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ABSTRACT. When the polynomials fi,...,f, € Clx,...,x,] satisfy the Jacobian

condition det(%)l €C”, the Kernel Conjecture says that Ker(ﬁ) should be
/i, j fn

C[fi,-.., fa—1]- In this paper, we prove a weaker version: When the leading mono-

mials LM(f),...,LM(f;) of fi,..., f; (under a given monomial ordering) are linearly

independent, then (1), Ker(§> =C[f,---, fi]-

The main tool is the higher derivations 6_[L], which behave like %(‘

L

i 3) , but are

defined for any rings, including positive characteristic ones. We reduce the problem of

calculating the (higher) derivation kernels to the positive characteristic case, where we
have a better control.

1. Introduction

The celebrated Jacobian Conjecture states that when a polynomial map
@ : C" — C" is locally isomorphic (or étale, in algebraic geometric term), then ¢
is isomorphic. Algebraically, it says that when the polynomials fi,...,f, €

C[xi,...,x,] satisfy the Jacobian condition, namely when det(f{) 1 is
0Xj /i, j=1,...,n
invertible, then C[fi, ..., fu] = C[xi,...,x,], namely these polynomials generate

the whole polynomial ring. It is crucial to assume ¢ to be a polynomial

map. The function e* is an immediate counterexample in 1 variable, and even
o
determinant 1 without being isomorphic.

The Jacobian Conjecture is also false when the characteristic is pos-
itive. When k is a field of characteristic p > 0, the function x? + x € k[x]
satisfies the Jacobian condition as 4 (x? +x) =1, however k[x” + x] # k|[x]
(k(x? +x) = k(x) is a field extension of degree p). Still there are several
attempts to attack the Jacobian Conjecture via positive characteristic. For
example, Adjamagbo [1] conjectures that if the degree of the field extension
is not divisible by p, then étale morphisms are isomorphic, which conjecture
would imply the Jacobian conjecture in characteristic 0. In this paper, we will

make an another attempt via positive characteristic.

when we require det( ) to be a constant, (x, y) — (—e™¥, ye*) has Jacobian
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In preparation for explaining our approach, we would like to introduce the
Kernel conjecture. Let fi,..., f, €k[xi,...,x,] and gek[fi,..., fu] be poly-
nomials. Then one can compute the partial derivative of g by the chain rule;

n -
% > ff’ % which can be displayed by matrix form:

0x; 10x; o’
N (% %\ [
0x1 0x ox1 of
o | |\ o]
éx,, ax,, 6Xn afn
Now assume that f,..., f, satisfy the Jacobian condition, namely the matrix

above is invertible. Then multiplying the inverse matrix from the left, we
obtain the formula for = 7 in terms of - % and ff, which makes sense even for
g € klxi, .. xn] not assuming that g e k[fl,...,fn] and we adopt this as the
definition of 7 ck[xy, ..., x,) — k[x1,...,x,] (see Definition 2.3). Then the
Kernel conjecture states that if f1,..., f, satisfy the Jacobian condition, then
Ker 2 E =k[fi,..., fu—1]- The Kernel conjecture for n+ 1 variables implies the
Jacobian Conjecture for n variables: When fi,..., f, € k[xi,...,x,| satisfy the
Jacobian condition, then fi,..., f, fur1 € k[x1,...,xu41] With f,11 = x,41 also
satisfy the Jacobian condition, and the Kernel conjecture says k[fi,..., f)]
= Ker = k[x1,...,x,). On the other way, suppose the Jacobian Conjec-
ture for n varlables When fi,..., f, satisfy the Jacobian condition, the
polynomials f;’s are just another variables to generate the polynomial ring, and
hence the Kernel conjecture for n variables holds. In this sense, the Kernel
conjecture is equivalent to the Jacobian Conjecture.

The argument above indicates that the Kernel conjecture is also false for
positive characteristics. Interestingly, in positive characteristic, Nousiainen’s
theorem ([2, Thm 2.2]) is known (see Proposition 2.4), which gives a precise
formula for the derivation kernel in characteristic p, namely, 0; = k[x7,
x5, .., xP fi, ..., fami], when fi’s satisfy the Jacobian condition. In this paper,
we start from Nousiainen’s theorem, and investigate the behavior of higher
derivations. The main technical achievement of this paper is the construction

N\ L .
of higher derivations 6}}” which behave like %(:7) for polynomials f,..., f,
satisfying the Jacobian condition (see Theorem 2.'13), then we can give a precise

formula for the kernels of these higher derivations. More concretely, we have

ﬂL>OKer6L] ﬂ,>okx1 ,...,xﬁ’r,fl,...,fn,l],

where the left hand side correspondes to Ker § in characteristic 0.
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Recall that in characteristic 0, the calculations of the derivation kernels are
much harder. Sometimes, the derivation kernels are not finitely generated as
k-algebras [4], and we do not know how to describe the kernel ring. On the
other hand in positive characteristic, we even have a concrete algorithm to
compute the derivation kernel (see [7] for example). In our case, we do not
know if the right hand side of the formula above is finitely generated or not as
k-algebra either, but at least we have a precise description.

Good news is that under some condition (admlttmgly a strong condition),
we can prove that the right hand side ﬂr>0kxl yees X2 Sy fuet] equals

k[fi,..., fa—1] (Corollary 4.7). Using the Groebner basis and mimicking the
technique of reduction to positive characteristic, used in Mori program, we can
lift the results to the characteristic 0 situation.

Bad news is that our condition is too strong to be very useful. So we
introduce a Weak Kernel Conjecture 5.1, for which conjecture, we can prove a
special case. Our main result states that if fj,...,f, satisfy the Jacobian
condition, and if the leading monomials LM(f;),...,LM( f,) considered as
vectors in Z" < Q", are linearly independent, then ﬂ Ker =k[fi,..-, [
holds (Theorem 5.3). In particular, the Weak Kernel con]ecture holds when
t =1. It includes the Kernel Conjecture for 2 variables (Corollary 5.4, which
is classically known by a different proof, see [6]).

In our approach to Jacobian conjecture, the only missing point is the
study of the ring (1) _,k[x] ..xP fi,....f]. If one can find a good
condition for a k subalgebra R c k[xy,...,x,], in order that the equality
R={),.oRIx!",...,x2"] holds, then that would imply the Jacobian Con-
jecture. We have an example (1), k[x?",x? + x| = klx] > k[x” + x|, so we
need some assumption. It seems (or at least we hope) that if the characteristic
of k is “large enough” compared to the multi-degrees of the terms of the
generators of R, then the equality holds.

Our construction of higher derivations 6 is based on positive charac-

teristic argument. Let fj,..., f, € R[xy,.. xn] satisfy the Jacobian condition
with R a ring with characteristic p¢, a power of a prime, then by Nousiainen’s
theorem, any polynomial g € R[xy,...,x,] can be uniquely written as

_ § : P Ny o o
g = a“l-,-n,‘ln(x] ""’xn )-fl o Jn "
0<ay,, 0y <p

for any N (Corollary 2.6). The higher derivaiton 6}’%] should look like

L
l {’} . .
o (5) , so it is natural to define

L N N o —L oy
a;]g: > a%m,%(x{’,...,x,f)< ’)fl“‘...fl.“ LS

0< oy ey 0y <pN
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when N is large enough, because any (higher) derivation of a(x{’N, .. 7xé’N) isa
multiple of a high power of p, hence is 0 in R coefficient.

We prove that this definition is well defined independent of the choice of
N (Proposition 3.6). Hence it induces a definition of a higher derivation
in lim R/(p°R)[xi1,...,x,] when R is Noether (Proposition 3.8). This again

induces a higher derivation in R[x,...,x,] via the canonical map R[xi,...,x,]
— [[,lim R/(pR)[x1,...,x,] when R is a finitely generated ring over Z

(Proposition 3.12). Finally it induces higher derivations for any ring (Theorem
2.13), because any ring is an inductive limit of finitely generated rings over Z.

2. Nousiainen’s Theorem

DerINiTION 2.1, If the unit 1 of a ring R has a finite order N in the
additive group, we say that R has characteristic N. 1If the order of 1 is infinite,
we say that R has characteristic 0.

DeriniTION 2.2, Let R be a ring. Polynomials fi, f5,...,f, €
R[x1,x2,...,x,] are said to satisty the Jacobian condition when the determinant

of the matrix (%)1 is in the multiplicative group of units R[xi,...,x,] .
N/1<i,j<n

DEeriniTION 2.3, Let the polynomials fi, f2,..., fn € R[x1, X2, ..., X,] satisfy

the Jacobian condition. Define a derivation § i R[x1,...,x4] = R[x1,...,x,] by
° iy I\
aﬁ 8X1 a)ﬂ ﬁxl
0 onh fn 0
Ofu 0x;, 0x, 0x,,

PROPOSITION 2.4.  Assume that the characteristic of R is a prime number p >
0. For polynomials fi, f>, ..., fu € R[x1,X2, ..., X, the following are equivalent:
(1) The polynomials fi, fa,..., fn satisfy the Jacobian condition.
(2) R[xV.xV, . xPfi, oo o] = Rlxn, X2, ., X
(3) R[x1,X2,...,x,) is a free module over R[x{,x5,...,xP] with a basis
{flct1 ;2 . 'f;;z"}OSal,ocz ..... o <p*

Proor. The implication (3) = (2) is trivial.

For (2)= (1), assuming (2), each x; can be written as x;=
Soaia(xf, ... xP) f*, where o= (a1,0,...,a,) € ZL, is a multi-index. Take
the partial derivative of both sides by x;. Then we obtain
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N ra—e, Of7
5,-,]-=Za,-,a(xlp,...,x,’l)a/f e/aixj
where e, =(0,0,...,0,1,0,...,0) is a multi-index with the /-th com-
ponent being 1 and the other components 0. Hence, the matrix

(X ai a7, x)2f*"9), ; j<, is the inverse matrix of the Jacobian matrix,
which implies (1).

For (1)= (3), we define an R[x!,x),... ,x/]-module homomorphism
@ R[x1,X2,...,%]) — R[x1,x2,...,x,] to be

n (—}\ p—1 n 1 a o
XX 1 - (f,—) ) . <—> )
Oga;on,Kp i=1 ( aﬁ i=1 (O(,)' af’

One easily checks that

go( Z aa(xf,...,x,f)f“>: Z a,(x], ..., xP)x"

0<ay,...,0,<p

Letting M be the submodule of R[xj,...,x,] generated by the set
A B Yo<arm....my<ps ONE verifies that ¢ induces a surjection from M
to R[x1,...,x,]. Because R[xi,...,x,] is a free R[x],...,x?]-module with the

number of generators exactly same as the generators of M, we conclude
that M is freely generated by our generators, and ¢ is a bijection from M

to R[xi,...,x,). Hence R[xj,...,x,] is a direct sum of M and Ker ¢, and
because rank M = rank R[xi,...,x,] as R[x],...,x/]-modules, we see that
Ker ¢ =0, proving (3). O

COROLLARY 2.5. If fi,..., fu € R[x1,...,x,] satisfy the Jacobian condition

and R has a prime characteristic p, then (%) =0.

PrOOF. Proposition 2.4 implies that when we assume the Jacobian

conditoin, any polynomial g€ R[xi,...,x,] is written as > a(x{,...,x2)f"
The homomorphism P—} is an R[x?, ..., x?]-homomorphism, so we have only
to prove that (a%)pf“ =0. (%)pf“ is ooy — 1) ... (; — p+ 1) f* P and one
of o, (0; —1),...,(0; — p+1) is a multiple of p, hence it is 0. O

COROLLARY 2.6. Suppose R has a characteristic p¢, a power of a prime
number p. If fi,...,fa € Rx1,...,x,] satisfy the Jacobian condition, then for
any positive integer r, we have R[xy,...,x,] = R[x{’y, ey XP S fu). More-
over, any polynomial g € R[x\,...,x,] can be uniquely written as
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Proor. First, we assume that e =1. For the equality R[xj,...,x,] =
RIxI...,xP" fi,.... /], we need to show that x” e R[x"" ... x!" fi,..., f;]
for each i. We proceed by induction on r. The case r=1 1is done
in Proposition 2.4. By the induction hypothesis, we can write x; =
Zal(x{’ril,...,x,f';l)f“. Applying the Frobenius map, we have

R r r ( r r
=S G XV e R X five o S,

where @, is the polynomial «, with each coefficient raised to the p-th
power.

For each expression g = Zaa(xlpr7... x?")f?*, using the fact that fipr €

Rlx",...,xI"], we can move £ to a,(x!,...,x?") until we get o; < p” for all
o and i.

When e > 1, let M < R[xj,...,x,] be an R[xl”rw..,x,{’r] module gen-
erated by {f",....f]|0<a,...,a, < p"}. Then the e=1 case implies
that M + pR[xi,...,x,] = R[x1,...,X,], hence Nakayama’s lemma implies
M = R[xy,...,x,. In particular, we have R[xi,...,x,)=R[x", ... x

fi,---, fu], and each polynomial g€ R[xj,...,x,] has an expression g =
D02y ayapr GaXT X)) S

To prove the uniqueness of the expression, observing that the number of
generators of M is p™, which is same as the rank of free module Rixi,. .., x,]
as an R[xI",....x?"] module, we can conclude that {f*,.... /% |0 <uay,...,
o, < p'} is a free basis. O

LemMa 2.7. Let p be a prime number, R a ring, and assume that
Sy oy fo € R[x1, ..., X, satisfy the Jacobian condition. For any positive integer
N and M and any polynomial G € R[x1,...,xp), there exists a polynomial
aa(fo,...,x,fN) eR[x{'N,...,x,fN] for each multi index o with 0 < oy,...,0, <
pY such that

G— Z a‘,((x{’N,...,x,fN)f“epMR[xl,...,xn].

0< oy, 0y <p®

Proor. If pe R is a unit, the statement is trivial. Otherwise, apply
Corollary 2.6 to (R/pMR)[x1,...,x,]. N

DerFmNiTION 2.8, When L is a positive integer and p a prime number,
define d,(L) to be the order of multiples of p in L! (namely, d,(L) = ord,(L!)

t ] )
in the usual notation). More concreterly, when L = > ¢;p’, 0 < ¢; < p is the
i=0

p-adic representation of L, then we have d,(L) = Zci%.
i=1
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LEMMA 2.9. Let fi,..., fn € R[x1,...,X,] satisfy the Jacobian condition, p
a prime number and L a positive integer. Then for any G € R[xy,...,X,], we

L
have ({éf) Ge pdl’(L)R[xl, ey X
Proor. By Lemma 2.7, letting N =d,(L), we have an expression
G= Z aa(xlp"v,...,xﬁ"v)f“ mod pV.

0<oyyeey 0y <pV

By Leibniz rule, we have

o () @)oot oot (G moar
— | G= Z —Ja,(xP .. xP) = |f* mod p".
<af’ 0<otyyny 0y <pN,s+1=L S af’ afl

N , s ) N

We have %am(xlp\,...,x{w) =0 mod p" and hence (ai,) aa(xpw,...7x,fNL) =0

mod pV for s>0. On the other hand, when s=0, we have (a(_/) f*=
4/,,1 L

LI(%) f* 1% =0 mod p#H). Therefore ~we conclude  that (5) Ge

@D Ry, ... X 0

ProposITION 2.10.  Suppose fi,...,fn € R[x1,...,x,] satisfy the Jacobian

\L
condition. For G € R[xy,...,x,], we have (&) G e L'R[xy, ..., xy).

Proor. By Lemma 2.9, for each prime p < L, there exists a poly-

L
nomial ¢, € R[x1,...,x,] such that (f,%) G:pdpm(pp. The GCD of the
integers {L!/(p%"))|p < L} is 1, hencé we can find integers m, so that

S my(L1/(p%WP)) = 1. Taking the polynomial ¢ = >_myp,, we have

L a\*
— — Ly —
Llp =L\ E myp, = E ml’pd,,(L)p" (pp_(afl) G.

We are done. O
CorOLLARY 2.11. If L'e R is a non-zero-divisor and Fi,... F,€
N
R[x1,...,x,] satisfy the Jacobian condition, then an R homomorphism +; ((%F)
R[x1,...,x4] = R[x1,...,x4] is canonically determined. If moreover there is

a ring homomorphism R — S such that S has a characteristic p¢ where p > 0 is
a prime number, when we set f; to be the image of F; and N := e+ d,(L), the

induced homomorphism S[xi,...,x,) — S[x1,...,x,] sends g= > ay -
N N N ¥ 0<ay,...,o,<pV
(xP LX) to b ay(x{ ... xE)(5) e In particular, the

O§“1~,mv1n<pN
induced homomorphism is independent of the choice of R and F;, if we start from

S and f.
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0

OF;

G=>Y Ay (x?" P"YF* mod pV of g, we have
= 0<ay,...,0,<pN ‘1o X1 s Xy p g,

1 0 L P N o
T\ A = p 4 o—Le; N
L! <6F,> G= Z Aa(xl R )<L)F modp . |:|

0<aty,..., oty <pV

L
Proor. The well-definedness of %( ) is obvious. Take any preimage

DeriNiTioN 2.12. Let fq,..., fy € R[xy,...,X,] satisfy the Jacobian con-
dition. When R has a characteristic p¢ with a prime number p, we define
6};” : R[x1,...,x4] — R[x1,...,x,] to be an R homomorphism sending g =
. N N N N )

> ay(xl XD f* to > ay(x{ ... x)(5) x

0<oy,..., o, <pN 0<ay,..., 0, <pN, ;> L
fe L4 with N=e+d,(L). Also when L! is a non-zero-divisor in R, we
define 6}’;] : R[x1,...,x,] = R[x1,...,x,] to be the unique R homomorphism
NI
such that L!aﬁ = (Tf,) .
Definition 2.12 will be generalized to any ring R (see Definition 3.16 for
the general R, and Definition 3.13 for the case R finitely generated over Z),
with properties as in Theorem 2.13 below. The proof of Theorem 2.13 will be
postponed until the next section (see Remark 3.17).

THEOREM 2.13.  For each set of polynomials fi,. .., f, € Rx1,...,x,] which
satisfies the Jacobian condition, there is an R endmorphism 6}1-_” D R[xp, .., x] —
R[x1,...,x,] which satisfies the following properties;

(1) If R has characteristic p® with a prime number p, 6}}” coincides with
the one defined in Definition 2.12;

(2) if L! is non-zero-divisor in R, then é}iL] coincides with the one defined in
Definition 2.12;

(3) 6}2” is functorial. Namely, when ¢ : R — S is a ring homomorphism,

then for any g€ R[xy,...,x,|, we have (p(@}f]g) = 64[0L<]f)¢(g).
Moreover, the system to associate R homomorphisms {G}IL]} : R[xi, ..., Xy
— R[x1,...,Xx,] to the polynomials fi,...,fy € R|x1,...,x,) with Jacobian con-

dition is unique, if this system satisfies the properties (1) and (3) above.

LemMmA 2.14. Let R be a ring of prime characteristic p > 0, and assume
that fi,..., fn € Rx1,...,x,] satisfy the Jacobian condition. Define X; to be
X, =x"” €R[xi,...,x,). Then the polynomials flpr,fzpy,...,f,{’r e R[X1,..., X,
satisfy the Jacobian condition.

Proor. By Proposition 2.4, each x; can be writften as ;=
Sau(xl,...,x0)f*. Take the p’-th power. We see that x/ e S[x{ ...,
X [P, therefore R[Xi,..., X, = S[X?,...,XP f7" ... f]. By
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Proposition 2.4 again, we conclude that f/ LS satisfy the Jacobian

'Jn

condition. O

PropoSITION 2.15.  Suppose fi,...,fn € R[x1,...,x,] satisfy the Jacobian
condition.  When the characteristic of R is a prime number p >0, then for

g= S @ (X xP)fY we have
0<ay,e,0,<p”
p'" a r r
5}11 ]g: Z <W>au(xf),,xf: )fy
0<ap,...,ay<p” i

where by Lemma 2.14, fI' ... [V e R[x]p/v, ..., xI"] satisfy the Jacobian con-
dition, and a(.?”r CRIx! ... x| = RIx!",... xI] is the R homomorphism defined
by Definition 2.3.

ProOF. We may assume that g=a(x/ Y xPY) fPF . where
N=1+d,(p") and 0<ay,...,0, < p". Applying 6};‘”'] to g, we obtain
a(x?" ... ,xﬁ"v)<p'€f,.+"‘f frhrleta which  equals  to a(xf"N s X2y
B.fP (P=elf* because (1’/'/;;,*“") =p; mod p if 0 <o; < p". O

COROLLARY 2.16. Suppose fi,...,fn € R[x1,...,x,] satisfy the Jacobian
condition.  When the characteristic of R is a prime number p > 0, we have

L r r
OL>0‘i>IKer 6/[]] = mr>OR[x{) 7...,X’f 7f17f27'~~7f1‘]'

Proor. If ge ﬂr>OR[x{’r,..V. ,x,f',ﬁzﬁ,...,ﬁ], then g can be written as
a linear combination of a%(xf" ,...,x,fh)f“ with oy =---=0,=0 and N
arbitrary large. Hence its image by 6};_“ with i >t is zero for d,(L) < N,
therefore g is in the left hand side.

Conversely, assume that g is in the left hand side. It is easy to check that
if a}_”gzo for i=¢+1,1+2,...,n then gerR[x{’,...,x,f,ﬁ,...,j}]. Pro-
ceeding by induction on r, assume that g € R[x/",....x/", fi, f»,..., fi], namely
we can write

g= Z ay(x] o XE

0<0p 15, 0y <P’

for some r > 0, with r = 1 case already checked. We apply 0}_” T to g to obtain

Z(q{% ay(XP' . xPO S f* =0 by Proposition 2.15. By the unique-
ness of such a representation (Proposition 2.4), we have 6}__1,,],(10(()%7 o ,XP) =0
for i=t+1,642,...,n, hence we have a,(x",...,x?") eR[x{’rH,...,x;fm,

/L ".....fP], which shows that the r+ 1 case holds. We are done. O
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3. Higher derivations

In this section, we prove Theorem 2.13.

LemMmA 3.1. Let R be a ring, and assume that fi,..., f, € Rlx1,...,x,]
satisfy the Jacobian condition. Then a polynomlal g e R[x] ﬁ,...,xé"%'] can
be written as g =g, ., pi a“(x1 e XP PN ph(xy, LX),

PRrROOF. By Lemma 2.14, f1 eens fn/"w*" satisfy the Jacobian condition
in (R/pR)[x? N ..., xP"7], hence by Corollary 2.6, we have the desired ex-
pression. ]

LEmMMa 3.2. Let Ui, l,b € R[x1,...,x,] be polynomials. Then any
polynomial g/)eR[(//p W’ 1< R[x1,...,X,] can be written as ¢=

—i

N ; N—i
Zi:OPl(Pi(xl yoes XF )

Proor. By multinomial expansion formula, if g = Z; | a4y X%, we have

g = > d1'dz d,H%

di+-+e,=pN

with p’ divides g d, if one of d’s is not divisible by p¥~**!, hence g”" is

in Zl o P'R[xT ﬂ,... xf’ . The polynomlal @ is a linear combmatlon of
such polynomials, therefore it is also in Zl 0 p’R[x1 ,...,xl’ '}. O

Lemma 3.3, If fi,..., fu € R[x1,...,Xx,] satisfy the Jacobian condition, then
for each multi-index o, we can write

N
N N N . N N
fp“:go(xf] 7"'7x£)+§ E pla/),(xf 7"'7x5 )fﬁ
i=1 \pN-|g,0<p,.... B,<p¥

PROOF. As [7"* modp is in (R/pR)[ pN,... x?"], we can find a

’7'n

polynomial go(x{ N, e ,x{j ) such that fl’ g € pR[x1,...,x,]. By Lemma

3.2, we can erte Vi “—go(xl yeeey XD )+Zl:1pg,( Nf',...,x,fo"). We
will show that f?’ "% can be written as

N i N N .
fr “:go(xf’ s xp —I—Z Z plap(xl . xp )P
=1 \pNIHB0< By, By <pN
N i pri pN—i
+Zpgi(x1 ,...,Xn )
=
by induction on j. Assuming the j-th case, by Lemma 3.1, we can write
N-j N-j N N N-j
gi(xl L x ) = Z a,(xI ..., x20) 7777 mod p.

0<y<p/
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N—j N—j N—j N—j N—jq . .
By Lemma 3.2, g; — Y a,f?" 7 € R[x? /,...,xf’v/,flp L P s in

n

N V—i N—i N P N—i N—i
Zp"’jR[xlp'\ s xP T IN pRY, L x) = Z p”fR[xlpV cexP
=

i=j+1

substituting which gives the j+ 1-st expression, and the induction (hence the
proof) is complete. U

LEmMMA 3.4. Let R be a ring with characteristic a prime power p¢ > 0, and
S5y Ju € RIx1,...,x,] polynomials with the Jacobian condition. Let us write
fras % =3 0cpepn a/f(i(ff[\ s XY FEIf pN Y does not divide o; — ; for
each i, then agep/R[x" ... x2"].

Proor. We will show that f* can be written as

f1:Z Z piaﬂ(xf’N,...,xfl’N)f/f
=0 \p¥11(0), 0=y

N
. N N
+Z Z plag(xl ..., xP)fF

=/ \p"|(@=p)

by induction on j. Take a multi-index oy with oy =« mod pV and
0 <oy < pN. Then writing o« =0+ p"y, we have 1~ :f“Upry, and sub-
stituting the expression of f?"7 of Lemma 3.3, we prove the case for j = 1.
Assuming the case for j, for each f# with p¥~/|f and B« pV, we write
B=Po+pNo, 0<p, < p", and substitute the expression of 7" of Lemma
33 to f7 :fﬂﬂff’N(’. Then we obtain the expression for j+ 1, and the in-
duction completes. N

LemMmA 3.5. Assume that R has a prime power charactersitic p°,
and fi,...,fn€ R[x1,...,x,] satisfy the Jacobian condition. Suppose that the

multi-index o is such that 0 <oy, 0,...,00_1,041,...,0, < pY, p¥ <o <
pN+L with L>0 an integer and N =e+d,(L). When we write f*=
N N
> 0<p.. pph ag(x? ,...7xfw)f/f) then we have
o u—Le; pN N ﬂi p—Le;
I f =0= Z ag(x{ ,...,xt") 7 f .
0< By Bu<p™

L) _ ,e

ProoF. The assumption pY <o < p¥ + L implies that p~=( p
divides (2), hence the left hand side is 0. For the right hand side, for each
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B, choose j so that p¥=/| (o — B) but pVH! y(a— ). If N — j < d,(L), then
we have j>e, and by Lemma 3.4, we have ag =0. On the other hand, if
N — ] > d,(L), then (%) is divisible by p¥=~/=%() and again by Lemma 3.4,
ag(x! ,...,x,fN) is divisible by p/, hence (A)ay is divisible by p¥~%() =0,
hence the right hand side is also 0. ]

PROPOSITION 3. 6 Assume that R has a prime power characteristic p¢. If
g= Zax(x1 - )f“ € R[x1,...,x,] with o not necessarily in the range of

0<oa<pV, and N =e+d,(L), then we have

N N o o Le;
o= atat o) () e

ProOF. By linearity, we may assume that g = f*. Flrst we treat the
case where o«; > L. When we write f“ b = o ppt a,,(xl sy X2V P,
then (%) /%" L“—Zaﬁ(xl v x2) () fP. For each B, take j so that
o— Le; — B is divisible by pN’f, but not by pV/*l. If j>e, then by
Lemma 3.4, a;=0. On the other hand, if j<e, then (//5)=(%)

mod pN—/—d(

Sag(x . x2V) (P P, Because f :ZOSkl,Naﬂ(xl B xP™) fPrLe ) we
may assume that 0 <o < pV for k#i and p" <o, < p¥ +L from the
beginning. But this speicial case is already proved in Lemma 3.5.

We still need to prove Proposition for the case o < L. In that case,
when we write f*=33_; 5 ap(x!" .. x2")fP, if pN=+1 does not
divide o — f, then ag is divisible by p/ by Lemma 3.4. Also if pN=/ divides
o — f, then (%) is divisible by p¥~/~%(). Hence choosing j to be such that
o — f8 is divisible by pN =/ but not by pV/*! we conclude that each ap(%) is
divisible by p¥-%({) =0. We have G[Lf —O—Za/;(x1 e )(ﬂt)f/” ¢
in this case. ]

) and p/|as by Lemma 3.4 again, which 1mp1y that (“‘) foete =

LemMmA 3.7. Let ¢: R— S be a ring homomorphism, and assume that R
has a prime power characteristic p°. Let fi,...,fun € R[x1,...,x,| satisfy the
Jacobian Condition, g € R[xy,...,x,] a polynomial, and by abuse of notation,
we write ¢ : R[xy,...,x,] = S[x1,...,x,] for the induced homomorphism with
o(x;) =x;. Then S has a prime power characteristic, ¢(fi),...,0(fx) €
S[xi, ... x,,] satisfj/ the Jacobian Condition, and we have the compatibility

Sformula go(@ g) = GL] o(g).

Proor. The compatibility formula follows from Proposition 3.6. The
rest is easy. ]
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PrOPOSITION 3.8. Let R be a Noetherian ring, and assume that fi,..., f, €
R[x\,...,x,] satisfy the Jacobian condition. For a prime number p and each
integer e >0, define the canonical homomorphism ¢, Rlx1,...,xy) —

R/(p°R)[x1,...,Xxs). Then for a polynomial ge R[xi,...,x,|, the system of
polynomials {(3 L () P(9)}emr .. forms an inverse system, and determines an
element

6[L]( 0p(9) € <lgn R/peR>[x1,...,xn].

Proor. By Lemma 3.7, the higher derivations are compatible with the
ring homomorphisms, hence the system {6[ Ppe(9)}ei 2. forms an inverse
system. We need to show that the degrees are bounded, which implies that the
inverse limit lies in the polynomial ring, in the ring of the power series.

Define an ideal 7 « R by I :={re R|p°r=0 for some s >0}. As R is
Noetherian, p¢l =0 for some e>0. Lete >e, and take ce R/(p¢R) to be

the coefficient of x* in 6 o ()P0 (g), where the coefficients of x* in both
L

ol ]( Ppe(g .(g9) and (/) g are zero. We will show that ¢ = 0, which implies the
boundedness of the degree.
Let ¢”" =¢' +d,(L), then by Lemma 3.7, ¢ is the image of the coeffi-

cient ¢ eR/(p""R) of x* in 6;[01,[ P «(9). Then Llc; is the coefficient of

x* in

W ¢, (g), which is zero by the assumption of c. As

is invertible in R/(p¢ R), we have p =0. Let ¢; € R be a preimage
of ¢i, then we have p%WD¢ :p"//CN’ for some ¢’ e R. Also the image of
¢y in R/(p°R) is zero by the assumption of ¢, hence we have ¢ = p¢
for some c€R. Hence we have p"”g’ = p%We; = p%Lpeé,  therefore
petdL) (g — pe=e )— 0, which means ¢ — p¢ ¢’ € I, hence p‘)(é—p"""CN’) =
0, and we obtain ¢; = p°c = p°© '¢’. We conclude ¢=¢; mod p“R=0 as
desired. W

P dp(L

d/’(L>cl

The following result is well known.

LeMMA 3.9. Let R be a ring finitely generated over Z. If m < R is a
maximal ideal, then the characteristic of R/m is positive. O

LemMA 3.10. Let R be a finitely generated ring over Z, then the canonical
homomorphism

¢ Rlxt,...,x,) = [[lim R/(p°R)[x1,...,x]
p e

where p runs over all prime numbers, is injective.
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Proor. It is enough to show that R — [[lim R/(p¢R) is injective. Let
p e

re R be a non-zero element, / = ann(r) = R be the annihilator ideal, and
m > I be any maximal ideal. By Lemma 3.9, the characteristic of R/m is
positive, say p. We will show that the image of r in lim R/(p°R) is non-

zero. Assuming to the contrary, taking the ideal J = ﬂ PR, we suppose
that reJ. Let s1,...,s5; be a set of generators of the ideal J, then because
J=pJ=(psi,...,ps;), there is a matrix 4 € M,(R) such that pA<S;] =
St
(Sl . Multiplying the adjoint matrix of I —pA4 from the left side, we
conclude  that det(I —pA)J =0, hence det(I— pA)r=0, so we have
det(l — pA) e I. On the other hand, we have det(/ — p4) =1 mod p, hence
one can find an element e R so that 1 —pu=det(/ —pA)el cm>ap, a
contradiction. ]

LeMMmA 3.11. Let R be a finitely generated ring over Z, N € Z a positive
integer, and consider the homomorphism ¢ : R — [[lim R/(p°R), then ¢ induces

p e
an isomorphism from ann(N) < R to ann(N) < [[lim R/(p°R).
P e

Proor. By Lemma 3.10, ¢ is injective, so we need only to show the
surjectivity of @ un(y)- Each lim R/(1p°R) has only torsion of the order

some power of p, so we may assume that N = p?, and consider the homo-
morphism ¢, : R — lim R/(p°R). Let {ri,r,...} € ann(p?) lim R/(p‘R),
e e

with r; € R/(p'R). First, we claim that one can find a preimage 7; € R of r; so
that p?F; = 0. Let 7/ € R be any preimage for each r;. Because {rj,rs,...} is
an inverse system, if 7 > j, we have 7/ = fj’ mod p/R. Also, because p9r; =0,
one can find s; € R so that p"f{ = p's; for each i. Let us take 7;:= Fig—
Pisiva, then 7; is a preimage of ry, and p/F; = pFl , — p sy = 0.

Similarly to the proof of Proposition 3.8, let us take the ideal [ :=
{re R|p*r=0 for some s> 0}, then for some e > 0, we have p°T =0. We
claim that if i > j > e, then #; =#. Since {ry,r,...} forms an inverse system,
we have 7; = /; mod p/R, hence there is some 7 € R such that 7; — 7; = p/t.  As
p% = piF; =0, we have pi(f;i—7)=p97=" so ¢ is in the ideal I.
Therefore, we have 7; —F; = p/t = p/~p°t = 0, because p°l = 0.

By replacing 7; with i <e by 7, we conclude that our torsion element
{r1,r2,...} is the image of 7., a torsion element in R. We are done. O

ProposITION 3.12.  Let R be a finitely generated ring over Z., fi,..., f, €
R[xy,...,x,] satisfy the Jacobian condition, and g € R|xy,...x,] a polynomial,
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then H(&(EILLU;)(opx(g)) is in [[lim R/(p°R)[x1,...,xs), and it lies in the
p p e
image of the canonical ring homomorphism ¢ : R[xy,...,x,] — Hhm R/

(p°R)[x1,...,x4]. Morever, if L! is invertible in R, then we have gﬂ( [ ] g) =
H(G(E)Ll(f!)(pp (g9)) defined in Definition 2.12.
P

Proor. Each (5 ()?p=(9)) is a polynomial by Proposition 3.8. Also
for p> L, L!is 1nvert1ble in each R/(p¢R), hence (6[” () Pp (g9)) is the inverse

limit of %(/)pe<(ﬁf) g), hence the degree of H( () Pp= (9)) is bounded,

and is a polynomial.

By Proposition 2.10, we can write (%) g = L' for some h € R[xy,..., x|,

and then we have L!((p(h)—H(@([p]J(f)(pp (9)) | =0. By Lemma 3.11,
P

there is hj € R[xy,...,x,] such that ¢(h) = @(h) — HP(GLLLW%% (9)), hence

H(@(E)Ll( )(opl,( g)) equals ¢(h — h;), in the image of ¢. If L! is invertible in R,
p

then h = ”[ ]g, and h = 0. O

DerINITION 3.13. When R is finitely generated ring over Z and fj,...,
Jn € R[x1,...,x,] satisfy the Jacobidn condition, then for g € R[xl,...,xn}, we

define the higher derivation 6 g to be the preimage of H( ft)% (9))-

REmMARK 3.14. By Proposition 3.12, the preimage exists, and by Lemma
3.10, it is unique. If L! is invertible in R, then this definition coincides with
Definition 2.12 by Proposition 3.12. Also if R has a prime power charac-

teristic p¢, then [[{lim R/(p“R)[x1,..., %] | = lim R/(p“R)[x1,..., %] =
p e e

R[x1,...,x,), and by the construction, Definition 3.13 and Definition 2.12
agree.

LemMma 3.15. Let y: R— S be a homomorphism between rings finitely
generated over 7L, fi,...,fn € R[x1,...,x,] satisfy the Jacobian Condition, and
g € R[x1,...,x,] a polynomial. By abuse of notation, let : R[x1,...,x,| —
S[x1,....xy] be the extension of W, defined by Y(x;) =x. Then (0, plH] g) =

L l
ol w(g) holds.

Proor. By the definition of the higher derivation, we may assume that
R has a prime power characteristic, which case is already proved in Lemma
3.7. O
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DEerFINITION 3.16.  Let R be any ring, fi,...,f, € R[xi,...,X,] satisfy the

Jacobian Condition, and g € R[x|,...,X,] a polynomial. Take a ring injection

-1 -

W : S — R so that (S)[xi,...,x,] contains fi,..., f,, g and det(%) . Let f;
ij

and g be the preimages of f; and g respectively, and define a}f] (g).’to be the
image of 6}“ ().

ReEmMARK 3.17. By Lemma 3.15, this definition is well defined, independent
of the choice of the injection y. By this definition, Theorem 2.13 obviously
holds.

4. SAGBI basis

DerFINITION 4.1. Let k& be a field. Throughout this section, fix a mon-
omial order for the monomials in k[xi,...,x,] (see [3]). For a k subalgebra
R < k[xi,...,x,], define LM(R) to be {LM(f)|f € R}, where LM(f) is the
leading monomial of f.

LEmMMA 4.2. Let S < R be k subalgebras of k[xi,...,x,. If LM(S)=
LM(R), then S=R

PrROOF. Assume that S is a proper subalgebra of R. Take a polynomial
fe€R—S with LM(f) minimal, which is possible because monomial order is
a well ordering. As LM(S)= LM(R), for some ge S, we have LM (g) =
LM(f). Then for a suitable constant cek*, LM(f —cg) < LM(f), and
f —cge R—S, a contradiction. O

DeriNiTION 4.3, Consider LM(R) as a monoid under multiplication.
When {LM(f;)},., generates LM(R), the set {f;|Ae€ A} is called a SAGBI
basis of R.

ReEMARK 4.4. Even when R is a finitely generated k subalgebra of
k[x1,...,xy), it is possible that there is no finite SAGBI basis for R (see [8]).

DeriNiTiON 4.5, Let p be a prime. For each f ek[x,...,x,], con-
sider LM(f) = x* as a vector a = (ay,...,0,) € Z". Polynomials fi,..., f; €
klxi,...,x,) are said to have linearly independent degree modulo p, if

LM(fi),...,LM(f,) € F, are linearly independent in the vector space over F,
where LM(f;) is the image of LM(f;) by the natural map Z" — F.

PrROPOSITION 4.6. Let k be a field with characteristic p >0, and r >0
an integer. If fi,..., fo € k[x1,...,x,] have linearly independent degree modulo
p, then {xfr, ey X iy fu} is @ SAGBI basis of the k subalgebra
k[xf',...,x,fr,ﬁ,...,ﬁ,] < k[x1,. .., Xl
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Proor. If ge k[x{’r, ey XP A Sl we can  write g=
ag(x?", ..., x?")fF, because f?Feklx!, ... x!"] by the Frobenius
0By By<p”
map. We claim that the elements LM(a/,»(xlpr,...,)c,ljr)fﬁ)7 0<By,....0, <
p'), are all distinct, which implies that LM (g) = max LM (ag(x{ ,...,x2")[*) e
CLM(xP"), ..., LM(x2"), LM (f), ..., LM(f;)>.

Let v;=LM(f;)eZ", considered as a vector as in Definition 4.5.
Assuming that LM(aﬁ(xlpr7 coxP P = LM(a},(x{’y7 LX), we will
show that f=y. We have > (f; — y;)v; =0 mod p”". Let J;:=f, —y,, then
> 0,v; =0 mod p’. We prove that each J; can be written as 5,«:p-’5,;,/-
with §; ;e Z, j=0,1,...,r by induction on j. When j =0, nothing is to be
proved. Assume that 6; = p/d; ; with j <r. Then since Y dv; =0 mod p’,
we have ) d; jv; =0 mod p”’. The vectors Tj :=uv; mod p are linearly in-

dependent over F, by assumption, we have ;=0 ;= --- =J,; =0 mod p,
the induction completes. Hence J; = ff; — y; is divisible by p”", and because
0<pB;,y; <p’, we conclude that ff=1y. O

CoroLLARY 4.7. If fi,...,f; have linearly independent degree modulo
p >0, with p the charactersitic of k, then (\ _ok[x{ ,....x0" fi,...,fi] =

PrOOF. Let S=k[fi,.... ], and R= () _ k[x/",....x!", fi,..., f], then
obviously S =« R. By Lemma 4.2, it is enougth to show that LM(S) o
LM(R). Let ge R be a non-zero polynomial, then for any r > 0, we have
ge k[x{’", ey X2 fiy.., fil. Pick r large enough so that the degree of ¢ in x;
is less than p” for all i. By Proposition 4.6, we have LM (g) € <LM(x{’V), .
LM(x?"), LM (f}),...,LM(f;)>. But because LM(g) is not divisible by x?’

i »

)

actually LM (g) e (LM (f),...,LM(f;)> = LM(S). We are done. O
RemaArk 4.8. If fi,..., fy €klxi,...,x,] satisfy the Jacobian condition
and fi,..., f, have linearly independent degree modulo p > 0, the characteristic

of k, then combining Corollary 4.7 with Corollary 2.6, one immediately proves
the Jacobian conjecture in characteristic p in this special case. Unfortunately,
from the proof of Corollary 4.7, it follows that LM(S)=<LM(f1),...,
LM(f,)», which means that our assumption holds only when LM(f}),...,
LM(f,) are distinct degree 1 monomials, too trivial case to be mentioned.

ReMARK 4.9. This section is the only “missing link” in the proof of
Jacobian conjecture in general. All we have to solve is the following problem:
Find a “good” condition for fi,..., f; so that ﬂr>0k[x{’r,...,x,g’",f],...,f,] =
k[fi,...,f:] holds.
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5. Reduction to positive characteristic

CONJECTURE 5.1.  Weak Kernel Conjecture WKC(n,t): Let k be a field of
charecteristic 0, and fi,...,f,€k[xi,...,x,| satisfy the Jacobian Condition.
Then we have

0
ﬂi>tKera—ﬁ:k[ﬁ,...,ﬁ]

REMARK 5.2. When ¢=n-—1, the Weak Kernel Conjecture
WKC(n,n — 1) is the standard Kernel Conjecture for n variables, which implies
the Jacobian Conjecture for n — 1 variables. Conversely, the Jacobian Con-
jecture for n variables implies the standard Kernel Conjecture for n variables
([5]). If t = s, WKC(n, 1) implies WKC(n,s).

The goal of this section (and this paper) is the following theorem.

THEOREM 5.3. Let k be a field of characteristic 0, and fi,...,f, €
klxi,...,x,) satisfy the Jacobian Condition. Fix a monomial order for the
monomials in k[xi,...,x,|. Consider LM(f1),...,LM(f,) in Z", as vectors in
Q" If LM(f),...,LM(f;) are linearly independent, then ()., Ker 0% =
k[fi,..., fi]

CoRrROLLARY 5.4. WKC(n, 1) holds. In particular, it gives a new proof for
the Kernel Conjecture for 2 variables.

The key tool to reduce the WKC to positive characterisitc is the following
lemma.

LEMMA 5.5. Let k be a field of characteristic 0, fi,..., fi,g € klx1,...,x,]
polynomials, a,...,a;,€k* finitely many non-zero elements in k, and N an
positive integer. If g & k[fi,..., fi], then there exists a subring R = k which
satisfies the following conditions.

(1) The ring R is finitely generated over Z.

(2) fl7"‘7ﬁvgeR[x17”'vxn]'
(3) The elements ai, ..., a5 are invertible in R.
(4)  For any maximal ideal m = R, let fi,..., f,,§ € R/m[x1,...,x,] be the

canonical images of f1,. .., f,g € R[x1, ..., x|, then ¢ R/m[fi,..., f].
(5) For any maximal ideal m = R, the characteristic of R/m is larger than N.

Proor. First, in order that fi,...,f;,g € R[xi,...,X,], the ring R must
contain all the coefficients of f;’s and ¢’s. Also to make sure that ay,...,q; are
invertible in R, R must contain ;...

Next, the assumption that g ¢ k[fi,...,f;] can be verified by the fol-
lowing calculation: Let I < k[xy,...,X,, y1,..., ;] be the ideal generated by
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1= fi,...,ye— fi. Take an elimination monomial order in kxi,...,x,,
Vi,--., ], namely an order such that any monomial y'... y/ is smaller than
each of xi,...,x,. Calculate the Groebner basis of the ideal I under this

monomial order by Buchberger algorithm to obtain {4y, ..., A}, and apply the
division algorithm to divide g by {Ai,...,h}. When r is the remainder, g is
not in k[f},...,f;] if and only if r contains a term involving x, namely,
rék(yi,..., .

In the calculation above, notice that we use the divisions by elements of k
only finitely many times. We would like R to contain 1 whenever we use the
division by a € k in the calculation. Also in the final step of the verification
of g¢ k[fi,...,f;], we look up a term in the remainder r, which involves x,
and see that its coefficient is non-zero. We would like R also to contain the
multiplicative inverse of the coefficients.

Finally, to make sure that the characteristic of R/m is larger than N, it is
enough that R contains because the characteristic of R/m is positive by
Lemma 3.9.

Once we generate the ring R by all these finitely many elements over Z,
the calculation to verify that g ¢ R/m[fi,..., f;] proceeds exactly parallel to the
verification of g ¢ k[f1,..., fi]- O

€L
N>

LEMMA 5.6. Let fi,...,fi€k[xi,...,x,] be polynomials, where the poly-
nomial ring has some fixed monomial order. If the vectors LM(f)),...,
LM(f;) e Z" = Q" are linearly independent, then there exists some integer N so
that for any prime p > N, fi,..., f; have linearly independent degree modulo p.

ProoOF. Let v; = LM(f;) € Z" be the leading monomial of f; considered as
a vector. Because vy,...,v, are linearly independent, there exists a non-zero
t X t minor in the canonical matrix representation of (vj,...,v,). One can
choose N to be the absolute value of the determinant of the minor. O

Now we are ready to prove our main theorem.

ProOF (of Theorem 5.3). The inclusion () Ker & S k[fi,...,f] is
obvious. Pick a polynomial g ¢ k[fi,..., fi]. Assume that a;% == % =0,
and we need to get some contradiction. Because LM(fi),...,LM(f;) are
linearly independent, by Lemma 5.6, there is some N such that for any prime
p > N, the polynomials fi,...,f; have linearly independent degree modulo
p. Let a; be the leading coefficient of f; for i=1,2,...,¢, and a, =

det(ﬁ) , and take the subring R < k with s=¢+ 1 as in Lemma 5.5.

A
9% )i j=1,..n

Let m = R be any maximal ideal, p > N the characteristic of R/m, and let
d,f1,..., f; as in Lemma 5.5.
As det (;—f;) is invertible in R, we can define the higher derivations 6}1%] g,
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i=t+1,t+2,...,n, L>0, with R coefficients, and they are zero by the
compatibility for R < k. Again by compatibility for R — R/m, we have
6}7”(1_:0 for L_> 0, i=t+1,...,n, hence by Corollary 2.16, we have
ge ﬂr>0R/m[x1”),...,x,ll",fl,...,ft]. By Corollary 4.7, we have (),_,R/
mlx?" ... xP fi,..., il = R/m|fi,..., f;], contradicting the choice of R so
that g¢ R/m[fi,..., fi]. ]
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