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ABSTRACT. This article is devoted to the study of a resource-consumer type reaction-
diffusion system arising in chemistry, biology and in other applied sciences. We prove
that the problem is well-posed and describe the large time behavior of the solutions.
A key ingredient is to obtain a uniform in time L*-bound for the solutions. We also
present numerical simulations describing the transient behavior of the solution which
show very unstable interfaces.

1. Introduction

Among a lot of reaction-diffusion (RD) equations, a class of RD equations
with consumer and resource interaction have been thoroughly investigated by
many authors. A typical but suggestive example is the following two com-
ponent system where # and v act as a consumer and its resource, respectively:

u, = dydu + u™v,
v, = dydv — uv,

(1.1)

where d, and d, are the diffusion coefficients of u and v and m is a positive
integer. The main results concern the well-posedness of the parabolic prob-
lems, L*™-bounds on solutions which do not depend on time and their
asymptotic behavior ([Ali, Mas, HaYo, Hos, Kan] for instance). A charac-
teristics of this system under the zero-flux boundary condition is that the spatial
average of u+ v is conserved in time. It is shown that

lim,_... (u(1), (2)) = (<u(0) + v(0)),0),

where {f) is the spatial average of f.

In view of the result on the asymptotic behavior of the solutions above,
one used to believe that resource-consumer systems without feeding process
such as (1.1) are not interesting from the pattern formation viewpoint.
However, recent numerical simulations have revealed that it is not necessarily
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true, that is, solutions of (1.1) may exhibit spatio-temporal patterns in tran-
sient time [HiMiWe]. This suggests that resource-consumer systems should be
revisited from the pattern formation viewpoint.

From the mathematical modelling viewpoint, one encounters several
resource-consumer systems in the fields of biology and chemistry. An example
is bacterial growth in biology. One easily notices that bacteria and nutrients
obviously correspond to a consumer and its (finite) resource. The resulting
model [Kit] is

u; = dyA(uk) + uv — au,
v, = dydv — uv, (1.2)

W, = au,

where u and w are the densities of active and inactive bacteria respectively, and
v is the concentration of nutrients, k (>1) is a positive integer, a is the
conversion rate of u into w. The first two equations of (1.2) with a =0
coincide with (1.1) with m =1 except for the diffusion term for u. From
experimental requirements, we may take k =1 (linear diffusion) in (1.2) when
the medium (agar) is soft, while when it is hard, we may say that kX = 2 (nonlinear
degenerate diffusion) is plausible. It is obvious that the first two equations are
closed for u and v and that w can be obtained by solving them. Biologically
the total bacterial density, which is given by

t

u(x,t) +w(x, 1) = u(x, 1) + aJ u(x, s)ds,

0

is an important parameter.
Another model involves the following autocatalytic reactions for the inter-

mediate component U and the reactant V'

{mU—i— V— (m+1)U
nU — P.

If these processes happen in a porous medium, a suitable model can be given
by

{ u; = d, A +u"v — au” (13)

v = d,A(v") — u"v.
When m=n=1and k =7/=1, (1.3) is a familiar system in epidemics where u
and v are the densities of susceptible and infective species, respectively. When

m=2,n=1and k=17/=1, (1.3) is called the Gray-Scott model in chemistry.
A special case for (1.2), (1.3) is the scalar equation

ul:A(uk), (1.4)
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which is called the porous medium equation for k£ > 1 (see for instance [Pel]).
This equation has been fully investigated.

Let us present some numerical simulations of (1.2) under the following
initial and boundary conditions in a bounded domain @ in R

(u(x,0),v(x,0)) = (uo(x), vo) for x e Q, (L.5)

where uo(x) is an approximation of the Dirac measure at one point, vy is a
positive constant and

%:2—5:0 on 0Q x (0,7), (1.6)
where v is the outer normal vector to the boundary 09Q.

The first case deals with k = 1 (linear diffusion). The resulting patterns
of u and u+ w are shown in Fig. 1.1; u generates an expanding ring and the
corresponding w is an expanding disc. After a large time, the ring pattern of
u disappears, while w occupies the whole domain so that it becomes spatially
constant. This indicates that there does not develop any pattern asymptoti-
cally. The second case is that where k = 2. As in Fig. 1.2, for suitable values
of d,,d, and vy, the ring pattern of u breaks into several spots, each of which
splits into smaller spots repeatedly and eventually all the spots fade away.
However, the sum u + w surprisingly forms very complex patterns asymptoti-
cally. These numerical results clearly indicate that the effect of nonlinear
diffusion creates spatio-temporal patterns in consumer-resource systems.

Motivated by the above results, we consider the following nonlinear
diffusion system with resource-consumer interaction:

{ut = AW*) +u"v — a(u,v)u" in Qr :=Q x (0,T) (17)

vy =dA@W") —u™v in Or
where k,[,m and n are positive integers, d is a positive constant and a(u,v) is a

strictly positive function of u and v. € is a smooth domain of RY and 7 > 0.
We associate to the system (1.7) the boundary and initial conditions

%:%:0 on 92 x (0,7), (1.8)
(u(x,0),v(x,0)) = (uo(x),vo(x)) for all x e Q. (1.9)

The organization of this paper is as follows: In Section 2, we state the
main results. In Section 3, we define the notion of weak solutions of the
initial-boundary problem (1.7)—(1.9) (we refer to it as Problem (P) hereafter)
and present a sequence of related uniformly parabolic problem (P¢) and denote
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t=0.0 u u+w

t=60.0 u u+w

t=120.0 u u+w
t=180.0 u u+w

O

Fig. 1.1. Time evolution of solutions to (1.3), (1.5) and (1.6) where d, = 0.01, d, = 1.0, k =1 =1,
m=n=1, a=0.15 and vy = 1.0.

their solution by (u°,v°). In Section 4, we state some auxiliary results which
are useful in the sequel. We present in Section 5 L”-bounds (with p arbitrary)
for the function u® which depend neither on £ nor on time. In Section 6, we
prove an L*-bound for ¢ uniformly in time. Then the existence, uniqueness
and continuity of the weak solution of Problem (P) follow in Section 7.
Finally we describe in Section 8 the large time behavior of the solution of
Problem (P): there exists a pair of nonnegative constants (#*,v*) such that
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Fig. 1.2. Time evolution of solutions to (1.3), (1.5) and (1.6) where the parameters are the same
ones as in Fig. 1.1 except for k = 2.

(u,v)(¢) tends to (u™,v*) as t — oo. The case that a = 0 is also discussed in a
similar way.

2. Main results

We suppose that the following hypothesis holds:
Hy : ug, v9 € C(Q), 0 <ug,v9 <M,

for some constant M > 0,
H,: ais a stricly positive locally Lipschitz continuous function on R™ x R™
or a=0, and

l<m<

k+2/N if N>3,
k+1  ifN=1,2

The definition of weak solutions of Problem (P) is stated in Definition 3.1
in Section 3. The results are, in the case that a # 0,
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(i) Problem (P) admits a unique weak solution (u,v) satisfying
O0<u(x,r)<Cp, and O<v(x,t)<M  forall (x,7)eQx(0,7),

for some constant Cy > 0.
(i) There exists a constant v™ such that

lim (u(7),v(¢)) = (0,v™)  uniformly in Q.

— o0

Furthermore, if 1 <m <n, v*° =0, while, if 1 <n <m then v* > 0. Espe-
cially if m = n, then v* < a(0,v%).
If we consider the third equation for the unknown w in addition to (1.7)

w; = a(u, v)u” in 2x(0,7), (2.1)
with
w(x,0) =0 for all x e Q,
then we find that there exists w*(x) such that

lim w(x, 1) = w™*(x) uniformly in Q.
— 00
For the special case that « = 0, we can also obtain a similar result as (i)
and (i)’ (u(7),v(?)) tends to ({up+ vop,0) uniformly in Q as ¢ — oo.

3. A sequence of approximate problems

Since in general a solution of Problem (P) is not smooth, we define a weak
solution as follows

DerNITION 3.1, We say that (u,v) is a weak solution of Problem (P) on
[0,T), if it satisfies:
(i) wu,ve C(Qr) and u,v >0, 5
(i) For all pe C>'(Qy) such that a—¢:0 on 02 x[0,T], we have for all
te0,T): !
t

J, w000 = | uoo0)+ | | o+ up,+ o= atuwonp), 30

[, o000 = [ vop(@)+ | [ (@' ap+ 10, uen). (32)

In order to prove the existence of a solution of Problem (P), we introduce
the sequence of approximate problems (P¢)
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u = Ag(u) + u"v — a(u, v)u" — eu™*! in Qr,

vy = dAY.(v) — u™v in Qr,

(P) 40 0 R
5@(“):5‘//&(0):0 on 0Q x (0,7),
u(x,0) = uj(x) v(x,0) = vj(x) for all x € Q,

where ¢.(s) := (s+ )" — e, Y.(s) :== (s+¢)' — e and ug (resp. vj) is a smooth
approximation of uo (resp. vo) such that [jull,. g, 1G]l @) < M,

0 0
) = (5) =0 on 02,
and
tim (g — 2l ) + 15 — ol . ) = 0.

We prove below the following result.

THEOREM 3.2. There exists a unique classical solution pair (u®,v°) of
Problem (P?).

ProOF. We define K :={we C(Q7),0 <w< M} and suppose that
v® e K. Since Problem (P7) defined by

u = Ad.(u) + u"v® — a(u, v )u" — ™' in Q x (0, 7),
(£) %¢5(u) =0 on dQ x (0,T),
u(x,0) = ug(x) for x € Q,

is uniformly parabolic, it possesses a unique classical solution u¢ (see [LSU,
Chapter 5, Theorem 7.4]), and it follows from the standard comparison principle
that 0 <u® < M/e. Furthermore we have the following stability property: if
uj and u5 are two solutions of Problem (P;) corresponding to vj and v5 and the
initial functions uf o, u5 ¢, it follows as in [ACP, Corollary 11] that

t

i (6) = 3| 1) < Ny o = 3,0l 210 +J (up)" o} — a(uy, o) (uy)"

I
0
— o)™ = (u3)"v3 + a(uz, v5) (u3)”

m+1

+ &)™ o) (s)ds,

so that there exists a positive constant C which depends on ||uf|| L7(y)
||u§'||Lx(Q—T) and on the data M,m,n and a such that
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t
i (1) = w5 (D)l 1) < C(|”i0 =5 ollLigg) + JO [uf — 5] 11 (o) (5)ds
t
+ [ et = ol <s>ds) (3.3)
t
< (0 = ol + [ 65 =l 01

T
+[ i U§||Ll(g>(5)d5)~ (3.4)

Then Gronwall’s Lemma implies that

T

T
[, 1 = 50 00 = €T (=l + [, 1 = ey 01 3:)

Moreover, if u° is a solution of Problem (F;), there exists a unique classical
solution ?° of the problem

vy =dAY.(v) — (w)"v in Qx (0,T),
(B) { ) =0 on 22 x (0, ),
v(x,0) = v§(x) for x € Q.
By the standard comparison principle, we have that
0<o°< M.
Moreover if u] and uj are two given functions and ©5,95 the corresponding

solutions with initial functions oj ,, 95 ,, we have that

t

197(8) = 95 (D)l 1) < C(Hf’fo =00l + L 107 — 0311 1) (5)ds

t
+ [ 0t = e <s>ds), (3.6)

where C = C(H”T”L*(QTV ||“§||L*(QT)) is a positive constant, which by Gron-
wall’s Lemma implies that

T

T
[ 15 = 500y 01 < eCT(nﬁio ~ S ollo + | I - u§||L1<g><s>ds). (3.7)

0
Therefore, we have defined a map &% :v°+— 0¢ from K into itself. Let
vf,v5 € K. We remark that we take u{(0) = u5(0) = uj and 67(0) = 95(0) = v
in the problems (P;) and (P7) when we define #. We deduce from the
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inequalities (3.5) and (3.7) that there exists a constant C = C(uj]| L#(0,)
||u§||Lx(QT)) such that for all v{,v5 € K we have

T T
LWW@—?@Wm@®w=LHﬁ—@m@®$ (3.8)

T
SeZCTJO 105 = 5l (S)ds. (3.9)

Thus .Z is continuous in the L'(Q7) norm. Furthermore, if {v7} is a sequence
of functions in K, a result of DiBenedetto [DiB] insures that the sequence
{7 (v5)} is precompact in C(Q7). Suppose that vf — v° as j — oo in C(Qy),
we deduce from the inequality (3.9) that 7 (v;) — 7 (v°) in L'(Qr) as j —
and thus in C(Q7). Thus the mapping & : v° — ©° is continuous and compact
for the C(Q7) topology from the closed convex set K into itself. We deduce
from Schauder fixed point theorem (see [Sma, Theorem 4.1.1]) that there exists
a function v° € K such that v* = ¢°. This proves the existence of a solution of
Problem (P°). Also, if (uf,v) and (u5,v5) are two solution pairs, adding up
(3.3) and (3.6) gives

i (1) = w3 (D 1) + 107(2) = 03Dl 21

sC@ﬁ@—@@MWWWﬂw—ﬁwb@

+ JO(IIuT(S) = t5(9) | 1) + lloi(s) = UE(S)Hu(g))dS)

for all re0,7T], where C= C(Hufnm(ér)v||”§||Lw(QT))' Then Gronwall’s
Lemma implies that

i () = w3 (D)l 21 (@) + 07 (1) = v3(D L1 ()
< Ce|ui (0) = u3(0) 11 @) + 105(0) = v5(0)l 1), (3.10)

for all 1€[0,T]. The uniqueness of the solution of Problem (P¢) follows from
(3.10). O

Next we present some bounds for solution pairs (1, v°) of Problem (P¢).

LemMmA 3.3. Let (uf,0°) be the solution of Problem (P¢), there exists a
positive constant Cy which does not depend on € nor on T such that
(i) 0<su*<M/e, 0<0v° < M,
(.i.i.) (@) "%l a0, 75 11()) < Cu
(i) (el o0, 721 (0)) < C1
(iv)

i) llaG®, o))" | 10,7200y < -
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Proor. (i) follows from the standard comparison principle. (ii) follows
from

”g(”g)mvs - Lz % = JQ vi(1) < M|, (3.11)

0

for all re€[0,T]. Integrating the first equation we deduce that

t t
| we] | aweowy <[ | [ @ e
Q 0Jo Q 0le
for all 1€ 0, T], so that (iii) and (iv) follow. O

In the following sections, we will prove a bound for #° uniform in ¢ and in
time.

4. Auxiliary results

In this section we present some preliminary results which will be useful in
the following.

Lemma 4.1, (i) If N = 3 there exists a constant ¢y = co(Q) such that for all
«>1 and ze H'(Q)

(L |z|2*>2/2* < ¢ UQ Vz|2dx + (é JQ |22/“dx>“} , (4.1)

2N
ith 2* i== ———
" N -2

(ii) If N=1,2 and q > 1 is arbitrary there exists a constant ¢y = cy(q, Q) such
that for all o> 1 and ze H'(Q)

(JQ zl")z/q <o UQ \Vz|?dx + <|52| L |z|2/“dxﬂ ; (4.2)

(i) In addition, if N =1 there exists a constant ¢y = co() such that for all
«>1 and ze H'(Q)

(suplz))* < ¢o UQ Vz|?dx + (é—| L |z|2/“dxﬂ : (4.3)

We refer to the Appendix for the proof of Lemma 4.1.

LEmMA 4.2 (Young’s inequalities). Let re (0,1) and n >0 be arbitrary.
Then
(i) @b <na+n""""b for all a,b>0;
(i) a’B<na+n"/""BY") for all a,B > 0.
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Proor. (i) We first recall the proof of the classical Young inequality
a’h'" <a+b. (4.4
Set a =e?, b=e8 Then by the convexity of exponential function
a'b\ = o™ Ap1-1)B _ orA+(1-1)B
<re!+(1-ref <et+ef=a+0b.

In turn (4.4) implies that

b 1—r
rpl—r rf Y% —r/(1=¥)
a'b'™" = (na) <,7r/(1—r)> <na+n b.
(i) We set B=5h'". O
We recall Holder’s inequality in a form which is used in the sequel.

LemMmA 4.3 (Holder’s inequalities). Let f be a nonnegative measurable
function on Q and a > 0.

(i) if 0<s< 1 and b,c>0 are such that sb+ (1 —s)c = a then

= ()

(i) if r,s,t,b,c,d >0 are such that r+s+t=1 and rb+ sc+ td = a then

Lr=(Lr) () 0.)

Proor. Let g,/ be two nonnegative measurable functions and 0 < s < 1.
The Holder inequality gives

Lol

Now let b,c be as in (i); we have

[ L=y ()
=0 (L)

The proof of (ii) is similar and omitted. O

and thus
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5. L? bounds for the sequence {u°}

We present below uniform in time L”-bounds for the solution u® of
Problem (P7). We first prove the following property

LeMMmA 5.1. We have that for all t >0, ¢ >0 and for all p>1

1 d

m Ejg(us)wd(t) T

4kp

T j V()2 () SMJ W)™ (). (5.1)

Q
ProOOF. Multiplying by (u°)”(¢) the partial differential equation in (P¢)

u
and integrating over 2 gives

j @) 7)) +j {46, (u)} (") )1 sj 0" ()™ () (1)
Q Q

Q
< [0 ()@ jg(u%”’*”(r)
< MJ (W)™ ().

Q

Since

L{—A@(u‘”)(uf)”}(l) = | {=A((e +u) = M) )

Q

= Ve ) @) P ()

Y

{kp ()72 Va2 } (1)
Q

4fp
~(k+p)’

j V() 2 (1) 2,

we deduce that

1 d

&) o+

i) B[ Wit P < v | wymro),

(k+p) Q
which completes the proof. O
Next we prove the following result

LemMMA 5.2. For all p > 1, there exists a constant C, independent of € and
T such that

lu= (Ol = 0, 7:L0(2)) < Cp- (5.2)
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ProoF. The existence of C; follows from Lemma 3.3 (iii). We first con-
sider the case that N >3 and then the cases that N =1 and N =2.

(i) The case that N > 3. Let p > 1 be fixed and 1€ (0,7). By Lemma
5.1 we have that

1 4 e 4kp (k+p)/2 2 4o
p+1dtJQ( )’ (’H(kﬂ))zL Vi) () ﬁMJQ( )" (1), (5.3)

Furthermore Lemma 4.3 (i) yields

J o < (] ) (] uf(r))“ (54)

_2m+p—1)
- 2%k +p) =2
which in turn implies that 0 < s < 1. In what follows we will use that

(L(us)z*(/ﬁp)/%,))Y = ((Jg(us)z*(km/z(t)>2/2*>r. (5.5)

Let # be a positive constant which will be chosen later. We substitute (5.5)
into (5.4) and apply Young’s inequality (Lemma 4.2 (ii)) to obtain

[RGCE ((Jg<u€>2’<””>/2<r>)2/2*) (. uE(r))H (56)

sy, T . (-9
<o [ wrenmw) (| o) )

5)(k+17)/2(t)

with s We remark that since m < k+2/N, r:=2%s/2 <1

Moreover, applying Lemma 4.1 (i) to z = (u with o =k + p gives

<J9<ua)2*(k+p)/2(z)>2/2* SCOJ \V{(u )k+p /2} (0| +LO(|§2|J uf(t))kﬂ). (5.8)

Substituting (5.8) into (5.7) gives
uE)"mt c (k+p)/2 c 2 € kp
[ 070 < 0o |91 P2 0P e 5 [ 0)

(1=5)/(1=r)
+ /=D (J uf(,)) (5.9)
Q

where # will be chosen below. Substituting inequality (5.9) into (5.3) gives
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4kp

1 d Ut p+l
j() 0+ Gy

%) s | e Ry op

sMncoJ V{() P21 (1)) +M”CO<|§J|J 5(1)>k+p

(1=s5)/(1=r)
+ My /07 (J ua(l)> .
Q

2kp
M(k+ P) €o

1 d . 2kp
— | @)+
a0 i+ p)

Choosing 7 = yields

2JQ\ () 2y (1) 2

Q

< Gi(k, p)(|!22|J u&(z))w+Gz(Q,M,k,m,p)(J uf(t)>(l_w<l_r). (5.10)

Applying again Lemma 4.3 (i), we have that

s' 1—s'
J (us)pﬂ(t) < (J (us)Z*(k+17)/2(t)> <J u5(1)> (5.11)
Q Q Q
with s’ = 2*(1{_?;)2 € (0,1). Next we substitute 7' := 2*s'/2 < 1 into (5.11)

and apply Young’s inequality (cf. Lemma 4.2 (ii)) to deduce

Jg(uf)pﬂ(z) < (JQ(ue)z*(/<+p)/2(,)>2rl/2* <JQ us(t))lsl (5.12)

2/2*
< ;,](J (ua)2*(k+p)/2(t)>
Q
) ) (1=s")/(1=r")
+n"/“"><J uE(z)) , (5.13)
Q

where # > 0 will be chosen below. Substituting inequality (5.8) into inequality
(5.13) gives

Jg(ug)l7+1(l) <nco JQ VL) &2y ()2 77c0<|{22| JQ ug(l))kw

o (1-5)/(1-r")
s ([ ) |
Q
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2kp(p +1)

Choosing 7 = ﬁ gives
e\ p+1 2kp(p + 1) (k+p)/2 2 e ety
J w0 = ZEED i) YR + 6tk (g w )
(1=s")/(1=r")
+ Ga(@,k, p) (JQ u5(1)> . (5.14)

In view of (5.14) and then (5.10) we obtain

Glwrws [ e

Q

df eyt o 2elp+1) kD2 ()2
SdzL)( URUR T J V{ @)1

k+p (I=s")/(1=r")
E(z)) e (J ug(l))
Q

<(p+1)G <i| JQ ua(,)>k+” (r+1)Gs (JQ ug(z)>(1S)/(lr>

_|_
[
N
B

e}
<

By Lemma 3.3 (iii), fg is bounded independently of ¢ and & so that
d .
EJ <u°)”+‘<t>+J ()" (1) < G5(2, M. k. m. p). (5.15)
tlo Q

We deduce from Gronwall’s Lemma that
[, < | @y
Q Q
<|QIMP*! 4 Gs := (Cpy1) "™

which completes the proof.

(i) The case that N =1 or 2. By our assumption on k and m, we can
choose ¢ > 2 such that m < k+1—2/q. The proof then goes as that of the
case where N > 3 with 2* replaced by ¢ and with remplacing inequality (4.1) by
inequality (4.2). O

6. L* bound for the sequence {u°}

The purpose of this section is to prove the following result:
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THEOREM 6.1. There exists a positive constant Cy which does not depend

either on ¢ nor on T such that
sup u* (1)l - (@ < Co-
te(0,7T]

We first present a technical lemma. The proof consists in similar com-
putations as those presented in the proof of Lemma 5.2. The estimates are
now sharper, since we already know by Lemma 5.2 that the sequence {u°}
is bounded in the spaces L*(0,7;L?(Q)) for all p>1 and not only in
L*(0,T;L'(Q)) as in the beginning of the previous section.

LEMMA 6.2. There exist some positive constants cy,c; and @ which do not
depend either on € nor on T such that for all p > 1 we have for all te (0,T)

ij <uf>"+‘<z>+c1j V(") <2 (1) 2 Scz<1+p>‘"j )" (@), (6.1)

de Q

Proor. Let p>1. We recall that by Lemma 5.1

1 dJ e\ p+1 4kp J (k+p)/2 J +
— | (u B +—— <M | @W)""(r). (6.2
)@ O G | VS0P <M | ). (62)
The purpose is to decrease the power p + m of u° in the right-hand-side of (6.2)
to the power p + 1 on the right-hand-side of (6.1). Therefore we may suppose
that m > 1.

Let ¢ >2(N +2)/N be a real number to be chosen later. We define

0 =(p+1)[1- (m = 1) : (6.3)

2k+m—g(k+m+l)
q

O=m—-1)[1- (k=1) , (6.4)

2
2k+m—;(k+m+1)

and

2
2k+m—5(k+m+1)

Then we show that
01, (92, 05 > 0. (66)

Since ¢ > 2, we have that
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2
5(k+m+1) <k+m+1<2k+m,
and then we deduce that
2
2k+m—;1(k+m+1)>k—120,

which implies that ¢, > 0 and that 65 > 0. Furthermore, since m < k +2/N
for all N > 1, we have that

2
k—s—m—i—1<2k—&——NJr
N
and thus
2 2 N+2
2k+1—5w+w%k)>2k+l——(%—7%)

N N+2
>2k+1—m<2k+T>

> — -1
2k +1 2kN 3

> 2k

> 0.
- N+2

2
Then we have that 2k+m——(k+m+1)>m—1 and 6, >0. Next we
remark that 1

O +0+0s=p+m

and that
0, 6, 205
=1. 6.7
P+l kamil qktp) (6.7)
Then by Lemma 4.3 (ii)
J m+p J 5)03 (68)
Q
/(p+1) 02/ (k4+m+1)
< (J ) (J (ug)k+i11+l>
Q Q
205/q(k+p)
% (J (us)q(k+P)/2> ’ (6.9)
Q
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Since by Lemma 5.2, ¢ is bounded in each space of the form L*(0,T;L"(RQ2))
uniformly on ¢ and 7T, we deduce that

sop (| (o)

tel0,7]

0/ (k+m-+1)
) Sgl(Q,M,k,m,q),

where the constant g; does not depend on . Therefore, we deduce from (6.9)
that

(W (1)) < gy (uE)pH(t) A1/ (us)q((k+p>/2)(t) 293/q(k+p). (6.10)

Choosing ¢ =2* if N > 3 and ¢ > 6 arbitrary in the case that N =1 or 2; so
that ¢ > 2(N +2)/N, we apply Lemma 4.1 to z = (u°)**"/? to obtain

(6.11)

where the positive constant o = o(p) > 1 will be chosen below. Next we sub-
stitute (6.11) into (6.10). We get

[, 6w < eyt (jg(uf)"“u))el/(””(j {2y )2

Writing that (@ + b)° < a® + b* for all a,b >0 and se (0,1) and noticing that
03/(k+p)=1-0/(p+1), we deduce that

|, @

< 92(2, M k,m,q) ((Jg(ug)pﬂ(t)fn/(pﬂ) (J R )|2)101/(p+1)

N (JQ(uE)p+1O>)“/“”I><réﬂjg(ueyk+sz(g)“lM/UH1»>. (6.12)

Set B:=1—0,/(p+1) and remark that by equations (6.6) and (6.7) B (0,1)
and that B does not depend on p. Then

05 1 0,

- B
(k+p) p+1
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and
03 =Blk+p)=B(p+1)+u (6.13)
with
u=(k—1)B.

Then equation (6.12) can be rewritten as

|, w0 < ((L(ﬁ)"“(z))w (jg v{(f)“*”“}u)z)B

‘ (jg(f)"*‘(z))lg (@ jg(afrk*"”“(z))w). (6.14)

B+
— (k _ .
! (+p)3(p+1)+ﬂ’

We set

then in view of (6.13)

( |[22_| L(us)<k+p>/a(,))“3 _ ( |[22_| L(uf)w(”“)*")/(“”)(z))

2 B B )
= \jgi Q(u) (1)

_ (ﬁ)ﬁﬂ (L}(ug)B(Hl)/wm(l)(”g)”/(mm(t))m”.

Next we use that B + u does not depend on p and apply Holder’s inequality to
deduce that

( ﬁ L(ug)<k+p)/a(t))“3 _ ( % )B“’ ( Jg(ug)B(P+1)/(B+#)(Z)<u5)ﬂ/(3+ﬂ)(t)>B+ﬂ

< @k (| )" <z>)B (1, u%z))ﬂ,

so that by Lemma 3.3 (iii)

(k+p)((B+u)/(B(p+1)+p))B

(2 JQ(uE)‘”"”“(t))w < g4(2, M, K, m ) (L(W“(r))B- (6.15)
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Thus the second term of the right-hand-side of (6.14) can be estimate by

(Lm”‘(r))w (@ L(us)“‘*”)/“(t))w <] @0 @10

Next we consider the first term on the right-hand-side of (6.14). We apply
Young’s inequality (Lemma 4.2 (i)) to obtain

(L) ([, wrwromyop) smen [ wro

j V()2 ()2

2kp
g2 (k+p)

(jgwf)“‘(z))w (| were=o )

(k +p)2 o e\ pt1
< (M 2] ] @)

2kp
LY E——T
Mgy (k +p)

Setting n# = we have that

2

L V{2 ()2 (6.17)

Next we substitute (6.17) and (6.16) into (6.14) to deduce that

J (uE)mﬂJ(Z) <o Mg2M B/(I—B)J (ug)erl(t)
@ B 2kp o

L k+ )/2 e\ p+1
P LIV{( P2y ()2 +g4j<u ) <r>>.

Therefore we have that

J (uf)M+P(t) SQS(-Q,k,m7q)(p+1)3/(173)J (us)p+l(t)
@ Q

2kp

(k+p)/2 2
+T+p) jQ| {w)® P2y )2,

which we substitute into (6.2) to deduce that
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df . pt 2kp(p + 1) e\ (k49)/27 [ (2
R R e W (R BTl

< Mys(p+ 1>‘/“—B>j )" (),
Q

which in turn implies the existence of positive constants ¢, c; only depending
on Q k,m, M and ¢ such that

%JQ(HE)I’+1(Z) + ¢ JQ |V{(us)(k+p)/2}(l‘)|2 <op+ 1)1/(1—8) Jg(us)pwtl([),

which completes the proof of (6.1). O

In order to complete the proof of Theorem 6.1, we recall a result due to
Alikakos [Ali, Lemma 3.2] and Nakao [Nak, Lemma 3.1].

THEOREM 6.3. Let w be a (sufficiently smooth) function satisfying for all
tel0,T]

d . )
Gl s a | wutnryor <ot en” | wieto
Q Q Q
for p>1, where w > 0 is independent of p. Assume, moreover, that

[Iw(2)]

and that ||w(0)|| ;o) < M. Then there exists a constant C which depends only
on Cp,M,Q,c1,c2 and on w such that

reo,1ier@) < G

sup [[w(t)||1x(0) < C.
tel0,T]
PrOOF OF THEOREM 6.1. By the lemmas 5.2 and 6.2, we can apply
Theorem 6.3, which yields the result of Theorem 6.1. O

7. Existence and uniqueness of the solution of Problem (P)

In this section we prove that the sequence (u°,v°) tends to the unique
solution of Problem (P) as ¢ — 0. To that purpose, we will use a result due to
DiBenedetto [DiB]. Since ¢ will tend to 0, we may assume that ¢ < 1. The
main result of this section is given by

THEOREM 7.1. Problem (P) admits a unique weak solution (u,v).
Moreover, the pair (u,v) is such that
(i) 0<u<Cyand 0<v<M in Qx (0,0),
(i) {u()}moy and {v(1)}(,50 are equicontinuous;
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(iti) Let (u1,v1) and (up,v3) be two solutions of Problem (P) with initial
Sunctions (u1,0,v1,0) and (ua0,02,0) respectively; they satisfy the inequality

lln (-5 0) =, Dl o) + [[01(5 ) = 2l Dl L1
< Ce[[Jur,0 — 2.0l Loy + 1lvr.0 = v2.0ll 1)
for some positive constant C.
Proor. We first prove the existence. We have that
b.(s) = (e + 5)k — ek
#(5) = k(e +5)""!
¢(s) = k(k — 1)(e +5) 2.
so that ¢ is a convex continuous bijection from [0,Cy+ 1] into

[0,(e+ Co+ 1)* — k] so that we may define f. =¢-'. Moreover, we set
B(s) := s'/k.  Since

[0,(Co+ 1! < [0, (e 4 Co + 1)* —&¥)

and since ¢.(u%) € 0, (Co 4 1)*] for 0 < & < £ with £, sufficiently small, we can
fix the interval and restrict the definition of £ to the interval [0, (Co+ 1)*].
Then, we can easily see that A is a nonincreasing function (since ¢, is a convex
function) and that

< ;
k((Co+1)"+1)

Next, we prove that . — f uniformly on [0, (Cy + 1)/‘]. We remark that for
each s € [0, Cp + 1], the function € — ¢.(s) is nondecreasing. Then for each s €
[0, (Co + 1)*] the function & — p.(s) is nonincreasing so that as € — 0, {f.}..
is a nondecreasing sequence of continuous functions tending pointwise to the
continuous function f on the compact set [0, (Cy + l)k]. Therefore, we deduce
from Dini’s Theorem that

o= % < Bl(s) <B'(s)  for all se(0,(Co+1)"].

B.(s) — s'/¥ uniformly on [0, (Co+ 1)] as ¢ — 0.
Setting U® = ¢,

. (u®), we deduce that U°® satisfies

%ﬂs(UE) =AU + f.(U®,v°) forall (x,¢) € Qr,
%ngo for all (x,7) € 0Q x (0, T,

U¢(x,0) = ¢.(u5(x)) for all x € Q,
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with
LU, 0%) = o B(U)" = a(B.(U), o) B.(U)" = ep. (U™,

We remark that f.(U®,v°) is bounded independently of . Multiplying the
equation for U by U°® and integrating over Qr gives

JTJQ{;/}E(UE)}UE " LT JQ VU < ¢E(C0)LT L ()" < C1(Co + 1)F,

0

and, setting F.(s) = [, B.(v)vdv (F.(s) >0 as s >0), we have

[ L} =]'] Lmwn =] mwm-| rew)

and since ! >0

|, rwwin=] |

IA
RSN
—~

<
S m
~

—
S
=
N

o=
—

<
~

S

=

IA

¢- (ug)
Q

Co(Co+ 1)k 1@].

IA

This proves that {U¢} is bounded in L?(0, T; H'(Q2)) independently of ¢ and
T. Next we remark that since u§ — 1o uniformly on €, there exists a positive
function @ such that w(s) — 0 as s — 0 and such that for all 0 < e < ey we
have that

lug(x) —uj(x")] < w(lx —x'])  for all x,x"eQ
and thus |ug(x) —uo(x')| < w(jx —x'|)  for all x,x" e Q.

Then, following DiBenedetto [DiB, Theorem 6.2 and Corollary], we deduce
that {U¢} is equicontinuous in Q7 and thus precompact in C(Qz). Similarly,
setting V¢ := .(v°), we prove that {V'¢} is precompact in C(Qz). Thus there
exist {,¢e C(Qr) and {U%},{V} such that

L
Ve — &
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uniformly in C(Q;) as & — 0. Furthermore the difference
jus = LR = 1B, (U) = ¢
< 1B, (U7) = (U |(U)E=L,

can be made arbitrary small since f.(s) — s'/¥ uniformly on [0, (Co+ 1)*]
as ¢ — 0. A similar inequality holds for |v7 — &'!|. Setting u = ¢"* and

v=¢Y" we have proved that
us —u
vy — v
uniformly in C(Qy) as & — 0.

Let ¢ € C>!1(Q7) be such that %go =0 for (x,7) € 02 x [0, T]. We have

[ wtvon = [ o0+ [ | wrap+ e

[ e —anon@n” - 6™ o

0
and, as j — oo, we find

t

[, o) = | o)+ | | @ dp-sup,+ (o i)

A computation similar as above shows that

t

|, et0) = | wwi0)+ |

J (dv' Ap + vp, — u"vp).
0Je

Therefore (u,v) is a solution of Problem (P).

In view of Lemma 3.3 and Theorem 6.1, we deduce the bounds of The-
orem 7.1 (i).

The equicontinuity of {u(#)},., and {v(#)},., follows from the proof of
existence and the remark that the modulus of continuity of # and v do not
depend on ¢, so that property (ii) holds.

The proof of the uniqueness of the solution of Problem (P) is completely
similar to the uniqueness proof in the proof of Theorem 3.2, since the unique-
ness result of Aronson, Crandall and Peletier [ACP, Corollary 11] holds for
parabolic degenerate equations. O

Next we give some further properties of the solution pair (u,v) which will
be useful for the study of the large time behavior in Section 8.
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THEOREM 7.2. (i) For all ¢ > (k+1)/2, the function

a2
tHL? Vut(s)] (7.1)

is in L'(0, 00).
(i) For all ¢ > (I+1)/2 the function

zHJ Vo ()| (7.2)
Q
is in L'(0,00), and for ¢ =1
IHJ ve(1) is a nonincreasing map. (7.3)
Q

ProOF. We recall that there exists a subsequence of (u,v®) which we still
denote by (uf,v°) such that
(u®,v°) — (u,v) in C(Qy) as ¢ — 0.
(i) Let p>1. Multiplying the equation for u by (1°)” and integrating
by parts gives
1 iJ (HE)P-H +J V(Hs)k V(ua)p <J (us)nﬂ-pva < CPJ (ua)mva

As in the proof of Lemma 5.1, we deduce that, also using Lemma 3.3 (ii),

1 4k, ! ~

! 1
sCPJJ u® m05+7J us)? < C, 7.4
o[ [ e[ e 7.4)

where the constant C does not depend on ¢ nor on ¢&. Set ¢ = (k+p)/2. It
follows from (7.4) that the sequence {V(u?)} is bounded in L*(Q x (0, T)).
Thus there exists a subsequence V(#%)? and a function U € L?(Q x (0, T)) such
that

V(usj)q — U Weakly in Lz(Q X (07 T))

. i a0 .
Let ¢ be a smooth function satisfying a—f =0on dQ x (0,T). The function u%

satisfies the equality
T T
| [ varo== [ whwe
0 Jo 0 Jo
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in which we let £ — 0 to deduce that
T T
J J Up = —J J uVe.
0 Jo 0 Jo

U=Vul in the sense of distributions.

Therefore

The function f r—>f0T Jof 2 is weakly lower semicontinuous so that

T T
J J Vut)? < limian J V(@u)|* < C,
0 Jo =0 Jo Jo
where the constant C does not depend on 7. This proves (i).

(ii) Let p>0. Multiplying by (v°)” the partial differential equation for
v¢ and integrating over Q gives (since v¢ > 0)

1 d 4lp
—— | @) +d J V()22 <0 7.5
ST a0 s | e (75)
and
1 J o pt 4lp JTJ (I4p)/2,2 1 J ey il
— | " T)+d V(%) < ——| ). (7.6
o), (Hp)zogl() =), W) (7.6)

By equation (7.6) we conclude as in (i) that the function v!+7)/ satisfies
T T
J J (Vol+2)/2)2 < liminfj J V()22 < Clu, L, d, p),  (1.7)
0 Jo =0 Jo Jo

which completes the proof of (7.2). Integrating equation (7.5) over (z,¢+ 1)
for t >0 and 7> 0 we have that

J%fV“u+ﬂsjwﬂ“%m
Q

Q

which in turn implies that, since v°(f) — v(¢) uniformly in Q as £ — 0,

J v (1) < J 0?0, (7.8)
Q Q

This completes the proof of Theorem 7.2 (ii). ]

8. Large time behavior

Our first result is the following.
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LemmA 8.1.  Let (u,v) be the weak solution of Problem (P) on Q x (0, c0)
and suppose that a(u,v) satisfy Hypothesis H,. Then

. X 1
(i) if a> 0, there exists a constant v* € [O,H'J vo} such that
Q

(u(t),v(t)) — (0,0)  uniformly in Q as t — oo;

(i) if a=0, then
(u(t),v()) — <1J (1o + vo)7O> uniformly in Q as t — oo.
2l )o

Proor. Since the functions u and v are bounded and since {u(?)},.,
{v(#)},5, are equicontinuous (cf. Theorem 7.1 (ii)), it follows from Arzola-
Ascoli’s theorem that the sequences {u(t)},.,{v(f)},~,; are precompact in
C(Q).

We first prove that there exists a nonnegative constant v* such that

v(t) — v™ uniformly in Q as 7 — co. (8.1)

Let ¢ > (/+1)/2. Tt follows from Theorem 7.2 (ii) that, the function f+—
Jo v4(z) is nonincreasing and bounded from below so that it has a limit, say &,
as t — oo. Then, Theorem 7.2 (ii) and the remark above imply that

t— [, Vo> isin L'(0, ),
[ovi(t) =k, ast— o0,
fg Uzq(l‘) — kzq as t — o0.

Therefore

1 2

2
(1) ~ g7k

= JQ v?(1) —@k,, ngﬂ(z) +ﬁk§ (8.2)

,

Moreover there exists a sequence #; — co such that fQ|Vv‘1(zf;)|2 — 0. The
sequence v9(t;) satisfies

[oIVi())> =0 ast; — oo,
Jov?(t) — Ky as fj — .

By Poincaré’s inequality we have that
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(, V<,

. 1
vi(1) _@kq

so that

{

Comparing (8.3) and (8.4), we deduce that

vi(5) — @kq

1
k2q = @ (kq)2~

In view of (8.3) we have proved that

1
vi(t) — @kq

—0 as t — oo,
L2(Q)

and since {v?(#)},., is precompact in C(£2), we deduce that

1 _
vi(t) — @k,, uniformly on Q.
Thus
1 1/q _
o(t) — v™ = (@kq> uniformly on Q. (8.5)

(i) Setting ¢ =1 in the equations (3.1) and (3.2), we deduce that

t

Jg(u Fo)(e) = Jg(uo +v0) J

0

Jga(u, v)u”. (8.6)

This implies that the map 7 — [,(u + v) is nonincreasing and since [, (1 + v)(7)
is bounded from below, it has a limit as t — c0. Thus there exists u® such
that
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lim JQ u(t) =u”. (8.7)

—o0
Moreover, equation (8.6) implies that
a(u, v)u" € L'((0,0); L'(Q)).

Since a(u,v) is continuous on the compact set [0, Cy] x [0, M], it has a lower
bound a~ > 0. It follows that

u" e L'((0,00); L'(R)),

and therefore, by Hoélder inequality, that

<JQ u)n e L'(0, 0).

Therefore there exists a sequence t; — o0 as j — oo such that
J u(t) =0 as j— oo, (8.8)
Q

so that u,, = 0. Finally we conclude that u(¢) converges to 0 uniformly in Q
as t — oo.

(i) We first suppose that vy = 0. In that case, if z is the solution of the
porous medium equation

7, = AzF in Q
%zk: on 02 x (0, 00)

z(x,0) = up(x) forall xe Q,

then the pair (z(¢),0) is the solution of Problem (P) with initial condition
(10,0). A result of Alikakos and Rostamian [AlRo] gives that

1
z(1) H@J uo in L?(Q) for all pel, ) as t — 0.
Q

Thus since {z(#)},, is precompact in C(2) and we have

1 _
z(1) —>—J uo in C(Q) as t — .
121 Jg

Let (u,v) be the weak solution of Problem (P) with initial data (u,vo), with
up # 0 and vy # 0, and z be as above. We can easily see that z is a lower
solution for the equation satisfied by u so that
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u>rz in Q,

which in turn implies that there exists 7 > 0 such that

u(t) =z(t) = c3: !

= ML U for all > t. (8.9)

First we will prove that v(¢) — 0 uniformly on Q as ¢ — oo. Since u™v is in
L'((0,0); L'(2)) (Lemma 3.3), and from

(c3)"v(t) < u™(2)v(2)

for 1 > 7, we deduce that ve L'((0,00); L'(2)). Thus there is a sequence {;}
such that

lim J u(t;) =0, (8.10)

lj—n
which together with (8.5) implies that
v(t) = 0  uniformly in Q as ¢ — 0.

Adding up the equations (3.1) and (3.2) and setting ¢ = 1 yields

[ o= @+

and consequently

limJ u(t) :J (1o + vo). (8.11)
= Ja Q

Next we prove that u(¢) tends to a constant uniformly in Q as ¢ — oo. The
method which we use here is similar to the proof of (8.1). First, we show that
for each ¢ > (k + 3)/2, there exists a constant k, such that lim,_., [, u(t) = k,.
Let p> (k+1)/2, t > 0 and r > 0; we take the duality product ((H')', H') of
the equation for u by u” and we deduce that

t+r

t+r 4kp 5 t+r
Lup u? > iy g1 + 7J J vulkr)/22 — J J WPy,
J SRCOR i) § .| =1,

1

The equality (as in [Tem, Chap. III, Lemma 1.2])

1+r 1 1
Py = ——— | ul ——J P 8.12
J; <ut7u >(Hl),Hl P+1J9u ( +V) p+1 Qu ()7 ( )

implies that
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J u””(l—&—r)—J ul (1)
Q Q
t+r t+r
=(p+1)J J u’”*pv—wj J (Vuktn)/212 - (8.13)
! Q (k+p) t Ja

Since we have that, in view of Lemma 3.3 (ii) and Theorem 7.1 (i)

J J uerpUS(CO)PJ J umvs(co)]’c17
0 Jo 0 Jo

and since, by Theorem 7.2,
o0
J J |Vu(k+p)/2‘2<oo7
0 Jo

it follows from equation (8.13) that the sequence {[,u”*'(r)},.; is a Cauchy
sequence. Therefore it has a limit as 7 — co. Setting ¢ = p+ 1, we have
proved that there exists k, such that

lim J ul(t) = ky for all ¢ > (k+3)/2.
Q

— o0
Then, in view of Theorem 7.2, we have proved that

Jo |Vu?|* e L1(0, ),
lim, o, [,u?(t) = kg,
lim[_,w IQ UZq(t) = k2q7

for all ¢ > (k+3)/2. Now, as we have done for v in the beginning of this
proof, we deduce that

u?(t) *>|§12—|kq in C(Q) as t — oo.

Then, in view of equation (8.11), we have proved that

u(t) —>|QI|JQ(MO+UO) in C@),

which completes the proof. ]
Next we suppose that
ug #0 and vy # 0, (8.14)

and that the function a is positive. We define two constants ¢~ and a* such
that
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0<a <alr,s)<a" for all (r,s) € [0, Cy] x [0, M],
and present some further characterization of the constant v™.

THEOREM 8.2. The following results hold:
(i) If l<m<n then v° =0;
(ii) if 1 <n<m then v* >0;
(iti) if m=n then v*° < a(0,v™).

To begin with, we prove the following auxiliary result.

LemMA 8.3.  The functions t — [, u(t) and t — [, v(t) are in C'([0, «0)) and

d "y — a(u,v)u”

Gl w0 =] o= awonno. (8.15)
d m

EJQ u(t) = —Jg(u v)(1). (8.16)

PrOOF. Setting ¢ =1 in the equality (3.1) one has

JQ ul) = JQ tot J; Jg(u’"v ~ a0

and the result follows from the fact that the function 7 [, [,,(u"v — a(u, v)u")
is in C!([0,0)). The proof of (8.16) is similar. ]

LEMMA 8.4. We have that

J u(t) >0 and J v(t)>0  for all t>0.
Q Q

Proor. By equation (8.15) we have that

d

Gl 0= @ = a0y

> —a"(C)"™ | uto,

which by Gronwall’s Lemma and (8.14) implies that

L? u(t) > (JQ u0> exp(—a"C§ ') > 0.

The proof for v is similar. O

PrOOF OF THEOREM 8.2 (i). For the purpose of contradiction we suppose
that v® > 0. Then there exists 7 > 0 such that
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0<atu"™(1) <v”/4, ¥ /4 <v(t) for all t>T,
which in turn implies that
(v—a"u" ™) (1) = v /2.

Therefore, it follows from (8.15) that

%JQ u(r) = JQW’”U —alw,0)u)(1) = LWU — alu, v)u"")) (1)

Thus in view of Lemma 8.4 we have that
J u(t) ZJ u(T) >0 for all t>T.
Q Q

This contradicts the fact that u(z) — 0 as t — co. We conclude that v* = 0.
O

Before proving Theorem 8.2 (ii), we suppose that m >n and we set
f(x,0) .= (u™"v —a(u,v))(x,t) and we consider the problem

w, = Awk + f(x,)w" in Q x (0,T),

(£) aiwk =0 on 92 x (0,7),
v
w(x,0) = up(x) for x € Q.

Next we define solutions and upper and lower solutions of Problem P, and
present a comparison principle.

DEFINITION 8.5.  We say that u is a solution of Problem (B,) in Q x [0, T*],

if it satisfies:
(i) ueC(Qx[0,T*]) and 0 <u < C for a constant C;

6_(p_0 on 0Q x [0, T*], we

(i) For all p e C>'(Q x [0,T*]) such that ¢ >0, 2y =

have for all te [0, T"

[ w0 = [ wwo0)+ [ | o un+ s 517

We say that u, respectively u, is a weak upper solution of Problem (F,),
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respectively a weak lower solution, if it satisfies the property (1), and the property
(i) with equality replaced by >, respectively <, in equation (8.17).

We remark that if (u,v) is the unique weak solution of Problem (P), then
u is also the unique weak solutions of Problem (F,).
Then we have

LemmA 8.6 (Comparison Theorem). If & is a upper solution and u a lower
solution of Problem (P,) in [0,T*] then

i(x,t) > u(x,t)  for all (x,1)e Qx[0,T"].
ProOF. The proof goes as in [ACP, Theorem 12]. ]
Now we prove the following lemma.

LemMma 8.7. Suppose that n <m and that there exists T >0 such that
u™ " (o(t) <a /2 for all t > T. Then
(1) there exists a positive constant C such that for all t > T

u(t) < { Coe 110 =1,
“lce-T+D)V"Y s
(i) v* >0.

Proor. (i) The condition u™"(¢)v(z) <
ticular that

% for all + > T implies in par-
S0 1) = ("0 — au,v) (x,1) < —a /2, (8.18)

since by definition, we have a(u,v)(x, ) > a~ for all (x,¢) € Q x (0, 00). Then,
for t > T, we define

Coe—@ (=T)/2 if n=1,
Clt—T+ 1)V D ifp >,

1/(n-1)
C = max (Co, (ﬁ) ) (8.20)

One can easily check that we have

i, 1) = { (8.19)

where

= —a i")2.

Now, let ¢ be as in Definition 8.5. We have that for all 1> T
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t

|, atooto = | arypr)—| | @ ap+ap+ risoie)

T

J (g + V" Vo — f(x,0)i"p)
T

I
bﬂ
{0
—~
=
|
=
=
=
<
=
<

t —
> (- L f, z)) i"p >0,
o\ 2

where the last inequality comes from inequality (8.18). Moreover we deduce
from (8.19) and (8.20) that @(x, T) > u(x, T) for all x € Q, so that @ is a upper
solution of Problem (F,) in [T, for all > T, and it follows from Lemma 8.6
that a(x, ) > u(x,t) for all (x,7) e @ x [T, c0) which completes this part of the
proof.

(i) Next we prove that v* > 0. We first consider the case that n = 1.
The equality (8.16) and Theorem 8.7 (i) imply that for ¢+ > T

which in turn implies the inequality

L v(f) > exp (W (em@mu=D)/2 _ 1)) JQ o(T). (8.21)

a m

Letting t — oo in (8.21) implies that

Qv = lim J o) > e—2<Co>’”/a’mJ o(T) > 0,
Q

t— 00 Q

and therefore v* > 0.
If n>1 it follows from Theorem 8.7 (i) that

%L o(t) = - <L v(t)) C"(t— T+ 1),

so that finally

. m_ =1 N ~(m=n+1)/(n=1) _ ,
JQ (Z)Zexp(C =T+ 1)) JQ (T). (8.22)
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Letting 7 — oo in (8.22) yields

Q) = limJ o(1) > e*<"*1>/<c”’(m*"+1>>J o(T) > 0
Q

t— o0 Ie)
so that v® > 0. O

ProOF OF THEOREM 8.2 (ii). First we consider the case that 1 <n < m.
Since u(f) — 0 as t — oo, let T be such that u™"(f)v(t) < a*/2 forall t>T.
Then we can apply Lemma 8.7 (ii) and conclude that v* > 0.

Next we consider the case that 1 < n = m; for the purpose of contradiction
we suppose that v® = 0. There exists 7" > 0 such that u™ "(¢)v(r) < a’/2 for
all t > T. Therefore we may apply Lemma 8.7 (ii) and conclude that v* > 0.
This contradicts the hypothesis that v* = 0. Therefore v* > 0. O

Proor oF THEOREM 8.2 (iii). For the purpose of contradiction, we suppose
that

v* > a(0,v™).

Since the function (r,s) — s — a(r,s) is continuous, there exists # € (0,v*) such
that

s—a(r,s) >0 for all (r,s) € [0,5) x (° — 7,0 + 7).
Let T be such that
u(x,1) <n  and lo(x, 1) —v”| <  for all (x,1)eQ x [T, ).
Then for all 1t > T
v(x, 1) — a(u,v)(x, 1) >0,

and

il o

u™v — a(u,v)u")(1)

J,
|, o = atw.eo
0,

Y

which by Lemma 8.4 implies that

L} u(t) > JQ u(T) > 0.

This contradicts the fact that u(f) — 0 as t — oo. Therefore v < a(0,v™).
O
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Appendix—Proof of Lemma 4.1

(i) We first consider the case that N > 3. For the purpose of contra-
diction we suppose that for all 2 > 0 there exist z € H'(2) and « > 1 such that

e @<

We define a sequence {4,} such that i, — o0 as n— oo. It follows from
equation (A.1) that there exist z, € H'(Q) and o, > 1 such that

o) 0 N 2/2*
z(J Wzl + <—J |z,,|2/“~> >< (J |zn|2> , (A2)
o 12| Jo 0

which implies in particular that z, #0. We divide inequality (A.2) by
|1znl|7>+ () to obtain

2/%71 “”
J R I g J I <X
Q H2n||L2*(Q) 12| )a ||ZnHL2*(Q) n
Setting
Wy, = Z—", (A.3)
||ZnHL2*(Q)
we deduce that
2 2\ 1
aner(—J W 2/“”) <—. A4
J ot (g o) <5 a4
It follows from (A.3) and (A.4) that
||WnHL2*(Q) =1,
{ VWall20) — 0 asn— oo, (A-3)

so that in particular there exists w € H'(Q) such that as n — oo w, — w weakly
in H'(Q) and w, — w strongly in L?>(Q) along a subsequence. It also follows
from (A.5) and the weak lower semicontinuity of z — [, |Vz|* that Vw =0 in
L*(Q). Thus there exists a constant / such that w =/ and w, — [ strongly in
H'(Q). Since the embedding from H'(Q) into L*>'(Q) [Bre, Corollary IX. 14]
is continuous we have that

wy — [ strongly in L?(Q) as n — o,
and therefore it follows from (A.5) that
1] = |27,

and we may suppose that / > 0. Furthermore we also deduce from (A.4) that
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2 i
(E JQ w,,|2/“”dx> —0  as n— oo. (A.6)

We consider two cases:
The case that {o,} is bounded: Then there exists a subsequence of {o,}
which we denote again by {o,} such that o, — a € [l,0) as n — 0. We have

J |Wn|2/a" —J 2/ J |Wn|2/°‘n _J 12/ J J2/%n _J 12/
@ Q Q Q Q Q

Next we bound the first term on the right-hand-side of (A.7). Let C >0 and
s € [0, 1]; the function r — |r — C|* — r* + C* is nonincreasing for 0 < r < C and
nondecreasing for r > C so that for all » >0

I — C¥ < |r— C’,

< + . (AT)

which in turn implies that

J |1Vn|2/an_J 12/9!,,
Q Q

[ w277 = 12/

1/ay
J |W5_12|> |Q‘(“n_l)/“n
Q

1/“’1
J |(w,,—l)(w,,+1)|> |Q|(oc,,—1)/an
Q

() (o)) o

Since as n — oo, we have that w, — [ in L*(Q), w, 4+ — 2/ in L*(Q) and in
particular w, + / is bounded in L*(Q). Thus

1/24, 1/2a,
J |Wn|2/ocn _J 2/ < |_Q|(c<n—l)/o<n (sup <J (W, —|—Z)2>> (J (W — 1)2) .
Q Q n Q Q

(A.8)

Since the sequence {o,} is bounded there exist two constants o and o, such
that for all » we have 1 <o_ <, < ay; therefore inequality (A.8) gives

1/20
J |Wn|2/°‘" J 12/% < (|Q| + 1)(9@71)/% (sup <J (Wn + 1)2> + 1)
. — o = n Q

()™

(on—1)/otn
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so that
H |Wn\2/“”—J 1= =0 as n — oo.
Q Q
Moreover, we have
J (PP — 12/ -0 as n— oo.
Q
Thus we deduce from (A.7)
“ || 2/ —J PP -0  asn— oo (A9)
e Q

Furthermore we have

2 y oy 2 » o
Garl, ) = ()
2 J z/a )O(n <2 J 2/ >O(n
<=1 wi7™) = (=] I"*
’<|9| ol 2/,
al,”) - (al,)
+(=] ) - (=] 1**
’(IQ Q 12} o

The second term of the right-hand-side of (A.10) tends to 0 as n — oo.
Moreover, by (A.9) we can suppose that |, lwa| 7% € [0, oI +1].  Since for
r,s >0, we have

. (A.10)

On

| — ™| < o, (max(r,s, 1)) |r — s|

zx+71|

SOCJr(maX(V,S,l)) }"—S|,

we deduce from (A.9) that

i 2/ . _ i 2/ .
'(mjg'w”' ) (mjg’

which by (A.10) implies that

2 X" (2 [ )
T n o - Tl l /“
’<|Q|JQ e ) (mL )

Clearly (A.11) contradicts (A.6).

The case that {o,} is unbounded: Then there exists a subsequence of {o,}
which we denote again by {a,} such that o, — o0 as n — oo. Let x4 be a posi-
tive number. We have

-0 as n— oo,

—0 as n — oo. (A.11)
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w mes{x, |wy(x) — 1| >,u}§J lwy —I| -0  as n— oo.
Q

Note that [, |w, —I| < u? for n large enough so that
mes{x, |w,(x) — I| > u} < p,
for n large enough. Therefore
mes{x, |w,(x) — | < u} > |Q| — u. (A.12)

. ) o
Choosing u < 5o e have in view of (A.12)

J |Wn|2/06n ZJ |Wn|2/9€n
Q (o, o () 1] <}

> (1=

J{x. [wa () =1 <}

l 2/1'1
> mes{x, |w,(x) — | < u} (2>

> (2] - ) (é)/

Thus for all e (0,//2) we have

Lo 2 2 _ QL= (N Q| —p
hrlgglfmjgw"' >2 19 nlLHJO 3 =2 ol

and thus

1iminfij a2 > 2. (A.13)
=0 Q] Jg

In turn (A.13) implies that

o 2 o\
lim inf —J lwal ) = o0
= \[Q] Jg

which contradicts (A.6). Therefore (A.4) is not satisfied so that finally (A.1) is
not satisfied either, which completes the proof of (4.1).

(i) In the case that N = 1,2 one can prove the result as above, assuming
for the purpose of contradiction the existence of sequences 4, — oo, o, and z,

such that
2 Op 2/‘/
A(J Vzl? + (J |z,,|2/“") ><<J zn|q> ,
Q 2] ) Q
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where ¢ > 1. Setting w, = z,||z,| Zl(m we have

{ VWall 2 — 0 asn— oo, (A14)

HWHHL‘I(Q) =1
and consequently we can suppose that
wy, — | = constant strongly in H'(Q)

along a subsequence. In view of (A.14) it follows that |/| = |.Q|71/ 7 and we can
suppose that /> 0. The proof is then similar to that of (i).

(i) If N =1, the proof is again similar. Assuming on the contrary the
existence of sequences A, — oo, o, and z, such that

;G Vz,|* + (ij |zn|2/“~> ><(supzn)2. (A.15)
Q 12[ Jo

Using the notation w, = z,]|z,|| /- (@) We have that

(A.16)

VWall 2 — 0 asn— oo,
HWnHLx(Q) =1

and consequently, extracting a subsequence, we can suppose that
wy, — [ = constant strongly in H'(Q)

where |/| =1 (cf. (A.16)) and, we can suppose that / > 0. Then there exists
no > 0 such that w, > 1/2 for all n > ny. As in the case that N > 3, inequality

2
(ﬁ JQ |w,,|2/°‘"> -0 (A.17)

(A.15) implies that
as n — oo. But we have that for n > ny

Gl Gl
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which contradicts (A.17). In turn (A.15) is not satisfied, which completes the
proof of (4.3).
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