,) has a presentation matrix

(l+ka kb)
cT D '

l+ka kb
det )
c’ D

1 kb ka kb
det + det )
0D e D

a b
=detD + k det
eT D

Hence 4,(1)

= do(t) + kA(D).

This completes the proof. (The statement in the remark follows from the fact
that 4,(¢) and A(f) are symmetric (see [6]).)

ExaMpLE 4. Consider the same setting as that of Example 2. Then A=
Ik(0, K)=3, and the Alexander polynomial 4(x, y) of L=OUK is x+(1-x+
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x2)y+xy?. Hence, by Proposition 4, the Alexander polynomial 4(9)(¢) of the
knot W, (L) is given by

49(0) = AQt, t759)[(1 +1+412) = (141769 —769%1 4 1=60+2 1 (=12¢+1) /(] 41 412),
In particular, deg 4(9(t)=12|q| -2 (g#0), and therefore 4¢@)(t)# 1.

ExampLE 5. Consider the same setting as that of Example 3. Recall that
the knot F (J) is equivalent to W (Ly(J)) or W(L,(J)) according to whether
q=2k or q=2k+1, where Lo(J)=0uUy and L,(J)=F,(J)uy. Here Ik(0, y)=
Ik(F(J), y)=0. Hence, by Proposition 3, the Alexander polynomial 4(9)(t) of
the knot F(J) is given as follows.

49)(1) = [ 14+ kAg(1) (g=2k)
AN + kKAL)  (g=2k+1),

)

where Ao(t) and A,(r) are the Ar-polynomials of the links Ly(J) and L,(J) respec-
tively. By direct calculation, we have

Aoty =[-2,1,1, —1

400 =[1,0, -1,1,0, -1, 1

A =01, -2,1,1, =2, 1,

where {a,, a,,..., a, means a,+ ‘Zfﬁl a(t'+ ). In particular, deg 4((t) (q+#0)

is equal to 6, 10 or 12, according to whether q is even, —1 or one of the rest, and
therefore 49)(t)#1.

REMARK. Since the figure-cight knot is amphicheiral, we have M =M_,,
where M =M (figure-eight, 1/g). So the knots W, 24(L) in Example 2 and the
knots F,(J) in Example 3 have the same homology 3-sphere M, as 2-fold
branched coverings. On the other hand, by Examples 4 and 5, we have

() Wap(L) = W_p (L) forany g,

(@) F()£F_(J) forany g,

Q) FN&EWep(L)E F_J), if [ql>1,

(@) Fi(J) & Wi(l) = F_,(J).
Hence, if |g|>1 (resp. |q| =1), there are three (resp. two) inequivalent knots in S3
whose 2-fold branched coverings are homeomorphic to the same homology 3-

sphere M,. Takahashi [22] constructed such knots from a different point of
view. In fact, it can be seen that they are F /) and F_ (J).
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At the end of this section, we explain a convenient method for calculating
Alexander polynomials of 2-component links ngen by Cooper [2], which we use
in Sections 4 and 5. .

.Let D and D’ be P. L. embedded bicollared disks in S3, such that:D n D' has
only clasp singularities. Let {y,,...,y,} be a basis of the free abelian group
H{DuyD'). We define two matrices A and B as follows. Let u; be a 1-cycle
representing y,, such that u; n (D n D) has a neighbourhood in S? of the form as
shown in Fig. 10.

D'
D ~

4

Fig. 10

i

Then, " define A=(lk(u;~, uy)) and B=(lk(u;*, u))), where u;~ (resp.ur*) is
the 1-cycle in S® obtained by lifting u, off DU D’ in the negative normal direction
off D and in the negative (resp. positive) normal direction off D’. The following
is a special case of Theorem 2.1 of Cooper [2].

PROPOSITION 5. The Alexander polynomial of the link L=8DyadD’ is
det (xyA+ AT—xB— yBT).

4. A class of knots containing 3-strand pretzel knots of odd type

For a 3-tuple of integers (ry, r, r3), let us consider an oriented link L(r,, r,,
r3)=K; U K, as illustrated in Fig. 11.

S y
7 ' 2 r, right-hand
2 rs n|l<> e

4

~ half twists
==, TT M
(£=1,2,3)
L [ L —l"x

Y
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Here, we assume that (r;, r))#(0, —1) for any i, j (1<, j<3).: (If (r,, r))=
(0, —1) for some i, j, then L(r,, r,, r;) is the Hopf link.) For a positive integer
n (n>2) relatively prime to the linking number 1=1k(K,, K,), let K(r,, r3, r3)
be the periodic knot C,(L(r,, r,, r,)) generated by the link L(r,, ry, r3). (Recall
the definition of C,( ) given in Section 1.) In perticular, Ky(r, rs, r;) is the
pretzel knot of type (2r, +1, 2ry 41, 2r5+1).

THEOREM 1.  K,(ry, ra, r3) has property P.

ProoF. Since L(r,, ry, ry) is equivalent to L(—r,—1, —r;—1, —ry;—1)
and L(ry(1y, Fag2y To(3y) for any permutation o on {1, 2, 3}, we may assume that
L(ry, ry, r3) is of one of the following two types.

Type 1. L(2l,, 21,, 213)
Type2. L(2l,, 205, 213+1) (I, 1)#(0, —1) for each i=1, 2)

If L(ry, ry, r3) is of Type | (resp. Type 2), then the linking number 1 is 3
(resp. 1). Let 4(x, y) be the Alexander polynomial of L(r,, ry, r3). Then, by
Propositions 2 and 4, we have only to prove that deg 4(t, ***)>1—1 for each
integer k (1] >2).

To calculate 4(x, y), let us consider bicollared disks D and D’ in S3 with
dD=K, and 8D’ =K, as illustrated in Fig. 12. Choose 1-cycles u, and u,, which
form a basis of H,(Dy D’), as illustrated in Fig. 12.

MM/ LA IS A
// /

Shaded sides of D and D'

are negative sides.

Fig. 12

Then, by Proposition 5, 4(x, y)=det(xyA+ AT —xB—yBT), where the
matrices A and B are given as follows;

L+, —I Li+l, ~ly—1
Type 1; A=( 1742 2 >’ B=( 1 74 2 )
—Iz 12+13 —lz Iz+ls+l

L+l, -1 ClLFL+L =
Type 2: A=( 1 2 )’ B=(“l 2 2 )
" "'l; Iz+l_';+l —,2—1 ’2+13+1
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Hence, we have 4A(x, y)= S‘.ijss wyxi=1y/=t, where the coefficient matrix
(Wij)1<1.5¢3 is given as follows.
I x x?

1 (8 —a—2f a+f+1
Typel; y { —a—2f 2a+4f+1 -—a-2f

yla+p+1 —a—28 B ,

| x x?
L (B+1+1, ~a—=2f—1~l, =1, a+f+1

Type2; y ( —a~2f—1—1,~1, 2a+48+1+2(l,+1;) —a—28—~1-1,—1,
.Vz a+ﬂ+l —a-—-Zﬁ—l —11_12 ﬂ+11+12,
where a=l, +12+I3, ﬂ=ll’2+’2’3+llll'

Now, we prove that deg 4(t, t*4)>A— | for any integer k (|k| =2).
Type 1: 1tis clear that (@+f8+1, —a—28, f)#(0, 0, 0).. Hence, we have

deg A(t, 1**) = deg A(1, t3%)
6k — 2 (k=2)
0-(6k+2) (k<-2)
>2=)-1
Type 2: 1t can be seen that (a+f+1, —a—2f—1~1,—1,)=(0, 0) (resp.

(—a=28—1—1,—1y, B+1,4+1,)=(0, 0)), iff I3;=—1 and /,1,=0. But this does
not occur by the assumption. Hence, for any k (Jk{=2), we have

deg A(1, 1**) = deg A(1, t*) = |(2k+1)—1|>0= 21— 1.

This completes the proof.

5. A class of knots containing 2-bridge knots

Let L(2p, g9)=K; U K, be an oriented 2-bridge link of type (2p, q), where
1<g<2pand g.cd. (2p, g)=1 (see Fig. 13). Here, we assume that px1. (L(2,
1)is the Hopf link.) For a positive integer n (n>2) relatively prime to the linking
number A=1lk(K,, K;), let K,(p, q) be the periodic knot C,(L(2p, q)) generated
by the link L(2p, q). In particular, K,(p, g) is a 2-bridge knot of type (p, 9).

THeoReM 2. K.(p, q) has property P.
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2 . . .
PROOF. 2 has the following continued fraction;

% - D S N S
q Zbl + _sz + 2b3 +erene + —2bm_) + me’

where b, is a non-zero integer for each i (1<i<m), and m isan odd integer. Then
L(2p, q) is equivalent to the link as illustrated in Fig. 13.

b 5 —- >
1 3
N\ - S . - S
2 e “m-1

Fig. 13

We may assume that the linking number 4 is positive. Let 4(x, y) be the
Alexander polynomial of L(2p, g). Then, by Propositions 2 and 4, we have only
to prove that deg 4(1, t**)> A —1 for each k (Jk| >2). To calculate the polynomial,
let us consider bicollared disks D and D’ with 8D=K, and D’ =K, as illustrated
in Fig. 14. DD’ consists of |b,|+]bs}+---+[b,| clasp singularities. Choose
l-cycles u,, u,,..., u, which form a basis of H,(Du D’) as illustrated in Fig. 14,
where s=1b,|+|b3|+---+|b,l—1. Note that s>1, since p#1.

\\\\\\\\\\\\\\\\\\\\\\\\\\

/é////ém

2 7 \
‘Shaded sides of D and D' are negative sides. |
Fig. 14 '

Let V=tk3*144 AT —1B~(*4BT, where A and B are matrices defined in
Section 3. Then, by Proposition 5, 4(t, t**)=det V.
- The matrices A and B are given as follows;
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/ _____________ ~
0 T
.. b
0 [
by - — ¢ e e - - o =
0
., 1b;]
0
A= by ——— e = =
.ob
m-lo —_—— = |
., llb,,,l—l
N 0 y
P EREEREEEEECEEEE i
B, 1641
v, A | ‘
B, Ibs|
Vs X
Ym-1 _
B,
|bal -1,
vnﬂ-l
\ 7

where B; and v, are given as follows (i=1, 3, 5,..., m, j=0, 2, 4,..., m+1).
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1
-1 1
L eso
11
Vigy /
1
-1 1 '
(;<0)
“1'1
=1 vy, J
(b, >0)
(b;<0)

vy=0b;+¢f2 with g = —{b)_/lb;~\[+bjs\/lbjsil} (j=2,4,....,m=1)

Umsy =

|

-1

(bye>0)
i (b,<0)

Therefore the matrix V=1*4+14 4 AT —tB—(*4BT is of the following form.

4

To

\

-—ed e = = e tm ws e = =

Tm-l-l

llb..l =t

7/

where V; and T, are given as follows (i=1, 3,5..,m,j=0,24,.,m+1).
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(T;., ~t ]
St Al LU o SR

4 T (Y )
Lgkd gkdgy Iy
\ —1“ Tt-u /
(T,—y %4

e B o

= L L [ee<0)

U o—gkap

\ t TH-IJ

kA 4 ¢ (b;>0)
To =
-t~y (b;<0)
T; = b {t***1 4+ 1) — (by+¢/2)(1**+1)  (j=2,4,...,m~])
4+ ¢ (b,,>0)
Tair =
-t~y  (b,<0)

Let W, (1<i<s) be the submatrix of V consisting of (v, x) entries of V with v, u>
s—i. Define d{f)=detW, (1<i<s), and dyo(f)=1. Especially, d,(t)=det V=
A(t, 154),

LeMMA 1. For each integer i (1<i<s—1), the following equation holds.
diy (1) = F,_()d(t) — t+4*1d,_((0).
Here, F (1) is the (j, j) entry of V.

PROOF. By expanding the first column of W, we obtain the equation im-
mediately.

For a Laurent polynomial f(1), let Max (f(1)) (resp. Min (f(2))) be the maximal
(resp. minimal) t-power of any term of f(¢).

LEMMA 2. For each integer i (1<i<s), we have the followings.

M) If k=2,  Max(d(D)) = Max(d,- () + k2 e (o)
Min (d(1) < Min (di-, () +1 = e AR
2 If k<=2, Max(d() 2 Max(@d,-()) e (o>

Min (d(0) < Min d- () + kA +1 e 3)-
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Proor. (1) k>=>2: Note that Max (F(1))= kA and Min (F(f))<1, for each
i (1£i<s). We prove the inequality («;) inductively. Since Max(d,(1)=
Max (F{))= kA, («,) holds. Suppose that («;) holds for some j (1< j<s—1).

Then Max (F,_()d (1)) = Max (F,_ (1)) + Max (d(1)
2 kL + (Max (d;- () +k1)
> (kA+1) + Max (d;_ (1))
= Max (t***4d,_(1)).

Hence, by Lemma I, Max(d;, (1))=Max (F,_ ()d(t)) >Max (d(t))+ k4, and
(a;+1) holds. Therefore («;) holds for any i (1<i<s). Next, we prove (8)
inductively. Since Min(d,(1))=Min(F(f)<1, (B8,) holds. Suppose that (§))
holds for some j (1< j<s—1). Then

Min(F,_ ()d(1)) = Min(F,_ (1)) + Min(df1))
< 1+ (Min(d;_ () +1)
< (kA+1) + Min(d;-,(9)
< Min (’kl"’ldl_ 1(‘)) .
Hence, by Lemma i, Min(d;, (0))=Min(F,_)d(t))<Min(d[(0))+1, and
(B;+1) holds. Therefore (8;) holds for any i (1<i<s).
(2) k< -2: Note that Max (F())>0 and Min(F()<ki+1, for each i

(1<i<s). Then, by a similar argument as the above, we can prove the inequalities
(7)) and (8) (1<i<s).

From the above lemma, we have deg (d())>deg (d,- ,(1)), for any i (2<i<5s),
and deg (d,(t))>A—1. Therefore,
deg A(t, 1**) = deg (d (1)) > deg (d,_ (1)) >---> deg (d,(2)) > }. - 1.
This completes the proof of Theorem 2.

6. Even pretzel knots

Let K(p, g, 2r) be an even prezel knot. (p and q are odd integers.) Riley
[17] proved that, if p+g+0, then K(p, g, 2r) has Property PP. So, we consider
K(p, —p, 2r). Note that K(p, —p, 2r) is nontrivial, iff |p|#1.

TheoreM 3. K(p, —p, 2r) (p: odd, |p|=,él) has Property Pz,‘“ for any
mtegerk

PrRooF. Since K(p, - p, 2r)=K(—p, p, —2r), we may assume that p=4p'+
1. Let O and J be a trivial knot and an arc in S3 as illustrated in Fig. 15. Then
K(p’ =D 2") l(‘r)
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2p’ -2p’ r n =)

XX

- S S 0 n right-hand

half twists
Fig. 1§

By Proposition 3, we have only to prove that the knot F,,.,(J) is nontrivial,
Recall that F,, . ((J)=W(L(J)). So, by Proposition 4, the Alexander polynomial
4Gk (1) of Fay . (1) is given by

4Ck(1y = A1) + kA,(1),
where A4,(t) is the At-polynomial of the link L,(J). By direct calculation, we have
(4p2 +2p" + 1, — p? = p', = 2p2 = p', p? + p'  (r:0dd)

A(l)(t) =
[4p2 +2p" + 1, - p?, - 2p2 - p', p? (r: even),

and A,()=0.
Since |pl=14p’ + 1| #1 by the assumption, we have p’#0. Therefore ACk+)(r)%
1. This completes the proof.

REMARK. Since the link Lo(J) is slice in the strong sense, the Az-polynomial
of Lo(J) is zero (see [9]). So, the Alexander polynomial of the knot F,,(J) is 1.

7. Knots with 9 crossings or less

Riley [17] proved that all knots with 9 crossings or less have Preperty PP
except 8,0, 8,4, and 9, for n=24, 29, 32, 33, 34, 38, 39, 41, 46, 47, and 49. In this
section, we apply our method to them, and prove that all of them except 8,,, 95,,
and 9,, have Property P.

First, we study 8,, and 9,, from a different point of view. 8, and 9,, are
“ribbon concordant™ to 3, and 4, respectively, and therefore, there are epimor-
phisms from the knot groups of 8,4 and 9,, to those of 3, and 4, respectively,
which carry meridians to meridians and longitudes to longitudes. Therefore, it
follows that 8,, and 9,, have Property P, since 3, and 4, do. (Recently, Osborn
[16] proved that 8,, has Property P by a different method.)
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Next, we use the method of Section 1. Among the knots in consideration,
only 94y, 946, 947, and 9,4 are periodic (see [15]). 9.¢ is a pretzel knot of type
(3, 3, ~3); so, by Theorem 1, 9,4 has Property P. 94,, 944, and 9, belong to
the class of knots considered in Section 5. In fact, 9,,= K4(9, 5), 947 = K,(8, 3),
and 94,= K4(7, 3) (see [4]). Thus, by Theorem 2, they have Property P.

For the remaining knots 9,4, 934, 934, and 9,4, which are strongly invertible,
we use the method of Section 2. The following is a list of the corresponding
O-curves O y J, the Az-polynomials Ay(t) and A4,(r) of the links Ly(J) and L,(J),
and the Alexander polynomials 4¢1)(t) of the knots F,{J) (cf. Example 5).

929 ! -
5 AO(t) = [23 _ls -l’ l
J 40 =[3,0, -3,0,2,0, —1,
Al(’) = j: [6, _29 _4' 3’ 2’ _23 —la 1
934 |.)
95 A)) =[0,1, -1, =1, 1
(\ AV =[1,0,1, =1, =2, 1, 1
T/ A = 00, —1,2,1, =3,0,1
938
D A1) =[4,0, -2
Cl/ a0 =[-t1,-1,1, -1,1,0, =3,2,2, -1, -2, 1
') A = +£[-2,2,-2,2,-2,1,3,-5,0,3,1, -3, 1
939 |

25\ Aolt) =[-4,0,2
) ave =11, -1,1,-1,0,1, -2, 1, 1,0, —1
(F')) Al(‘) =+ [2» —2, 2: ’-2’ * lo -‘31 39 0’ —11 "’]; 1

From the above list and Propositions 3 and 4, it follows that 9,4, 914, 924,
and 9,, have Property P.

8. Final Remark

Litherland [10, 11] proved that, for a 2-component link L=0y K in S3 with
O a trivial knot, if one of the fol‘lowing conditions holds, then the exterior of the
knot Wi(L) in M(K, 1/k) is not a homotopy solid torus.
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(1) 1k(0, K)} =3 and k0.

(2) 1k(0, K)|=2 and |k|=2.

(3) k(0, K)|=1, w0, K)=2, and |k]=6. (Here wr(0, K) is the mini-
mum number of intersections of K with a disk bounded by 0.)

Hence, the following holds by Proposition 2.

THEOREM 4. C,(L) has Property P, if one of the following conditions holds.
(1) [k(0, K)| 2.
(2) Hk(O, K)l=1, n>6, and L is not a Hopf link.
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