DEHN SURGERY ON SYMMETRIC KNOTS

By Satoshi Furusawa and Makoto Sakuma (Received May 7, 1983)

For a knot K in S^3 and a rational number r, let M(K, r) be the closed 3-manifold obtained by Dehn surgery of type r on K. K is said to have Property $P_n(n \in \mathbb{Z}\setminus\{0\})$, iff M(K, 1/n) is not simply connected, and K is said to have Property P, iff K has Property P_n for any $n \in \mathbb{Z}\setminus\{0\}$. A link L in S^3 is said to have Property P^* , iff every Dehn surgery of S^3 on L does not produce a fake homotopy 3-sphere (cf. [23]).

Montesinos [13] studied the relationship between 2-fold branched coverings and closed 3-manifolds obtained by Dehn surgery on links with symmetry. In particular, he showed that every simply connected 2-fold branched covering of S^3 is homeomorphic to S^3 , iff every strongly invertible link has Property P^* . (See p. 227 of [13]. Note that the term "Property P" in [13] means Property P^* in this paper.) Hence, by the positive solution of the homotopy Smith conjecture [20], it follows that every strongly invertible link has Property P^* . Nevertheless, it remains open whether every strongly invertible knot has Property P.

In this paper, using the techniques of Montesinos [13] and the homotopy Smith conjecture, we prove the Property P conjecture for some classes of knots with symmetry—a class containing all 3-strand pretzel knots of odd type (Theorem 1), and a class containing all 2-bridge knots (Theorem 2). (For 2-bridge knots, the Property P conjecture has been proved by Takahashi [21].)

We apply our method to the knots in the knot table which were not proved by Riley [17] to have Property PP (which is stronger than Property P). Through it, we can conclude that all knots in the table with 9 crossings or less except 8_{17} , 9_{32} and 9_{33} have Property P (see Section 7). (The exceptional knots 8_{17} , 9_{32} and 9_{33} are the only knots with 9 crossings or less, which are non-invertible (see [5, 7]).)

1. Dehn surgery on periodic knots

Let $L=O \cup K$ be a 2-component link in S^3 with O a trivial knot, and let n(n>1) be a positive integer relatively prime to $\lambda = lk(O, K)$. The n-fold cyclic branched covering $\sum_n(O)$ of S^3 branched along O is again a 3-sphere, and the lift, $C_n(L)$, of K to $\sum_n(O)$ is a periodic knot of period n. (By [20], every periodic knot is so obtained.) Let N(K) be a regular neighbourhood of K, which is disjoint

from O. For an integer k, the homology sphere M(K, 1/k) is obtained from $S^3 - int N(K)$ by sewing a solid torus. Let $W_k(L)$ be the knot in M(K, 1/k) given by $O \subset S^3 - int N(K) \subset M(K, 1/k)$. [Hereafter, for a 2-component ordered link $L = K_1 \cup K_2$ in S^3 , we use the symbol $C_n(L)$ (resp. $W_k(L)$) to denote the lift of K_2 in $\sum_{n} (K_1)$ (resp. the knot K_1 in $M(K_2, 1/k)$).]

The following is a generalization of Theorem 2 of [13].

PROPOSITION 1. For an integer q, $M(C_n(L), 1/q)$ is the n-fold cyclic branched covering of M(K, 1/nq) branched along $W_{ne}(L)$.

PROOF. Let p be the covering projection $\sum_n(O) \to S^3$, and let $\tilde{N}(K) = p^{-1}(N(K))$. Then $\tilde{N}(K)$ is a regular neighbourhood of $C_n(L)$, which is invariant under the Z_n -action on $\sum_n(O)$. Let ℓ and m be a preferred longitude (see p. 31 of [19]) and a meridian of N(K), and let $\tilde{\ell}$ and \tilde{m} be a lift of ℓ and m respectively. Then $\tilde{\ell}$ and \tilde{m} are a preferred longitude and a meridian of $\tilde{N}(K)$ respectively, and their homology classes satisfy the equations $p_*([\tilde{\ell}]) = n[\ell]$ and $p_*([\tilde{m}]) = [m]$ in $H_1(\partial N(K))$. Now, $M(C_n(L), 1/q)$ is obtained from $\sum_n(O) - int \tilde{N}(K)$ and a solid torus T by identifying their boundaries, where a meridian $\tilde{\mu}$ of \tilde{T} is identified with a simple loop on $\partial \tilde{N}(K)$ representing the homology class $q[\tilde{\ell}] + [\tilde{m}] \in H_1(\partial \tilde{N}(K))$. It can be seen that the Z_n -action on $\partial \tilde{N}(K) = \partial \tilde{T}$ extends to a free Z_n -action on \tilde{T} , such that \tilde{T}/Z_n is again a solid torus T. Thus we obtain a Z_n -action on $M(C_n(L), 1/q)$, such that

- (1) $Fix(Z_n) = p^{-1}(0)$, and
- (2) $M(C_n(L), 1/q)/Z_n = (\sum_n (O) int \tilde{N}(K))/Z_n \cup \tilde{T}/Z_n$ $\cong (S^3 - int N(K)) \cup T.$

Here a meridian μ of T is identified with a simple loop on $\partial N(K)$ representing the homology class $nq[\ell] + [m] \in H_1(\partial N(K))$, since $p_*([\tilde{\mu}]) = p_*(q[\tilde{\ell}] + [\tilde{m}]) = nq[\ell] + [m]$ in $H_1(\partial N(K))$. This completes the proof.

From the above, we have the following proposition.

PROPOSITION 2. $C_n(L)$ has Property P_q $(q \in \mathbb{Z} \setminus \{0\})$, iff K has Property P_{nq} or the knot $W_{nq}(L)$ in M(K, 1/nq) is non-trivial.

PROOF. This follows from the positive solution of the homotopy Smith Conjecture [20] and the fact that the homomorphism $\pi_1(M(C_n(L), 1/q)) \rightarrow \pi_1(M(K, 1/nq))$ induced by the covering projection is an epimorphism.

EXAMPLE 1. The knot 8_{18} is a periodic knot of period 4. Let h be a periodid map on S^3 realizing the 4-fold symmetry. Then the knot $8_{18}/h^2 \subset S^3/h^2 \cong S^3$ is a figure-eight knot, which has Property P by [1, 3]. Hence 8_{18} has Property P.

EXAMPLE 2. Let $L=0 \cup K$ be a link as illustrated in Fig. 1. Then $C_2(L)$ is a figure-eight knot (see Fig. 2).

Since K is a trivial knot, $M(C_2(L), 1/q)$ is the 2-fold branched covering of S^3 branched along the knot $W_{2q}(L)$, which is obtained from O by (-2q) right-hand full twists along K (see Fig. 3).

The Alexander polynomial of $W_{2q}(L)$, which is calculated in Example 4 of Section 3, is nontrivial. So, we can conclude that the figure-eight knot has Property P.

Dehn surgery on strongly invertible knots

Let O be a trivial knot in S^3 , and let J be an arc in S^3 such that $J \cap O = \partial J$. The 2-fold branched covering $\sum_2(O)$ of S^3 branched along O is a 3-sphere, and the inverse image, I(J), of the arc J in $\sum_2(O)$ is a strongly invertible knot. (By [24], every strongly invertible knot is so obtained.)

Montesinos proved that M(I(J), r) $(r \in Q \cup \{\infty\})$ is a 2-fold branched covering of S^3 (see Theorem 1 of [13]). Let $F_q(J)$ $(q \in Z)$ be the branch line of the branched covering $M(I(J), 1/q) \rightarrow S^3$. Then, by the homotopy Smith conjecture [20], we have the following.

PROPOSITION 3. I(J) has Property P_q $(q \in \mathbb{Z} \setminus \{0\})$, iff the knot $F_q(J)$ is nontrivial.

Here, we describe the branch line $F_q(J)$ according to [14] (cf. [12]). Let B be a regular neighbourhood of J, such that O intersects B in two disjoint proper arcs (see Fig. 4). Then the inverse image \tilde{B} of B is a regular neighbourhood of I(J), which is invariant under the nontrivial covering transformation t (see Fig. 5).

Let ℓ be a preferred longitude of \tilde{B} , such that $t(\ell) \cap \ell = \emptyset$, and let $\gamma = p(\ell)$, where p is the projection $\sum_{2} (O) \rightarrow S^{3}$ (see Fig.'s 4, 5 and 6). Let D_{γ} be a homeomorphism on B as illustrated in Fig. 6.

Fig. 6

Then the branch line $F_q(J)$ is given by

$$F_q(J) = (O - (O \cap int B)) \cup D_r^{-q}(O \cap B) \subset (S^3 - B) \cup B = S^3.$$

Let $L_0(J) = O \cup \gamma$ and $L_1(J) = F_1(J) \cup \gamma$. Then, we have

$$F_q(J) \cong \left\{ \begin{array}{ll} W_k(L_0(J)) & (q=2k) \\ \\ W_k(L_1(J)) & (q=2k+1). \end{array} \right.$$

(Recall the definition of $W_k()$ given in Section 1.)

EXAMPLE 3. Let O and J be a trivial knot and an arc in S^3 as illustrated in Fig. 7. Then I(J) is a figure-eight knot (see Fig. 8).

The knot $F_q(J) = (O - (O \cap int B)) \cup D_{\gamma}^{-q}(O \cap B)$ is illustrated in Fig. 9.

The Alexander polynomial of $F_q(J)$, which is calculated in Example 5 of Section 3, is nontrivial. So, we can again conclude that the figure-eight knot has Property P.

3. The effect of the transformation W_k () on the Alexander polynomials As discussed in the previous sections, the Property P conjecture for periodic

knots and strongly invertible knots is reduced to proving the nontriviality of knots obtained from certain 2-component links through the operation $W_k(\)$.

In this section, we give formulas of the Alexander polynomials of such knots, one of which was formulated by Kidwell [8].

Let $L=K_1\cup K_2$ be an oriented ordered link in an oriented S^3 . Recall that $W_k(L)$ denotes the knot K_1 in $M(K_2, 1/k)$. If K_2 is a trivial knot, $W_k(L)$ is a knot in S^3 obtained from K_1 by (-k) right-hand full twists along K_2 . Let $\Delta(x, y)$ be the Alexander polynomial of the link L, $\lambda = lk(K_1, K_2)$, and $\Delta_k(t)$ be the Alexander polynomial of the knot $W_k(L)$. In case $\lambda = 0$, define a polynomial A(t) as follows. Let $V = M(K_2, 0) - int N(K_1)$, where $N(K_1)$ is a regular neighbourhood of K_1 , and let V be the infinite cyclic cover of V corresponding to the composite homomorphism $\pi_1(V) \to Z$ of the abelianization and $\tau: H_1(V) \cong Z \oplus Z \to Z$ where τ carries the meridians of K_1 and K_2 to a generator and zero respectively. Define A(t) to be the determinant of a square presentation matrix of the Z(t)-module $H_1(V)$ (see Section 2 of [9]). We call A(t) the $A\tau$ -polynomial of L.

PROPOSITION 4. (1) (Corollary 3.2 of Kidwell [8]) In case $\lambda \neq 0$, we have $\Delta_k(t) = \Delta(t, t^{-k\lambda})/\rho_{\lambda}(t)$, where $\rho_{\lambda}(t) = (t^{\lambda} - 1)/(t - 1)$.

(2) In case $\lambda = 0$, we have $\Delta_k(t) = \Delta_0(t) + kA(t)$.

REMARK. Since the polynomials $\Delta_k(t)$ and A(t) are well-defined only up to units of the group ring Z(t), there remains some ambiguity in the formula (2). The precise meaning of it is as follows: For a suitable representation of the polynomials

$$A(t) = a_0 + \sum_{i>0} a_i(t^i + t^{-i})$$
 and $\Delta_0(t) = b_0 + \sum_{i>0} b_i(t^i + t^{-i})$,

we have
$$\Delta_k(t) = (b_0 + ka_0) + \sum_{i>0} (b_i + ka_i)(t^i + t^{-i}).$$

PROOF. (1) This is a generalization of the Torres' formula, and, in fact, is proved by Kidwell [8] by using it.

- (2). To prove this formula, we use arguments of Kojima-Yamasaki [9] and Rolfsen [18]. By [18], there are disjoint solid tori $T_1, ..., T_n$ in S^3 and a self-homeomorphism h on $S^3 int(T_1 \cup \cdots \cup T_n)$, such that
 - (1) $h(K_1)$ is unknotted in S^3 ,
 - (2) $lk(T_r, K_1) = lk(T_r, h(K_1)) = 0$ for all r,
 - (3) $h(\partial T_r) = \partial T_r$ and $lk(\mu_r', T_r) = \pm 1$, where μ_r is a meridian of T_r and $\mu_r' = h(\mu_r)$.

Since $h(K_1)$ is unknotted, the infinite cyclic cover of $S^3 - int h(N(K_1))$ is

$$p: R^1 \times D^2 \longrightarrow S^1 \times D^2 \cong S^3 - int h(N(K_1)).$$

Since $lk(h(K_1), K_2) = 0$ (resp. $lk(T_r, h(K_1)) = 0$), a lift $\tilde{N}(K_2)$ (resp. \tilde{T}_r) of $N(K_2)$, a regular neighbourhood of K_2 (resp. T_r), is homeomorphic to $D^2 \times S^1$. Let t be a generator of the covering transformation group, ℓ and m be a preferred longitude and a meridian of K_2 respectively, and $\tilde{\ell}$ (resp. \tilde{m} , $\tilde{\mu}'_r$) be the lift of ℓ (resp. m, μ'_r) to $\partial \tilde{N}(K_2)$ (resp. $\partial \tilde{N}(K_2)$, $\partial \tilde{T}_r$). Let $E_k = M(K_2, 1/k) - int N(W_k(L))$, where $N(W_k(L))$ is a regular neighbourhood of the knot $W_k(L)$, and let \tilde{E}_k be the infinite cyclic cover of E_k . Then \tilde{V} (resp. \tilde{E}_k) is obtained from $R^1 \times D^2$ by removing each $int t^l(\tilde{N}(K_2))$, $int t^l(\tilde{T}_r)$ ($i, j \in Z$), and sewing back a solid torus so that its meridian coincides with $t^l(\tilde{\ell})$ (resp. $t^l(k\tilde{\ell}+\tilde{m})$) or $t^l\tilde{\mu}'_r$ (resp. $t^l\tilde{\mu}'_r$). Then, by Proposition 4 of [9], $H_1(\tilde{V})$ has a presentation matrix

$$\begin{pmatrix} a & b \\ c^T & D \end{pmatrix}$$

where $b = (b_1, ..., b_n)$, $c = (c_1, ..., c_n)$, $D = (d_{sr})_{1 \le s, r \le n}$

with
$$a = \sum_{i} lk(\tilde{\ell}, t^{i}\tilde{K}_{2})t^{i}$$
, $b_{r} = \sum_{i} lk(\tilde{\ell}, t^{i}\tilde{T}_{r})t^{i}$, $c_{s} = \sum_{i} lk(\tilde{\mu}'_{s}, t^{i}\tilde{K}_{2})t^{i}$, $d_{sr} = \sum_{i} lk(\tilde{\mu}'_{s}, t^{i}\tilde{T}_{r})t^{i}$.

Here K_2 is the lift of K_2 to $\tilde{N}(K_2)$, and $lk(\cdot,\cdot)$ is the linking number in $R^1 \times D^2$. By [18], D is a presentation matrix of $H_1(\tilde{E}_0)$. Recall that, in constructing \tilde{E}_k , the meridian of the solid torus attached to $\partial \tilde{N}(K_2)$ is identified with $k\tilde{\ell} + \tilde{m}$. From this fact, we can see that $H_1(\tilde{E}_k)$ has a presentation matrix

$$\begin{pmatrix} 1+ka & kb \\ c^T & D \end{pmatrix}.$$
Hence $\Delta_k(t) = det \begin{pmatrix} 1+ka & kb \\ c^T & D \end{pmatrix}$

$$= det \begin{pmatrix} 1 & kb \\ 0 & D \end{pmatrix} + det \begin{pmatrix} ka & kb \\ c^T & D \end{pmatrix}$$

$$= det D + k det \begin{pmatrix} a & b \\ c^T & D \end{pmatrix}$$

$$= \Delta_0(t) + kA(t).$$

This completes the proof. (The statement in the remark follows from the fact that $\Delta_k(t)$ and A(t) are symmetric (see [6]).)

Example 4. Consider the same setting as that of Example 2. Then $\lambda = lk(0, K) = 3$, and the Alexander polynomial $\Delta(x, y)$ of $L = 0 \cup K$ is x + (1 - x + y)

 $x^2)y + xy^2$. Hence, by Proposition 4, the Alexander polynomial $\Delta^{(q)}(t)$ of the knot $W_{2q}(L)$ is given by

$$\Delta^{(q)}(t) = \Delta(t, t^{-6q})/(1+t+t^2) = (t+t^{-6q}-t^{-6q+1}+t^{-6q+2}+t^{-12q+1})/(1+t+t^2).$$

In particular, $deg \Delta^{(q)}(t) = 12|q| - 2 \ (q \neq 0)$, and therefore $\Delta^{(q)}(t) \neq 1$.

Example 5. Consider the same setting as that of Example 3. Recall that the knot $F_q(J)$ is equivalent to $W_k(L_0(J))$ or $W_k(L_1(J))$ according to whether q=2k or q=2k+1, where $L_0(J)=O\cup\gamma$ and $L_1(J)=F_1(J)\cup\gamma$. Here $lk(O,\gamma)=lk(F_1(J),\gamma)=0$. Hence, by Proposition 3, the Alexander polynomial $\Delta^{(q)}(t)$ of the knot $F_q(J)$ is given as follows.

$$\Delta^{(q)}(t) = \begin{cases} 1 + kA_0(t) & (q = 2k) \\ \Delta^{(1)}(t) + kA_1(t) & (q = 2k + 1), \end{cases}$$

where $A_0(t)$ and $A_1(t)$ are the $A\tau$ -polynomials of the links $L_0(J)$ and $L_1(J)$ respectively. By direct calculation, we have

$$A_0(t) = [-2, 1, 1, -1]$$

 $\Delta^{(1)}(t) = [1, 0, -1, 1, 0, -1, 1]$
 $A_1(t) = [0, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2$

where $[a_0, a_1, ..., a_n]$ means $a_0 + \sum_{i=1}^n a_i(t^i + t^{-i})$. In particular, $\deg \Delta^{(q)}(t)$ $(q \neq 0)$ is equal to 6, 10 or 12, according to whether q is even, -1 or one of the rest, and therefore $\Delta^{(q)}(t) \neq 1$.

REMARK. Since the figure-eight knot is amphicheiral, we have $M_q \cong M_{-q}$, where $M_q = M$ (figure-eight, 1/q). So the knots $W_{\pm 2q}(L)$ in Example 2 and the knots $F_{\pm q}(J)$ in Example 3 have the same homology 3-sphere M_q as 2-fold branched coverings. On the other hand, by Examples 4 and 5, we have

- (1) $W_{2q}(L) \cong W_{-2q}(L)$ for any q,
- (2) $F_q(J) \not\cong F_{-q}(J)$ for any q,
- (3) $F_q(J) \not\cong W_{\pm 2q}(L) \not\cong F_{-q}(J)$, if |q| > 1,
- (4) $F_1(J) \not\cong W_{\pm 2}(L) \cong F_{-1}(J)$.

Hence, if |q| > 1 (resp. |q| = 1), there are three (resp. two) inequivalent knots in S^3 whose 2-fold branched coverings are homeomorphic to the same homology 3-sphere M_q . Takahashi [22] constructed such knots from a different point of view. In fact, it can be seen that they are $F_q(J)$ and $F_{-q}(J)$.

At the end of this section, we explain a convenient method for calculating Alexander polynomials of 2-component links given by Cooper [2], which we use in Sections 4 and 5.

Let D and D' be P. L. embedded bicollared disks in S^3 , such that $D \cap D'$ has only clasp singularities. Let $\{\gamma_1, \ldots, \gamma_h\}$ be a basis of the free abelian group $H_1(D \cup D')$. We define two matrices A and B as follows. Let u_i be a 1-cycle representing γ_i , such that $u_i \cap (D \cap D')$ has a neighbourhood in S^3 of the form as shown in Fig. 10.

Fig. 10

Then, define $A = (lk(u_1^{-}, u_j))$ and $B = (lk(u_1^{-}, u_j))$, where u_1^{-} (resp. u_1^{-+}) is the 1-cycle in S^3 obtained by lifting u_i off $D \cup D'$ in the negative normal direction off D and in the negative (resp. positive) normal direction off D'. The following is a special case of Theorem 2.1 of Cooper [2].

PROPOSITION 5. The Alexander polynomial of the link $L = \partial D \cup \partial D'$ is $det(xyA + A^T - xB - yB^T)$.

4. A class of knots containing 3-strand pretzel knots of odd type

For a 3-tuple of integers (r_1, r_2, r_3) , let us consider an oriented link $L(r_1, r_2, r_3) = K_1 \cup K_2$ as illustrated in Fig. 11.

Fig. 11

Here, we assume that $(r_i, r_j) \neq (0, -1)$ for any i, j $(1 \leq i, j \leq 3)$. (If $(r_i, r_j) = (0, -1)$ for some i, j, then $L(r_1, r_2, r_3)$ is the Hopf link.) For a positive integer $n \ (n \geq 2)$ relatively prime to the linking number $\lambda = lk(K_1, K_2)$, let $K_n(r_1, r_2, r_3)$ be the periodic knot $C_n(L(r_1, r_2, r_3))$ generated by the link $L(r_1, r_2, r_3)$. (Recall the definition of $C_n(r_1, r_2, r_3)$ is the pretzel knot of type $(2r_1 + 1, 2r_2 + 1, 2r_3 + 1)$.

THEOREM 1. $K_n(r_1, r_2, r_3)$ has property P.

PROOF. Since $L(r_1, r_2, r_3)$ is equivalent to $L(-r_1-1, -r_2-1, -r_3-1)$ and $L(r_{\sigma(1)}, r_{\sigma(2)}, r_{\sigma(3)})$ for any permutation σ on $\{1, 2, 3\}$, we may assume that $L(r_1, r_2, r_3)$ is of one of the following two types.

Type 1.
$$L(2l_1, 2l_2, 2l_3)$$

Type 2.
$$L(2l_1, 2l_2, 2l_3+1)$$
 $((l_i, l_3) \neq (0, -1) \text{ for each } i=1, 2)$

If $L(r_1, r_2, r_3)$ is of Type 1 (resp. Type 2), then the linking number λ is 3 (resp. 1). Let $\Delta(x, y)$ be the Alexander polynomial of $L(r_1, r_2, r_3)$. Then, by Propositions 2 and 4, we have only to prove that $\deg \Delta(t, t^{k\lambda}) > \lambda - 1$ for each integer $k(|k| \ge 2)$.

To calculate $\Delta(x, y)$, let us consider bicollared disks D and D' in S^3 with $\partial D = K_1$ and $\partial D' = K_2$ as illustrated in Fig. 12. Choose 1-cycles u_1 and u_2 , which form a basis of $H_1(D \cup D')$, as illustrated in Fig. 12.

Shaded sides of D and D'

are negative sides.

Fig. 12

Then, by Proposition 5, $\Delta(x, y) = det(xyA + A^{T} - xB - yB^{T})$, where the matrices A and B are given as follows;

Hence, we have $\Delta(x, y) = \sum_{1 \le i,j \le 3} w_{ij} x^{i-1} y^{j-1}$, where the coefficient matrix $(w_{ij})_{1 \le i,j \le 3}$ is given as follows.

Now, we prove that $deg \Delta(t, t^{k\lambda}) > \lambda - 1$ for any integer $k (|k| \ge 2)$. Type 1: It is clear that $(\alpha + \beta + 1, -\alpha - 2\beta, \beta) \ne (0, 0, 0)$. Hence, we have

$$deg \Delta(t, t^{k\lambda}) = deg \Delta(t, t^{3k})$$

$$\geq \begin{cases} 6k - 2 & (k \geq 2) \\ 0 - (6k + 2) & (k \leq -2) \end{cases}$$

$$\geq 2 = \lambda - 1$$

Type 2: It can be seen that $(\alpha+\beta+1, -\alpha-2\beta-1-l_1-l_2)=(0, 0)$ (resp. $(-\alpha-2\beta-1-l_1-l_2, \beta+l_1+l_2)=(0, 0)$), iff $l_3=-1$ and $l_1l_2=0$. But this does not occur by the assumption. Hence, for any k ($|k| \ge 2$), we have

$$\deg \Delta(t, t^{k\lambda}) = \deg \Delta(t, t^k) \ge |(2k+1)-1| > 0 = \lambda - 1.$$

This completes the proof.

5. A class of knots containing 2-bridge knots

Let $L(2p, q) = K_1 \cup K_2$ be an oriented 2-bridge link of type (2p, q), where $1 \le q < 2p$ and g.c.d. (2p, q) = 1 (see Fig. 13). Here, we assume that $p \ne 1$. (L(2, 1) is the Hopf link.) For a positive integer $n \ (n \ge 2)$ relatively prime to the linking number $\lambda = lk(K_1, K_2)$, let $K_n(p, q)$ be the periodic knot $C_n(L(2p, q))$ generated by the link L(2p, q). In particular, $K_2(p, q)$ is a 2-bridge knot of type (p, q).

THEOREM 2. $K_n(p, q)$ has property P.

PROOF. $\frac{2p}{q}$ has the following continued fraction;

$$\frac{2p}{q} = 2b_1 + \frac{1}{-2b_2} + \frac{1}{2b_3} + \dots + \frac{1}{-2b_{m-1}} + \frac{1}{2b_m},$$

where b_i is a non-zero integer for each $i (1 \le i \le m)$, and m is an odd integer. Then L(2p, q) is equivalent to the link as illustrated in Fig. 13.

Fig. 13

We may assume that the linking number λ is positive. Let $\Delta(x, y)$ be the Alexander polynomial of L(2p, q). Then, by Propositions 2 and 4, we have only to prove that $deg \ \Delta(t, t^{k\lambda}) > \lambda - 1$ for each $k(|k| \ge 2)$. To calculate the polynomial, let us consider bicollared disks D and D' with $\partial D = K_1$ and $\partial D' = K_2$ as illustrated in Fig. 14. $D \cap D'$ consists of $|b_1| + |b_3| + \cdots + |b_m|$ clasp singularities. Choose 1-cycles u_1, u_2, \ldots, u_s which form a basis of $H_1(D \cup D')$ as illustrated in Fig. 14, where $s = |b_1| + |b_3| + \cdots + |b_m| - 1$. Note that $s \ge 1$, since $p \ne 1$.

Shaded sides of D and D' are negative sides. Fig. 14

Let $V = t^{k\lambda+1}A + A^{T} - tB - t^{k\lambda}B^{T}$, where A and B are matrices defined in Section 3. Then, by Proposition 5, $\Delta(t, t^{k\lambda}) = \det V$.

The matrices A and B are given as follows;

where B_i and v_j are given as follows (i=1, 3, 5,..., m, j=0, 2, 4,..., m+1).

B =

Therefore the matrix $V = t^{k\lambda+1}A + A^{T} - tB - t^{k\lambda}B^{T}$ is of the following form.

where V_i and T_j are given as follows (i = 1, 3, 5, ..., m, j = 0, 2, 4, ..., m + 1).

$$V_{i} = \begin{cases} \begin{cases} 1_{i-1} & -t \\ -t^{k\lambda} & t^{k\lambda} + t & -t \\ & \ddots & \ddots & \ddots \\ & -t^{k\lambda} & T_{i+1} \end{cases} \\ \begin{cases} T_{i-1} & t^{k\lambda} \\ t & -t^{k\lambda} - t & t^{k\lambda} \\ t & -t^{k\lambda} - t & t^{k\lambda} \\ t & T_{i+1} \end{cases} \\ \end{cases} \\ \begin{cases} T_{i-1} & t^{k\lambda} \\ t & -t^{k\lambda} - t & t^{k\lambda} \\ t & T_{i+1} \end{cases} \\ \end{cases} \\ (b_{i} < 0)$$

$$T_{0} = \begin{cases} t^{k\lambda} + t & (b_{1} > 0) \\ -t^{k\lambda} - t & (b_{1} < 0) \end{cases}$$

$$T_{j} = b_{j}(t^{k\lambda+1} + 1) - (b_{j} + \varepsilon_{j}/2)(t^{k\lambda} + t) \qquad (j = 2, 4, ..., m-1)$$

$$T_{m+1} = \begin{cases} t^{k\lambda} + t & (b_{m} > 0) \\ -t^{k\lambda} - t & (b_{m} < 0) \end{cases}$$

$$T_{m+1} = \begin{cases} t^{k\lambda} + t & (b_{m} < 0) \\ -t^{k\lambda} - t & (b_{m} < 0) \end{cases}$$

Let W_i $(1 \le i \le s)$ be the submatrix of V consisting of (v, μ) entries of V with $v, \mu > s - i$. Define $d_i(t) = det W_i$ $(1 \le i \le s)$, and $d_0(t) = 1$. Especially, $d_s(t) = det V = \Delta(t, t^{k\lambda})$.

LEMMA 1. For each integer $i (1 \le i \le s-1)$, the following equation holds.

$$d_{i+1}(t) = F_{s-i}(t)d_i(t) - t^{k\lambda+1}d_{i-1}(t).$$

Here, $F_i(t)$ is the (j, j) entry of V.

PROOF. By expanding the first column of W_t , we obtain the equation immediately.

For a Laurent polynomial f(t), let Max(f(t)) (resp. Min(f(t))) be the maximal (resp. minimal) t-power of any term of f(t).

LEMMA 2. For each integer $i (1 \le i \le s)$, we have the followings.

(1) If
$$k \geq 2$$
, $Max(d_i(t)) \geq Max(d_{i-1}(t)) + k\lambda$ (α_i), $Min(d_i(t)) \leq Min(d_{i-1}(t)) + 1$ (β_i).

(2) If
$$k \leq -2$$
, $Max(d_i(t)) \geq Max(d_{i-1}(t))$ (γ_i) ,
$$Min(d_i(t)) \leq Min(d_{i-1}(t)) + k\lambda + 1 \qquad \dots \dots (\delta_i).$$

PROOF. (1) $k \ge 2$: Note that $Max(F_i(t)) \ge k\lambda$ and $Min(F_i(t)) \le 1$, for each $i \ (1 \le i \le s)$. We prove the inequality (α_i) inductively. Since $Max(d_1(t)) = Max(F_s(t)) \ge k\lambda$, (α_1) holds. Suppose that (α_i) holds for some $j \ (1 \le j \le s - 1)$.

Then
$$Max(F_{s-j}(t)d_j(t)) = Max(F_{s-j}(t)) + Max(d_j(t))$$

$$\geq k\lambda + (Max(d_{j-1}(t)) + k\lambda)$$

$$> (k\lambda + 1) + Max(d_{j-1}(t))$$

$$= Max(t^{k\lambda+1}d_{j-1}(t)).$$

Hence, by Lemma 1, $Max(d_{j+1}(t)) = Max(F_{s-j}(t)d_j(t)) \ge Max(d_j(t)) + k\lambda$, and (α_{j+1}) holds. Therefore (α_i) holds for any i $(1 \le i \le s)$. Next, we prove (β_i) inductively. Since $Min(d_1(t)) = Min(F_s(t)) \le 1$, (β_1) holds. Suppose that (β_j) holds for some j $(1 \le j \le s-1)$. Then

$$\begin{split} Min\left(F_{s-j}(t)d_{j}(t)\right) &= Min\left(F_{s-j}(t)\right) + Min\left(d_{j}(t)\right) \\ &\leq 1 + \left(Min\left(d_{j-1}(t)\right) + 1\right) \\ &< (k\lambda + 1) + Min\left(d_{j-1}(t)\right) \\ &\leq Min\left(t^{k\lambda + 1}d_{j-1}(t)\right). \end{split}$$

Hence, by Lemma 1, $Min(d_{j+1}(t)) = Min(F_{s-j}(t)d_j(t)) \le Min(d_j(t)) + 1$, and (β_{j+1}) holds. Therefore (β_i) holds for any $i \ (1 \le i \le s)$.

(2) $k \le -2$: Note that $Max(F_i(t)) \ge 0$ and $Min(F_i(t)) \le k\lambda + 1$, for each i $(1 \le i \le s)$. Then, by a similar argument as the above, we can prove the inequalities (γ_i) and (δ_i) $(1 \le i \le s)$.

From the above lemma, we have $deg(d_i(t)) > deg(d_{i-1}(t))$, for any $i (2 \le i \le s)$, and $deg(d_1(t)) > \lambda - 1$. Therefore,

 $deg \ \Delta(t, t^{k\lambda}) = deg \ (d_s(t)) > deg \ (d_{s-1}(t)) > \cdots > deg \ (d_1(t)) > \lambda - 1.$ This completes the proof of Theorem 2.

6. Even pretzel knots

Let K(p, q, 2r) be an even prezel knot. (p and q are odd integers.) Riley [17] proved that, if $p+q\neq 0$, then K(p, q, 2r) has Property PP. So, we consider K(p, -p, 2r). Note that K(p, -p, 2r) is nontrivial, iff $|p| \neq 1$.

THEOREM 3. K(p, -p, 2r) $(p: odd, |p| \neq 1)$ has Property P_{2k+1} for any integer k.

PROOF. Since K(p, -p, 2r) = K(-p, p, -2r), we may assume that p = 4p' + 1. Let O and J be a trivial knot and an arc in S^3 as illustrated in Fig. 15. Then K(p, -p, 2r) = I(J).

Fig. 15

By Proposition 3, we have only to prove that the knot $F_{2k+1}(J)$ is nontrivial. Recall that $F_{2k+1}(J) = W_k(L_1(J))$. So, by Proposition 4, the Alexander polynomial $\Delta^{(2k+1)}(t)$ of $F_{2k+1}(t)$ is given by

$$\Delta^{(2k+1)}(t) = \Delta^{(1)}(t) + kA_1(t),$$

where $A_1(t)$ is the $A\tau$ -polynomial of the link $L_1(J)$. By direct calculation, we have

$$\Delta^{(1)}(t) = \begin{cases} [4p'^2 + 2p' + 1, -p'^2 - p', -2p'^2 - p', p'^2 + p' & (r: odd) \\ [4p'^2 + 2p' + 1, -p'^2, -2p'^2 - p', p'^2 & (r: even), \end{cases}$$

and $A_1(t)=0$.

Since $|p| = |4p' + 1| \neq 1$ by the assumption, we have $p' \neq 0$. Therefore $\Delta^{(2k+1)}(t) \neq 1$. This completes the proof.

REMARK. Since the link $L_0(J)$ is slice in the strong sense, the $A\tau$ -polynomial of $L_0(J)$ is zero (see [9]). So, the Alexander polynomial of the knot $F_{2k}(J)$ is 1.

7. Knots with 9 crossings or less

Riley [17] proved that all knots with 9 crossings or less have Preperty PP except 8_{10} , 8_{17} , and 9_n for n=24, 29, 32, 33, 34, 38, 39, 41, 46, 47, and 49. In this section, we apply our method to them, and prove that all of them except 8_{17} , 9_{32} , and 9_{33} have Property P.

First, we study 8_{10} and 9_{24} from a different point of view. 8_{10} and 9_{24} are "ribbon concordant" to 3_1 and 4_1 respectively, and therefore, there are epimorphisms from the knot groups of 8_{10} and 9_{24} to those of 3_1 and 4_1 respectively, which carry meridians to meridians and longitudes to longitudes. Therefore, it follows that 8_{10} and 9_{24} have Property P, since 3_1 and 4_1 do. (Recently, Osborn [16] proved that 8_{10} has Property P by a different method.)

Next, we use the method of Section 1. Among the knots in consideration, only 9_{41} , 9_{46} , 9_{47} , and 9_{49} are periodic (see [15]). 9_{46} is a pretzel knot of type (3, 3, -3); so, by Theorem 1, 9_{46} has Property P. 9_{41} , 9_{47} , and 9_{49} belong to the class of knots considered in Section 5. In fact, $9_{41} \cong K_3(9, 5)$, $9_{47} \cong K_3(8, 3)$, and $9_{49} \cong K_3(7, 3)$ (see [4]). Thus, by Theorem 2, they have Property P.

For the remaining knots 9_{29} , 9_{34} , 9_{38} , and 9_{39} , which are strongly invertible, we use the method of Section 2. The following is a list of the corresponding θ -curves $O \cup J$, the $A\tau$ -polynomials $A_0(t)$ and $A_1(t)$ of the links $L_0(J)$ and $L_1(J)$, and the Alexander polynomials $\Delta^{(1)}(t)$ of the knots $F_1(J)$ (cf. Example 5).

$$9_{29}$$

$$A_{0}(t) = [2, -1, -1, 1]$$

$$A_{1}(t) = [3, 0, -3, 0, 2, 0, -1, A_{1}(t)] = \pm [6, -2, -4, 3, 2, -2, -1, 1]$$

$$9_{34}$$

$$A_{0}(t) = [0, 1, -1, -1, 1]$$

$$A_{1}(t) = [1, 0, 1, -1, -2, 1, 1]$$

$$A_{1}(t) = \pm [0, -1, 2, 1, -3, 0, 1]$$

$$9_{38}$$

$$A_{0}(t) = [4, 0, -2]$$

$$A_{1}(t) = [-1, 1, -1, 1, 0, -3, 2, 2, -1, -2, 1]$$

$$A_{1}(t) = \pm [-2, 2, -2, 2, -2, 1, 3, -5, 0, 3, 1, -3, 1]$$

$$9_{39}$$

$$A_{0}(t) = [-4, 0, 2]$$

$$A_{1}(t) = [1, -1, 1, -1, 0, 1, -2, 1, 1, 0, -1, -1, 1]$$

$$A_{1}(t) = \pm [2, -2, 2, -2, 1, 1, -3, 3, 0, -1, -1, 1]$$

From the above list and Propositions 3 and 4, it follows that 9_{29} , 9_{34} , 9_{38} , and 9_{39} have Property P.

8. Final Remark

Litherland [10, 11] proved that, for a 2-component link $L=0 \cup K$ in S^3 with O a trivial knot, if one of the following conditions holds, then the exterior of the knot $W_k(L)$ in M(K, 1/k) is not a homotopy solid torus.

- (1) $|lk(0, K)| \ge 3$ and $k \ne 0$.
- (2) |lk(0, K)| = 2 and $|k| \ge 2$.
- (3) |lk(O, K)| = 1, $wr(O, K) \ge 2$, and $|k| \ge 6$. (Here wr(O, K) is the minimum number of intersections of K with a disk bounded by O.)

Hence, the following holds by Proposition 2.

THEOREM 4. $C_n(L)$ has Property P, if one of the following conditions holds.

- (1) $|lk(0, K)| \ge 2$.
- (2) |lk(0, K)|=1, $n \ge 6$, and L is not a Hopf link.

References

- [1] R. H. Bing and J. M. Martin: Cubes with knotted holes, Trans. Amer. Math. Soc. 155 (1971), 217-231.
- [2] D. Cooper: The universal abelian cover of a link, London Math. Soc. Lect. Note Series 48, pp. 51-66, 1982.
- [3] F. Gonzalez-Acuña: Dehn's construction on knots, Bol. Soc. Math. Mex. 15 (1970) 58-79.
- [4] R. I. Hartley: Application of the Reidemeister-Schreier method in knot theory, Ph. D. Thesis, Toronto University.
- [5] R. I. Hartley: Identifying non-invertible knots, Topology 22 (1983), 137-145.
- [6] A. Kawauchi: On quadratic forms of 3-manifolds, Inv. Math. 43 (1977) 177-198.
- [7] A. Kawauchi: The invertibility problem on amphicheiral excellent knots, Proc. of Japan Academy 55 (1979), 399-402.
- [8] M. E. Kidwell: Relations between Alexander polynomial and summit power of a closed braid, Math. Sem. Notes, Kobe Univ. 10 (1982) 387-409.
- [9] S. Kojima and M. Yamasaki: Some new invariants of links, Inv. Math. 54 (1979), 213-228.
- [10] R. A. Litherland: Surgery on knots in solid tori, Proc. London Math. Soc. 39 (1979), 130-146.
- [11] R. A. Litherland: Surgery in knots in solid tori II, J. London Math. Soc. 22 (1980), 559-569.
- [12] Y. Marumoto: Relations between some conjectures in knot theory, Math. Sem. Notes, Kobe Univ. 5 (1977), 377-388.
- [13] J. M. Montesinos: Surgery on links and double branched coverings of S³, Ann. of Math. Studies 84, pp. 227-259, 1977.
- [14] J. M. Montesions: Revêtments ramifiés de noeuds, espaces fibres de Seifert et Scindements de Heegaard, preprint.
- [15] K. Murasugi: On symmetry of knots, Tsukuba J. Math. 4 (1980), 331-347.
- [16] R. P. Osborn: An algorithm for checking property P for knots with complements of Heegaard genus 2, Proc. A. M. S. 88 (1983), 357-362.
- [17] R. Riley: Knots with the parabolic Property P, Quart. J. Math. 25 (1974), 273-283.
- [18] D. Rolfsen: A surgical view of Alexander polynomials, Lect. Notes in Math. 438, pp. 415-423, Springer-Verlag, 1975.
- [19] D. Rolfsen: Knots and links, Math. Lect. Series 7, Berkeley: Publish or perish Inc. 1976.

- [20] The Proof of the Smith conjecture, Proc. of Conference at Columbia University, New York, 1979, in preparation.
- [21] M. Takahashi: Two bridge knots have Property P, Memoirs, A.M.S. 29, no. 239 (1981).
- [22] M. Takahashi: On homology spheres obtained by surgery on the figure-eight knot, Proc. Sympos. Res. Inst. Math. Sci. Univ. Kyoto 309, pp. 97-115, 1977 (in Japanese).
- [23] K. Yokoyama: On links with Property P*, Yokohama Math. J. 25 (1977), 71-84.
- [24] F. Waldhausen: Über Involutionen der 3-Sphäre, Topology 8 (1969), 81-91.

Department of Mathematics, Kobe University, Nada, Kobe, 657 Japan Department of Mathematics, Osaka City University, Sumiyoshi, Osaka, 558 Japan