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ABSTRACT. This paper is concerned with the null distribution of the likelihood ratio
statistic for testing the equality of variances of ¢ nonnormal populations. It is known
that the null distribution of this statistic converges to ;{571 under normality. We extend
this result by obtaining an asymptotic expansion under general conditions. Numerical
accuracies are studied for some approximations of the percentage points and actual test
sizes of this statistic based on the limiting distribution and the asymptotic expansion.

1. Introduction

The one-way ANOVA test is a familiar procedure for comparing several
populations. Let Xj; be the j-th sample observation (j=1,...,n;) from the

i-th population I7; (i=1,...,q) with mean g and common variance ¢, where
u’s and ¢® are unknown. The null hypothesis which is considered in this
test is Ho:py =---=pu,. Let n=mn+---+n, )_(i:ni‘lz;’;'lXij and X =

1y >t Xj. A commonly used statistic is 7' = (n — ¢)S;/S., which is
the likelihood ratio statistic for the normal case, where S, = Som(Xi—X )2,
Se=0 (n;— 1)s? and s? = (m; — 1) S (X — X,)?. Under normality,
ie., IT;: N(u;,c?), it is well known that the null distribution of (g — 1)_1T is
distributed as F¢"'. Under nonnormality, it is known that the null distribu-
tion of this statistic converges to )(5_1 and an asymptotic expansion of the
null distribution was obtained by Fujikoshi, Ohmae and Yanagihara (1999).
Under normality, it is known that this test is robust against heteroscedasticy
of the variances and under nonnormality an asymptotic expansion of the null
distribution of the test statistic, proposed by James (1951), was obtained
by Yanagihara (2000). As thses tests depend on the assumption of variances,
it is important to test the equality of variances as a preliminary to one-way

ANOVA test.
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In this paper we consider testing the null hypothesis
Hg:alz:---:a(f. (1.1)
The treated test statistic is

q
T=n-gq)log Se__ Z(n, —1) log 57,

G
which is the likelihood ratio statistic for the normal case. Under normality it is
well known that the null distribution of T converges to ){571, as the sample sizes
n; (i=1,...,q) tend to infinity, and an asymptotic expansion was obtained by
Hartley (1940). Sugiura and Nagao (1969) compared Bartlett’s test and Leh-
mann’s test by deriving asymptotic expansion of the non-null distributions under
normality. Under nonnormality Boos and Brownie (1989) have proposed a
bootstrap approach for the hypothesis (1.1) and the corresponding multivariate
results were obtained by Zhang and Boos (1992). The main purpose of this
paper is to obtain an asymptotic expansion of the null distribution of 7 up to the
order n~! under general conditions. In the multivariate case, we will be able to
obtain an asymptotic expansion formula by using similar calculation methods in
this paper. However, it needs enormous calculations, and we consider that it has
some difficulty to use for the approximation.

The present paper is organized in the following way. In section 2 we
prepare Edgeworth expansions for the density function of the sample variance.
In section 3 we derive an asymptotic expansion of the null distribution of 7, by
expanding the characteristic function of 7. In section 4 numerical accuracies
are studied for some approximations of the percentage points and actual test
sizes of T based on the limiting distribution and the asymptotic expansion.

2. Preliminary result

Let Y,Yy,...,Y, be independently and identically distributed with
E(Y)=0 and E(Y?)=1. Let the j-th cumulant of Y be denoted by «;.
Consider the sample mean, sample squared mean and sample variance defined
by

_ 1 n ~ 1 n 1 n _
Y ==Y, §2=-N"r? 2 — Y, - Y)?
n /:ZI VAl n l:Zl J ) § n— 1 /:Z]( J )
and their standardized statistics defined by

Z=/nY, V =n(S§*-1), V =n(s* = 1)

From Barndorff-Nielsen and Cox (1989) and Hall (1992) etc, we can write the
joint characteristic function (Z, V) in the following lemma.
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LemMmaA 2.1.  Suppose that Y has the eighth moment, then the joint charac-
teristic function of (Z,V) can be expanded as

Ciz. v (11, 12) = exp <122 wz) [1 + 6i;ﬁW3 + %w‘; + %w% +o(m™), (2.2)
where wy, is h-th cumulant of W =t,Y + t,(Y? - 1),
Wy = tlz + 2r3t1ty + (s + Z)t%,
w3 = K3ty + 3(rg + 2) 65ty 4 3(ics + 8i3) 113, + (156 + 1264 + 813 + 8)15
wa = Kat} + 4(Ks + 613) 15 1o + 6(kc6 + 12k + 813 + 8)1713,
+4(rc7 + 181cs + 32kc30c4 + 72K3)[1[§
+ (1cg + 24ics + 561305 + 32i7 + 14dicy + 2403 + 48)13,

Futher, noting that V =V +n~'/2(1 — Z?) + n 'V + 0,(n%?), we can obtain
an expansion of the characteristic function of V as follow

Cy(f)=E {exp(il?){ (1 + \l/_tﬁ - %)

In order to compute E(eV Z2), E(e"” Z*) and E(e™” V), we use differentiation
of (2.2) in Lemma 2.1. Note that

N Y
E[V exp(itV)] = 7 G_IZC(Z‘ ) (T, 22);, o5

- 1 ok
E[Zk eXp(ll‘V)] = 17( ﬂ C(zﬁ V)(tla 12)|11:0'

Using the result we obtain the following lemma.

LemMmA 2.2.  Suppose that Y has the eighth moment, then the characteristic
function of V can be expanded as

N
Cy(r) = exp{%mo(it)z} [1 —I—%ml

—i-%{(it)z + %mz(itf +%m3(it)6}] +o(n™"),
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where
moy = 2 + K4,

my =8 + 4i3 + 1214 + K,
my = 48 + 967 + 144y + 32i7 + 32uc3rcs + 24 + Ks,
my = (8 4 4i? + 12k4 + K6)> = m?. (2.3)

In order to obtain the Edgeworth expansion for the density function of V, we
assume that the characteristic function of ¥ and Y? satisfies

C: JJ'C(Y yz)(ll,l‘z)|rdl‘1dl‘2 < 00,
for some r > 1.

LeMMA 2.3.  Under the same condition as in Lemma 2.2 and the assumption
C, it holds that

1(0) = 6050.m0) |1+ 1) + 1 20)] + 00

where
mj _ _
q1(v) = — ?H3 (m, 1/217)’”0 3/27
_ m _ m _
42(0) = Ha(my o)my" + 57 Ha(mg " Zo)my? + = He(my o)y,

and $(v;0,my) is the probability density function of N(0,mq), H;(v) is the
Hermite polynomial of order j, for example, Hy(v) =v> — 1, H3(v) = v> — 3v,
Hy(v) = v* — 602 + 3, Hg(v) = v® — 150* +450% — 15.

From the Lemma 2.3 the probability density function of V = (V4,...,V,)’
can be expanded as

1 1
flv) = ¢q(v;07m01) {1 +713Q1 (v) + ;QQ(U):| + o(n_l), (2.4)
where ¢,(v;0,mol) is the probability density function of N(0,m/) and

q

Oi(v) = Z P a1 (vi), (2:5)
i=1
~ IS~ 1

0x(v) = > pi2qa(vi) +§Z pi P qi(vi)qi(vy), (2.6)
i=1 i#j

where p; = \/n;/n and ¢;(v)’s are given in Lemma 2.3.
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3. Asymptotic expansion of T

In this section we derive an asymptotic expansion of the null distribu-
tion of T up to the order n~!. We consider the null distribution. Let Y; =
(Xj —p;)/o. Then under the null hypothesis, E(Y;) =0 and Var(Yj) = 1.
Let Y be independent with Y; (i=1,...,¢4;j=1,...,n;) and have the same
distribution as Y;. Then Y, Y; (i=1,...,9;j=1,...,n;) are independently
and identically distributed with E(Y) = 0 and Var(Y) = 1 without loss of gen-
erality. Let the jth cumulant of Y be denoted by x;. For i=1,...,q, let
V= /mi(s? —1) and

V:(Vla"'vl/é[)/7 p:(pla"'apq)/v

where p;’s are defined in the previous section. Suppose that Y and
n; (i=1,...,q) satisfy the following assumptions.

ASSUMPTIONS: Al. (Y, Y?) satisfies Cramér condition,
A2. Y has the eighth moment,
A3. pit=0(1) as n — oo.
Cramér condition is stated as
limsup |Efexp(it, Y 4 it Y?)]| < 1,
ll#l|—o0

with £ = (11,1,)" and ||t]| = (2 + 2)"/%.

Note that T is a smooth function of Vy,...,V,. So, from the results of
Chandra and Ghosh (1979) it can be shown that 7 has a valid expansion up to
the order n~! under the assumptions Al, A2 and A3. In the following we will
find an asymptotic expansion of the characteristic function of 7" up to the order
n~', which may be inverted formally. We can expand T as

1 1
T=Ty+—=Ti+ T +0,(n%?) (3.7)

7

where

1 1 .
To=5V'(=pp V.  Ti=z{('V) =)V},

T, = %{410’(VV’)/1’1 — (V) =29 V) + (p) V= 20p7) V)

Here @ denotes (af',...,a!)" for a=(aj,...,a,)". From (3.7) we can write
the characteristic function of T as

CT(I) = Co(t) + Cl([) +%C2(t) + O(I’lil) (38)

1
NG
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where
. . 1 ‘
Co(t) = E[e™],  Ci(t) = E[itT1e""],  Cy(t) =E Hith + E(ilTl)z}e"T‘)}

For evaluation of each term in (3.8), we will use an asymptotic expansion of
the density function of V given by (2.4).
For computing the Cy(z), using (2.4) we obtain

1 1 it
Co(t) = Wjexp(—mv’v) exp(zv'(l —pp’)v)

<[4 5200 41 0:0)] + 00

where Q)(v) and Q,(v) are defined by (2.5) and (2.6). Let ¢ = (1 — moit)"'
and I' = ¢(I, — pp’) + pp', then we see that

1 it 1
exp(—— 4 V) exp{% V(I — pp") V} = exp{—z—

2]’71() my

(r=\2vy(r-1? V)}.

Considering the transformation V to X = I'""2V, Cy(r) is expressed as the
expectation on X which is distributed as N,(0,m¢f). Then we have

1 1
Co(t) = "I VEY 1T+ —01(I'2X) + =~ 02(I'?X) | +o(n7").
vn n
Note that U = I''/2X is distributed as N, (0,moI"). Therefore, we can write

Co(t) = p1/P-VE, {1 + %ﬁ 0:(U) + % Qz(U)} +o(nh). (3.9)

Applying similar method to Ci(¢) and C,(¢), we obtain
1

Ci(1) = 5,0 7z (1= o Do VEGQU(O)] + o', (3.10)
Cz(l) = 4%%0(1 — (p)(p(l/z)@*l)EU[4p/(UU/)p—1 . (p/U)4
—2q(p' U (p~2)'U* - 2(p2) U]
+1817(1 — )2 VPEDELH(p'U)Y — (p)' U] +o(1).  (3.11)
0

For calculating (3.9), (3.10) and (3.11), we use the expectations of the Hermite
polynomials. Let the (a,f) element of I be denoted by 7,;. Then
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Ev[Hy(U)] = 7,5 — 1,
Ey[H;3(U,)] =0,
Ey[Ha(Uy)] =3, — 1),
Ey[Hs(U,)] = 150y, — 1),
Ey[H3(U)H3(Up) = 305 (30 — Dogs — 1) + 205}, (@ # ).

Note that y,; = ¢dys + (1 — ¢)p,ps, where 6,5 is the Kronecker delta, ie.,
0,=11if o =p and J, 3 =0 otherwise. Substituting these into (3.9), (3.10)
and (3.11) yields

1< .
Cr(t) ="+ 2> b/ | +o(n ™), (3.12)
né
where
by = —a1 + ay — as,
by = 3a; —2ay — as + as,
by = =3a; +ay — a3 + as,
b; = a; + as, (3.13)
and

a; = {4m} — 6gm? — 3¢*(—2m} + m)? + Sm?||p~! \|2}/24m(3),

a =m(1 =2g+[lp~"*)/8m,

ay = —(mj — m) (=4 +6¢ — 5|lp~"||*)/6mo,

ay = —{(5 + 6g)mi — 6my + (mg — 6m)|[p~"|*}/12mo,

as = {=2mg + q(=2 -+ mo + 3mg = 2my) + my — (=2 +mo)|p”" |}/ 2mo,

where [|p71|* = L, p;2 =% n/n; and m;’s are given by (2.3).

Note that the leading term of (3.12) is ¢p@~1/2 = (1 — myir)~“"V/?, the null
distribution of T converges to (mg /2);(571 under nonnormality. Therefore, this
test is not robust against nonnormality, because the limiting distribution of the
null distribution of T varies according to the value of m(/2 =1 + k4/2 under
nonnormality (Box (1953)). So, we consider the statistic 27"/m, whose null dis-
tribution converges to y; ;.

Finally, by inverting the characteristic function of 27" /m which is com-
puted from (3.12), we have the following Theorem 3.1.
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THEOREM 3.1.  Under the Assumptions Al, A2 and A3, the null distribution
of 2T /mq can be expanded as

3
P(z—T < x) = Gyl + Y BG () Foln ), (314)
=0

mo

where Gy is the distribution function of a central chi-squared distribution with f
degrees of freedom and the coefficient b;’s are given by (3.13).

Especially, when Xj; is normal, we can write
1 _ _
P(T <x) = Gy1(9) + - (I I = D{Gyea(x) = Gy ()} +o(n™),

This formula is same one as in Hartley (1940).
The asymptotic expansion (3.14) can be written as

P<2—T < X) = Gq,l(x) — %gql(x){bl + by + b3

mo

(bl + bz)x " b3X2
g+1 (g+1)(g+3

)}+o(n-‘), (3.15)

where g,(x) is the density function of a }(s-variate with ¢ degrees of freedom.
Let

P2T/my < t(u)) = P()(j_l <u).

Then, from (3.15) we can expand #(u) as

t(u) :u—l—ﬁ{lﬂ +by + b3
(b1 +b2)u b3u2 _
S iy ) e
= tp(u) +o(n 1) (3.16)

4. Numerical accuracies

Numerical accuracies are studied for approximations of the percentage
points and actual test sizes of 7. The approximations considered are based on
the limiting distribution and the asymptotic expansion (3.14). We consider the
following five nonnormal models and the normal model with ¢ =3 and 5.
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Table I. Cumulants of six mosels.

K3 K4 Ks Ko Kg
Ml 0 1.5 0 15 315
M2 0 -12 0 6.86 —86.4
M3 0 3 0 30 630
M4 | 1.63 4 13.06 5333 1493.3
M5 1 1.5 3 7.5 78.75
M6 0 0 0 0 0

Ml. X + YZ, where X, Y, Z are independent normal distribution N(0, 1),

M2. symmetric uniform distribution U(-5,5),

M3. double exponential distribution DE(0, 1),

M4. y? distribution with 3 degrees of freedom,

MS.  j? distribution with 8 degrees of freedom,

M6. normal distribution.

The first three models are symmetric. In M4 and M5 we choose y? distribu-
tions with different degrees of freedom which are asymmetric. The cumulants
of each model are given in Table I, because we need the cumulants up to eighth
for computing the coefficients b;’s given in (3.13).

Table II gives the upper 5% and 1% percentage points of the null dis-
tribution in the case ¢ =3. The first row f(u) is the true percentage points
which were obtained simulation experiments. The second row is the approxi-
mate percentage points 7z(u) given in (3.16) based on the asymptotic expansion.
Table III gives the results in the case of ¢ = 5.

Table IV gives the actual test sizes for nominal test size 5% and 1% in the
case ¢ = 3. The first row g is the actual test size based on limiting distribu-
tion under normality. The second row o is one based on limiting distribution,
;(;_], under nonnormality. The third row o, is one based on the asymptotic
expansion. The «;’s are defined as follows,

oo =P(T > u), o = PQ2T/my > u), op = PQ2T /mg = tg(u)).

Note that oy =«; in M6. Table V gives the results in the case of ¢ = 5.

5. Conclusion

From Table II to V, we can see that the approximation ¢g(u) improves the
approximation based on the limiting distribution. The oy based on normal
theory has bad behavior. In the case x4 < 0 (M2), this test becomes very con-
servative and in the case x4 > 0 (M1, M3, M4, M5), it becomes very liberal.
On the other hand, the approximation, based on the asymptotic expansion,
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Table II. The percenrage points in the case ¢ = 3.

Upper 5% points | Upper 1% points
Sample sizes 1305 = 5.991 1301 =9:210
n n n3 t(u) tg(u) t(u) te(u)

10 10 10 | 4.929 4.143 7.480 7.898
20 20 20 5.257 5.067 8.076 8.554
M1 30 30 30 5.447 5.375 8.398 8.773
15 20 25 5.200 5.025 7.996 8.632
10 20 30 5.131 4.855 8.168 8.943

10 10 10 8.501 7.787 14.39 12.66
20 20 20 7.001 6.889 11.35 10.93
M2 30 30 30 6.610 6.590 10.43 10.36
15 20 25 7.088 6.940 11.32 11.04
10 20 30 7.499 7.142 12.59 11.48

10 10 10 4.738 3.840 7.038 6.439
20 20 20 5.252 4916 7917 7.824
M3 30 30 30 5.383 5.274 8.198 8.286
15 20 25 5.175 4.862 7.762 7.828
10 20 30 5.046 4.647 7.634 7.844

10 10 10 4.205 3.377 6.248 7.943
20 20 20 4.827 4.684 7.332 8.577
M4 30 30 30 5.153 5.120 7.878 8.788
15 20 25 4.796 4.632 7.242 8.733
10 20 30 4.701 4.424 7.299 9.361

10 10 10 4972 4.336 7.453 7.198
20 20 20 5.374 5.164 8.343 8.204
M5 30 30 30 5.470 5.440 8.559 8.540
15 20 25 5.321 5.122 8.187 8.215
10 20 30 5.192 4.956 7.921 8.258

10 10 10 [ 6.260 6.258 9.606 9.620
20 20 20| 6.170 6.125 9.351 9.415
M6 30 30 30| 6.178 6.080 9.456 9.347
15 20 25 6.159 6.131 9.427 9.425
10 20 30| 6.094 6.158 9.565 9.466

shows good behaviors under the nonnormal distributions close to normal distri-
bution. However, if the distribution is not close to normal distribution, it is
not useful. The test statistic 7" is optimized against the normal distribution.
Therefore, if the underlying distribution is far from the normal distribution,
other test statistics should be considered to use.

Our aims are to find influence factors of nonnormality and to examine a
behavior of the studentized statistic 73 = 27 /my. For them we consider the
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Table III. The percenrage points in the case ¢ = 5.
Upper 5% points | Upper 1% points
Sample sizes 7205 = 9-488 7201 =13.28

n M Ny ng nNs t(u) te(u) t(u) te(u)

10 10 10 10 10 7.928 7.581 11.15 13.47

20 20 20 20 20 8.532 8.534 12.27 13.37

Ml 30 30 30 30 30 8.788 8.852 12.57 13.34
10 15 20 25 30 8.399 8.421 11.94 13.77

100 10 10 10 30 8.124 7.909 11.43 14.17

100 10 10 10 10 13.56 12.32 20.54 18.11

20 20 20 20 20 11.17 10.90 16.33 15.69

M2 30 30 30 30 30 10.54 10.43 15.27 14.89
100 15 20 25 30 11.52 11.16 16.98 16.18

100 10 10 10 30 13.07 12.00 19.62 17.65

10 10 10 10 10 7.629 6.840 10.49 11.02

20 20 20 20 20 8.368 8.164 11.58 12.15

M3 30 30 30 30 30 8.672 8.605 12.15 12.53
10 15 20 25 30 8.211 7.967 11.40 12.22

100 10 10 10 30 7.778 7.221 10.88 11.80

100 10 10 10 10 6.890 7.021 9.627 14.74

20 20 20 20 20 7.827 8.254 11.09 14.01

M4 30 30 30 30 30 8.283 8.666 11.82 13.77
100 15 20 25 30 7.770 8.142 10.92 14.75

10 10 10 10 30 7.129 7.512 10.16 15.74

100 10 10 10 10 7.992 7.489 11.18 11.78

20 20 20 20 20 8.599 8.489 12.05 12.53

M5 30 30 30 30 30 8.812 8.822 12.51 12.78
100 15 20 25 30 8.546 8.342 11.96 12.62

10 10 10 10 30 8.246 7.780 11.42 12.38

10 10 10 10 10 9.902 9.867 13.78 13.81

20 20 20 20 20 9.649 9.678 13.53 13.54

M6 30 30 30 30 30 9.552 9.614 13.17 13.45
10 15 20 25 30 9.695 9.709 13.52 13.59

100 10 10 10 30 9.749 9.819 13.71 13.74

123

following two steps, because the test statistic is slightly different according to

whether the assumption that population cumulants are known or not.

As the first step we consider to derive an asymptotic expansion assuming
This paper is concerned with the first step,
and the first aim is achieved by evaluating its coefficients of the asymptotic

population cumulants are given.

expansion.
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Table IV. The actual test sizes in the case g = 3.

Sample sizes Nominal 5% test Nominal 1% test
np ny ns oo o [2%) oo o [0%)

10 10 10 12.6 270 8.20 399 033 075
20 20 20 14.4 326 5.60 515 054 0.77
M1 30 30 30 15.4 372 5.24 562  0.67 0.84
15 20 25 14.1 3.14  5.56 481 052 073
10 20 30 13.7 3.13  5.86 494 055 0.63

10 10 10 0.91 10.8  6.10 0.11 4.07 1.6l
20 20 20 0.30 7.51  5.24 0.02 213 1.17
M2 30 30 30 0.16 6.58  5.06 0.01 1.69 1.03
15 20 25 0.24 771 5.28 0.02 219 1.11
10 20 30 0.45 8.69  5.69 0.06 287 1.39

10 10 10 23.0 2.08 9.14 986 020 1.54
20 20 20 25.6 320 6.06 121 044 1.06
M3 30 30 30 26.9 351 531 13.1  0.57 0.96
15 20 25 26.0 3.08  6.02 121 042 097
10 20 30 25.0 281  6.37 11.8 041 0.89

10 10 10 254 1.25 932 1.7 0.07 0.22
20 20 20 29.7 235  5.46 152 030 045
M4 30 30 30 31.9 3.09 5.10 16.6 048 0.61
15 20 25 29.7 228 5.59 149 030 040
10 20 30 28.6 221 595 142 031 028

10 10 10 13.1 2,63  7.39 421 033 1.19
20 20 20 14.7 3.65 5.64 524 062 1.09
M5 30 30 30 15.3 3.76  5.09 5.75  0.68 1.01
15 20 25 14.8 343 5.62 513 057 0.99
10 20 30 14.4 310 5.71 494 048 0.80

10 10 10 5.78 5.78  5.00 1.21 121 1.00
20 20 20 5.46 546  5.11 1.08 1.08 0.98
M6 30 30 30 5.43 543 524 .12 112 1.05
15 20 25 5.44 544  5.06 .12 1.12  1.00
10 20 30 5.26 526 4.83 1.16 1.16  1.05

The next step is to derive an asymptotic expansion of 7 assuming popula-
tion cumulants are unknown. We have tried similar simulations by using only
limiting approximation for the studentized statistic 77 =27 /. Its result
shows better performances than that of T, =27/mj. As a reason of this
result, we think that the effect of nonnormality on the null distribution of 7;
becomes smaller than that of 7. This relation will be shown by comparing
coefficients of asymptotic expansions of 7y and 7]. Therefore, we will derive
the asymptotic expansion of 7] to investigate this.
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Table V. The actual test sizes in the case ¢ = 5.

Sample sizes Nominal 5% test Nominal 1% test
n ny ns nyg ns oo o [2%) oo o] (05

100 10 10 10 10 16.7 233 594 6.09 035 0.31
20 20 20 20 20 19.2 336 5.00 7.62  0.64 0.62
M1 30 30 30 30 30 20.7 372 4.86 857 0.73 0.71
100 15 20 25 30 18.7 3.03 496 722 0.54 0.46
10 10 10 10 30 17.3 2,65 5.54 6.37 042 0.29

100 10 10 10 10 0.47 13.5  6.69 0.06 531 1.72
20 20 20 20 20 0.09 845 542 0.01 257 124
M2 30 30 30 30 30 0.05 725 522 0.00 194 1.12
100 15 20 25 30 0.16 9.17 5.55 0.02 299 1.26
100 10 10 10 30 0.42 123 6.55 0.03 479 1.59

10 10 10 10 10 329 1.77  7.52 16,5 020 0.75
20 20 20 20 20 37.0 292 549 198 043 0.77
M3 30 30 30 30 30 389 342 515 21,5 056 081
10 15 20 25 30 36.3 271 554 189 041 0.68
100 10 10 10 30 33.7 2.11  6.65 170 028 0.62

10 10 10 10 10 37.2 .11 4.67 19.6 0.11 0.04
20 20 20 20 20 43.1 2.17  4.07 252 033 0.24
M4 30 30 30 30 30 45.7 2.89 4.6 27.8 0.51  0.39
10 15 20 25 30 42.4 2.17 4.10 246 033 0.17
10 10 10 10 30 38.5 142 4.05 209 020 0.06

10 10 10 10 10 17.2 233 641 621 032 0.73
20 20 20 20 20 19.7 337 525 7.65 0.57 0381
M5 30 30 30 30 30 21.1 3.77 499 8.65 0.74 092
10 15 20 25 30 19.5 3.18 551 7.53 0.51  0.72
100 10 10 10 30 18.0 2.63  6.16 6.68 0.38 0.61

10 10 10 10 10 5.83 583 5.06 1.23 123 099
20 20 20 20 20 5.33 533 493 1.10  1.10 0.99
M6 30 30 30 30 30 5.16 5.16  4.87 095 095 0.85
10 15 20 25 30 5.44 544 498 .13 1.13 096
10 10 10 10 30 5.58 5.58 4.85 1.19 1.19 099

References

[1] O. E. Barndorff-Nielsen and D. R. Cox, Asymptotic Techniques for Use in Statistics,
Chapman and Hall, 1989.

[2] G. E.P. Box, Non-normality and tests on variances, Biometrika 40 (1953), 318-335.

[3] D. D. Boos and C. Brownie, Bootstrap methods for testing homogeneity of variances,
Technometrics 31 (1989), 69-82.

[4] T. K. Chandra and J. K. Ghosh, Valid asymptotic expansions for the likelihood ratio
statistic and other perturbed chi-square variables, Sankhya Ser. A, 41 (1979), 22-47.



126

[5]

Tetsuji ToNDA and Hirofumi WAKAKI

Y. Fujikoshi, M. Ohmae and H. Yanagihara, Asymptotic approximations of the null
distribution of the one-way ANOVA test satatistic under nononrmality, J. Japan. Statist.
Soc. 29 (1999), 147-161.

P. Hall, The Bootstrap and Edgeworth Expansion, Springer-Verlag, 1992.

O. H. Hartley, Testing the homogeneity of a set of variances, Biometrika 31 (1940),
249-255.

G. S. James, The comparison of several groups of observations when the ratios of the
population variances are unknown, Biometrika 38 (1951), 324-329.

N. Sugiura and H. Nagao, On Bartlett’s test and Lehmann’s test for homogeneity of
variance, Ann. Math. Statist. 40 (1969), 2018-2032.

H. Yanagihara, Asymptotic expansion of the null distribution of one-way ANOVA test
statistic for heteroscedastic case under nonnnormality, Commun. Statist. Theory Meth. 29
(2000), 463-476.

J. Zhang and D. D. Boos, Bootstrap Critical Values for Testing Homogenity of Covariance
Matrices, J. Amer. Statist. Assoc. 87 (1992), 425-429.

Tetsuji Tonda
Department of Environmetrics and Biometrics
Research Institute for Radiation Biology and Medicine
Hiroshima University
Hiroshima 734-8553, Japan
e-mail: ttetsuji@hiroshima-u.ac.jp

Hirofumi Wakaki
Department of Mathematics
Graduate school of Science

Hiroshima University
Higashi-Hiroshima 739-8526, Japan
e-mail: wakaki@math.sci. hiroshima-u. ac.jp



