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Abstract. As it is well-known, to a given plane simple closed curve z with non-

vanishing tangent vector, one can associate a conformal welding homeomorphism w½z�
of the unit circle to itself, obtained by composing the restriction to the unit circle of a

suitably normalized Riemann map of the domain exterior to z with the inverse of the

restriction to the unit circle of a suitably normalized Riemann map of the domain

interior to z. Now we think the functions z and w½z� as points in a Schauder function

space on the unit circle, and we show that the correspondence w which takes z to w½z� is
real di¤erentiable for suitable exponents of the Schauder spaces involved. Then we

show that w has a right inverse which is the restriction of a holomorphic nonlinear

operator.

1. Introduction

As it is well-known, given an element z of the set AqD of the complex-

valued di¤erentiable injective functions, with nonvanishing first derivative,

defined on the boundary qD of the open unit disk D of the complex plane

C, the function z parametrizes a Jordan curve. To each z A AqD, one can

associate a pair ðG;FÞ of Riemann maps, with G a suitably normalized

holomorphic homeomorphism of the exterior Cncl D of D onto the exterior

E½z� of z, and with F a suitably normalized holomorphic homeomorphism

of D onto the interior I ½z� of z. It is also well-known that G and F can

be extended with continuity to boundary homeomorphisms. Thus one can

consider the so-called conformal welding homeomorphism F ð�1Þ � GjqD of qD,

which we denote by w½z�. Now let Cm;a
� ðqD;CÞ be the Schauder space of

m-times continuously di¤erentiable complex-valued functions on qD, whose

m-th order derivative is a-Hölder continuous, with a A �0; 1½, mb 1. It is well-

known that if z A Cm;a
� ðqD;CÞVAqD, then w½z� A Cm;a

� ðqD;CÞVAqD. In this

paper we first prove some di¤erentiability theorems for the nonlinear ‘con-

formal welding operator’ w½��. We note that such theorems can be shown to

be optimal in the frame of Schauder spaces (cf. [19, Thm. 2.14].) Moreover,
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we observe that by restricting w½�� to the set of z’s which are boundary values of

Riemann maps defined on CnD, the operator w½�� becomes real analytic.

Next we turn to the problem of constructing a right inverse of w½��. The

problem of constructing a suitably normalized pair of functions ðG;F Þ as

above, such that F ð�1Þ � GjqD ¼ f by a given regular orientation preserving

homeomorphism f of qD to itself, a so-called ‘shift’ of qD, is known as the

conformal sewing problem and is a particular type of boundary value problem

with shift for sectionally holomorphic functions. By exploiting a classical

method (cf. e.g., Lu [22]), one can show that to each shift f A Cm;a
� ðqD;CÞV

AqD, one can associate a unique suitably normalized pair of functions ðG;F Þ as
above. Then the nonlinear operator s, which takes f to s½f�1GjqD is a right

inverse of w, and will be called the ‘conformal sewing operator’. Next we

prove that s½f� A Cm;a
� ðqD;CÞ if the shift f A Cm;a

� ðqD;CÞVAqD. Then we

analyze the di¤erentiability properties of s. Since the domain of s, namely the

set of positively oriented f A Cm;a
� ðqD;CÞVAqD such that fðqDÞ ¼ qD is not

open in the Banach space Cm;a
� ðqD;CÞ, we construct an extension of s to the

open set of orientation preserving elements of Cm;a
� ðqD;CÞVAqD, and we show

that such extension is complex-analytic. In other words, we show that the

boundary values of the Riemann map G of the domain exterior to the curve

s½f�, depend complex-analytically on f. Then we consider the Riemann map

F which is related to G by the equality FjqD ¼ G � fð�1Þ ¼ s½f� � fð�1Þ. We

deduce the di¤erentiability properties of the dependence of the boundary values

of F upon f by ‘ad hoc’ variants of the di¤erentiability results on the inversion

and on the composition operator of [15]. We note that the di¤erentiability

results for the dependence of F on f can be shown to be sharp by means of

inverse theorems. In particular, one can show that F does not depend complex

analytically on f (cf. [19, Thm. 2.17].)

The theory of boundary value problems with shift for sectionally holo-

morphic functions, also called Haseman problems, is well-known and started

with Haseman [9]. Kveselava [13] developped an existence and uniqueness

theory in case f is of class C1;a
� . Later, other Haseman type problems have

been studied, also for more general shifts (cf. Litvinchuk [21], Monakhov

[23, pp. 357–367].) In the direction of the perturbation results however, the

authors are only aware of the continuity result for the conformal welding

operator of David [4], and of the continuity results for the conformal sewing

operator of Monakhov [23, p. 363], and of Huber and Kühnau [11], in di¤erent

function space settings. We mention also the work of Nag [24], who has

considered a one-parameter family fftg of shifts depending real analytically

on a real parameter t, and who has provided an algorithm to compute the

coe‰cients of the formal expansion of the corresponding families of curves

s½ft� and s½ft� � f
ð�1Þ
t , under the assumption that such expansions converge.
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We believe that our results could be employed in the perturbation analysis

of other well-posed Haseman problems. Indeed, the operator which maps a

shift to the corresponding solution of the Haseman problem can be expressed in

terms of the conformal sewing operator and of operators of known regularity

(cf. e.g., Gakhov [6, p. 129, § 14].)

This paper is organized as follows. Section 2 is a section of preliminaries

and notation. Section 3 concerns the definition of the conformal welding map

and contains di¤erentiability theorems for the conformal welding operator.

Section 4 is devoted to the definition of the conformal sewing operator and of

its extension. Section 5 contains a complex di¤erentiability theorem for the

conformal sewing operator.

2. Technical preliminaries and notation

Let X, Y be normed spaces over the field K, with K ¼ R or K ¼ C. We

say that X is continuously imbedded in Y provided that XJY and that the

inclusion map is continuous. We say that a map T of a subset of X to Y is

compact, provided that it maps bounded sets to sets with compact closure.

For standard definitions of Calculus in normed spaces, we refer to Prodi and

Ambrosetti [28] or to Berger [2]. Unless otherwise specified, we understand

that a finite product of normed spaces is endowed with the supremum of the

norms of the components. Let N be the set of nonnegative integers includ-

ing zero. Throughout the paper, n denotes an element of Nnf0g. A com-

plex normed space can be viewed naturally as a real normed space. Accord-

ingly, we will say that a certain map between complex normed spaces is real

linear, real di¤erentiable, or real analytic, to indicate that such map is linear,

di¤erentiable or analytic between the corresponding underlying real spaces,

respectively. To emphasize that we are retaining the complex structure, we

will say that the map is complex linear, complex di¤erentiable, or complex

analytic, respectively. The inverse function of a function f is denoted f ð�1Þ,

as opposed to the reciprocal of a complex valued function g, which is denoted

g�1. For all subsets B of Rn, the closure of B is denoted cl B. We now define

the Schauder spaces on the closure of an open subset of Rn. Let W be an open

subset of Rn, m A N. We denote by CmðW;CÞ the space of m-times contin-

uously real-di¤erentiable complex-valued functions on W, and by Cmðcl W;CÞ
the subspace of those functions of CmðW;CÞ such that for all h1 ðh1; . . . ; hnÞ A
Nn, with jhj1 h1 þ � � � þ hn am, the function Dhf 1 qjhjf

qh1x1...q
hn xn

can be

extended with continuity to cl W. If W is bounded, then Cmðcl W;CÞ endowed

with the norm defined by k f kC mðcl W;CÞ 1
P

jhjam supcl WjDhf j is a Banach

space. If W is bounded and if a A �0; 1�, we denote by Cm;aðcl W;CÞ the

subspace of Cmðcl W;CÞ of those functions which have a-Hölder contin-
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uous derivatives of order m. If f A C 0;aðcl W;CÞ, then we set j f : Wja 1
sup

j f ðxÞ�f ðyÞj
jx�yj a : x; y A cl W; x0 y

n o
. The space Cm;aðcl W;CÞ is endowed with

its usual norm k f kC m; aðcl W;CÞ 1
P

jhjam supcl WjDhf j þ
P

jhj¼m jDhf : Wja, and it

is well-known to be a Banach space. If BJC, then Cm;aðcl W;BÞ denotes

the set f f A Cm;aðcl W;CÞ : f ðcl WÞJBg. By HðWÞ we understand the space

of holomorphic functions of W to C. Finally, the space Cm;a;0ðcl W;CÞ is

defined as the closure of Cyðcl W;CÞ in Cm;aðcl W;CÞ. Then we have the

following.

Lemma 2.1. Let m A N, a A �0; 1�. Let W be a bounded open con-

nected subset of Rn of class Cmþ1. Then Cm;a;0ðcl W;CÞ coincides with the

closure in Cm;aðcl W;CÞ of the set of restrictions to cl W of the polynomials with

complex coe‰cients in n real variables. Moreover, Cm;a;0ðcl W;CÞ contains

Cmþ1ðcl W;CÞ and Cm;bðcl W;CÞ, for all b A �a; 1�.

Proof. Since W is of class Cmþ1, then all functions of Cmþ1ðcl W;CÞ are

restrictions of some element of Cmþ1ðRn;CÞ (cf. e.g., Troianiello [30, p. 13].)

Then by Weierstrass Theorem (cf. e.g., Rohlin and Fuchs [29, p. 185]), all

elements of Cmþ1ðRn;CÞ can be approximated in the Cmþ1ðcl W;CÞ-norm by

polynomials. Since cl W is of class Cmþ1, then Cmþ1ðcl W;CÞ is continu-

ously imbedded in Cm;aðcl W;CÞ (cf. e.g., [15, p. 460].) Then the first part of

the statement and the inclusion Cmþ1ðcl W;CÞJCm;a;0ðcl W;CÞ follow. Now

let f A Cm;bðcl W;CÞ. Since W is of class Cmþ1, then f admits an extension

of class Cm;b and with compact support in a ball containing cl W (cf. e.g.,

Troianiello [30, Thm. 1.3, p. 13].) By taking the convolution with a family of

mollifiers, such extension can be approximated by a sequence of Cy functions

bounded in Cm;bðcl W;CÞ and convergent in Cm;aðcl W;CÞ (cf. e.g., Troianiello

[30, pp. 20, 21].) Then f A Cm;a;0ðcl W;CÞ. r

We now define the Schauder spaces on plane Jordan curves, which are par-

ticular compact subsets of C with no isolated points. With somewhat more

generality, we define the Schauder spaces on a general compact subset K of

C with no isolated points. We say that a function f of K to C is complex

di¤erentiable at z0 A C if limK C z!z0
f ðzÞ�f ðz0Þ

z�z0
exists finite. We denote such limit

by f 0ðz0Þ. As usual the higher order derivatives, if they exist, are defined

inductively. Let m A N. We denote by Cm
� ðK ;CÞ the complex normed space

of the m-times continuously complex di¤erentiable functions f of K to C

endowed with the norm k f kCm
� ðK;CÞ ¼

Pm
j¼0 supK j f ð jÞj. If a A �0; 1�, we denote

by Cm;a
� ðK ;CÞ the subspace of Cm

� ðK ;CÞ of those functions having a-

Hölder continuous m-th order derivative in K. If f A C 0;a
� ðK;CÞ, then we set

j f : K ja 1 sup
j f ðz1Þ�f ðz2Þj

jz1�z2j a
: z1; z2 A K ; z1 0 z2

n o
. We endow Cm;a

� ðK ;CÞ with the

norm k f kCm; a
� ðK ;CÞ 1 k f kCm

� ðK;CÞ þ j f ðmÞ : K ja. If BJC, we set Cm;a
� ðK ;BÞ1
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f f A Cm;a
� ðK ;CÞ : f ðKÞJBg. We denote by Cm;a;0

� ðK ;CÞ the closure of

Cy
� ðK ;CÞ in Cm;a

� ðK ;CÞ. Then the following variant of [14, Cor. 4.24,

Prop. 4.29] holds (cf. [18, Lem. 2.5].)

Lemma 2.2. The following statements hold.

( i ) Let f A C1
� ðqD;CÞ. Then lqD½f�1 inf

jfðxÞ�fðyÞj
jx�yj : x; y A qD; x0 y

n o
> 0 if

and only if f is injective and f 0ðxÞ0 0 for all x in qD.

( ii ) The function of C1
� ðqD;CÞ to R which maps f to lqD½f� is continuous,

and in particular, the set AqD 1 ff A C1
� ðqD;CÞ : lqD½f� > 0g is open in

C1
� ðqD;CÞ.

(iii) minx A qDjf 0ðxÞjb lqD½f�, for all f A C1
� ðqD;CÞ.

We are now ready to state the following, which collects a few facts which

we need on the spaces Cm;a
� ðK ;CÞ. For a proof and for appropriate refer-

ences, we refer to [18, Lems. 2.7, 2.8].

Lemma 2.3. Let m A N, a; b A �0; 1�, f A AqD, L ¼ fðqDÞ. Then the fol-

lowing statements hold.

( i ) Cmþ1
� ðL;CÞ is continuously imbedded in Cm;a

� ðL;CÞ. If a < b, then

Cm;b
� ðL;CÞ is compactly imbedded in Cm;a

� ðL;CÞ.
( ii ) The pointwise product is continuous in the Banach space Cm;a

� ðL;CÞ.
( iii ) The reciprocal map in Cm;a

� ðL;CÞ, which maps a nonvanishing function f to

its reciprocal, is complex analytic from Cm;a
� ðL;Cnf0gÞ to itself.

( iv ) Let f1 A AqD, L1 ¼ f1ðqDÞ. If f A Cm;a
� ðL1;CÞ and if g A Cm;b

� ðL;L1Þ,
then f � g A C

m; gmða;bÞ� ðL;CÞ with g0ða; bÞ ¼ ab and gmða; bÞ ¼ minfa; bg if

m > 0.

( v ) Let mb 1. If g A Cm;a
� ðL;CÞ is injective and satisfies condition g 0ðxÞ0 0,

for all x A L, then gð�1Þ A Cm;a
� ðgðLÞ;LÞ.

( vi ) If I ½f� and E½f� denote the bounded and the unbounded open connected

component of CnfðqDÞ, respectively, then qI ½f� ¼ qE½f� ¼ fðqDÞ.
(vii) If f A AqD, and if f ðqDÞJ qD, then f ðqDÞ ¼ qDand f is ahomeomorphism of

qD to itself.

We now introduce two di¤erentiability theorems, for the composition and

for the inversion operator. To do so, we need the following, which we use to

study the regularity of the operator w½��, and the regularity of the dependence

of F on the shift f.

Lemma 2.4. Let m A N, a A �0; 1�, R A �1;þy½ . Let RD1 fx A R2 :

jxj < Rg. Then there exists a linear and continuous extension operator E of

Cm;a
� ðqD;CÞ to Cm;aðclðRDÞ;CÞ such that the following statements hold.

( i ) ðE½ f �ÞjqD ¼ f , for all f A Cm;a
� ðqD;CÞ, and E½ f � A Cm;a;0ðclðRDÞ;CÞ for

all f A Cm;a;0
� ðqD;CÞ.
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(ii) Let 1a jam. For all f A Cm;a
� ðqD;CÞ, the real di¤erential of order j of

the function E½ f � at t A qD satisfies the following equation

d jE½ f �ðtÞðs1; . . . ; sjÞ ¼ f ð jÞðtÞs1 . . . sj; ð2:5Þ

for all ðs1; . . . ; sjÞ A C j . In particular, d jE½ f �ðtÞ is also a complex j-

multilinear operator, whenever t A qD.

Proof. To prove statement (i), we first show that there exists a linear

and continuous operator Z of
Qm

l¼0 C
m�l;a
� ðqD;CÞ to Cm;aðcl D;CÞ such

that Z½f�jqD; . . . ;
qmZ½f�
qnm jqD

� �
¼ f for all f A

Qm
l¼0 C

m�l;a
� ðqD;CÞ, where n is the

outer unit normal to qD. If r; s A f0; . . . ;mg, then we set drs ¼ 1 if r ¼ s,

drs ¼ 0 if r0 s. As a first step we fix an arbitrary l A f0; . . . ;mg, and we

show the existence of a linear and continuous operator Zl of Cm�l;a
� ðqD;CÞ

to Cm;aðcl D;CÞ such that
q jZl ½h�
qn j jqD ¼ djl l!h for 0a ja l, and for all h A

Cm�l;a
� ðqD;CÞ. By a standard argument based on the partition of unity and

on the use of local charts for qD, the existence of Zl follows from that of

a linear and continuous operator ~ZZl of Cm�l;að½�1; 1�;CÞ to Cm;aðclð��1;

1½ � ��1; 0½Þ;CÞ such that
q j ~ZZl ½g�
qx

j

2 jx2¼0
¼ djl l!g for 0a ja l. Let K be a linear and

continuous operator of Cm�l;að½�1; 1�;CÞ to Cm�l;að½�2; 2�;CÞ with K½g� ¼ g on

½�1; 1� and supp K ½g�J ��2; 2½, for all g A Cm�l;að½�1; 1�;CÞ. Furthermore,

one can choose K so that K maps Cm�lþ1ð½�1; 1�;CÞ to Cm�lþ1ð½�2; 2�;CÞ
(cf. e.g., the construction of Troianiello [30, Thm. 1.3, p. 13] with k ¼
m� l þ 1.) To construct ~ZZl , we take l þ 1 distinct real numbers a0; . . . ; al ,

and we determine b0; . . . ; bl by solving the (Vandermonde) system
P l

s¼0 a
j
s bs ¼

djl l!, j ¼ 0; . . . ; l, and we set ~ZZl ½g�ðx1; x2Þ1
P l

s¼0 bsGl ½g�ðx1 þ asx2Þ, where

Gl ½g� is the m times di¤erentiable function of R to C determined by condi-

tions d l

dt l
Gl ½g� ¼ K ½g�, d j

dt j jt¼0
Gl ½g� ¼ 0 for 0a j < l. Then one can define Z by

exploiting the operators Zl and formula (5.8) of Nečas [25, p. 93]. It is

also clear that Z maps
Qm

l¼0 C
mþ1�l
� ðqD;CÞ to Cmþ1ðcl D;CÞ. Since cl D is of

class Cy, it is also known that there exists a linear and continuous exten-

sion operator ER of Cm;aðcl D;CÞ to Cm;aðclðRDÞ;CÞ such that ER½v�jcl D ¼ v,

for all v A Cm;aðcl D;CÞ. Furthermore, one can choose ER so that ER maps

Cmþ1ðcl D;CÞ to Cmþ1ðclðRDÞ;CÞ (cf. e.g., the construction of Troianiello [30,

Thm. 1.3, p. 13] with k ¼ mþ 1.) Then we set E½ f �1ER � Z½ f ðtÞ; tf 0ðtÞ; . . . ;
tmf ðmÞðtÞ�. If f A Cy

� ðqD;CÞ, then E½ f � A Cmþ1ðclðRDÞ;CÞ and thus E½ f � A
Cm;a;0ðclðRDÞ;CÞ by Lemma 2.1. We now prove (ii). By construction, the

function E½ f � is m-times real di¤erentiable at each point t A qD, and the

real di¤erential d jE½ f �ðtÞ is a real j-multilinear operator of R2j to R2. Also,

the right hand side of equation (2.5) delivers a complex j-multilinear oper-

ator, which we denote by Mf ð jÞðtÞ of C j to C, and thus a real j-multilinear
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operator of R2j to R2. In order to prove equality (2.5), it su‰ces to show

that d jE½ f �ðtÞ ¼ Mf ð jÞðtÞ on the j-tuples of elements of a real basis of R2.

To shorten our notation, we write v½l � instead of v; . . . ; v
zfflfflfflffl}|fflfflfflffl{l terms

in the argu-

ment of a multilinear operator. Once t1 ðt1; t2Þ A qD is fixed, we choose

fðt1; t2Þ; ð�t2; t1Þg as a real basis of R2. Note that t equals the exterior unit

normal to qD at t, and that it ¼ ð�t2; t1Þ lies in the tangent space to qD at t.

Since d jE½ f �ðtÞ and Mf ð jÞðtÞ are multilinear and symmetric operators, it su‰ces

to check that for 0a la j, we have

d jE½ f �ðtÞðð�t2; t1Þ½l �; ðt1; t2Þ½ j�l �Þ ¼ f ð jÞðtÞðitÞ lt j�l : ð2:6Þ

We now prove (2.6) by induction on j A f1; . . . ;mg. In case j ¼ 1, it su‰ces

to prove the following two equalities

dE½ f �ðtÞððt1; t2ÞÞ ¼ f 0ðtÞt; dE½ f �ðtÞðð�t2; t1ÞÞ ¼ f 0ðtÞit: ð2:7Þ

The first equality of (2.7) follows by equality q
qn
E½ f �ðtÞ ¼ f 0ðtÞt, which holds

by construction of E. We now turn to prove the second equality of (2.7). We

know that E½ f �ðcos y; sin yÞ ¼ f ðeiyÞ, for all y A ½0; 2p�. Then by di¤er-

entiating with respect to y, we obtain dE½ f �ðcos y; sin yÞðð�sin y; cos yÞÞ ¼
f 0ðeiyÞieiy, which implies the validity of the second equation of (2.7). If

m ¼ 1, the proof is complete, thus we can assume that m > 1. We assume

that equality (2.6) holds for j A f1; . . . ;m� 1g, and for all 0a la j, and we

prove (2.6) for j þ 1, and for all 0a la j þ 1. If l ¼ 0, then (2.6) follows

by equality q jþ1

qn jþ1 E½ f �ðtÞ ¼ t jþ1f ð jþ1ÞðtÞ, which holds by construction of E½ f �.
Thus we can assume that lb 1. By inductive assumption, we have

d jE½ f �ðtÞðð�t2; t1Þ½l�1�; ðt1; t2Þ½ j�lþ1�Þ ¼ f ð jÞðtÞðitÞ l�1
t j�lþ1: ð2:8Þ

Now by setting t1 ðt1; t2Þ ¼ ðcos y; sin yÞ in (2.8), and by di¤erentiating with

respect to y, we obtain

d jþ1E½ f �ðtÞðð�t2; t1Þ½l �; ðt1; t2Þ½ j�lþ1�Þ

þ ðl � 1Þd jE½ f �ðtÞðð�t1;�t2Þ; ð�t2; t1Þ½l�2�; ðt1; t2Þ½ j�lþ1�Þ

þ ð j � l þ 1Þd jE½ f �ðtÞðð�t2; t1Þ½l�1�; ð�t2; t1Þ; ðt1; t2Þ½ j�l �Þ

¼ f ð jþ1ÞðtÞðitÞ lt j�lþ1 þ f ð jÞðtÞðl � 1ÞðitÞ l�2ð�tÞt j�lþ1

þ f ð jÞðtÞðitÞ l�1ð j � l þ 1Þt j�l it:

By exploiting the symmetry, the real j-multilinearity of d jE½ f �ðtÞ, and the

inductive assumption, we obtain that (2.6) holds for j þ 1, and for all

0a la j þ 1. r
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We now have the following variant of [15, Thm. 4.19]. See also Henry

[10, p. 96]. For references to previous contributions on this issue by various

authors, we refer to [15].

Theorem 2.9. Let m; r A N, a; b A �0; 1�. Let gmða; bÞ be defined as in

Lemma 2.3 (iv). Let R A �1;þy½ . Let E be the extension operator of Lemma

2.4. The operator ~TT from Cmþr;a;0
� ðqD;CÞ � Cm;b

� ðqD;RDÞ to C
m; gmða;bÞ� ðqD;CÞ

defined by setting ~TT½ f ; g�1 ðE½ f �Þ � g, for all ð f ; gÞ A Cmþr;a;0
� ðqD;CÞ�

Cm;b
� ðqD;RDÞ is of class C r in the real sense. The restriction of ~TT to

Cmþr;a;0
� ðqD;CÞ�Cm;b

� ðqD; qDÞ coincides with the ordinary composition operator

T defined by T½ f ; g�1 f � g. The ordinary composition T maps Cm;a;0
� ðqD;CÞ�

Cm;b;0
� ðqD; qDÞ to C

m; gmða;bÞ;0� ðqD;CÞ. If rb 1, q A f1; . . . ; rg, and if ð f0; g0Þ A
Cmþr;a;0

� ðqD;CÞ � Cm;b
� ðqD; qDÞ, then the real di¤erential of order q of ~TT at

ð f0; g0Þ is delivered by the formula

d q~TT½ f0; g0�ððv½1�;w½1�Þ; . . . ; ðv½q�;w½q�ÞÞ

¼
Xq
j¼1

ðvðq�1Þ
½ j � � g0Þw½1� . . .dw½ j �w½ j � . . .w½q�

 !
þ ð f ðqÞ0 � g0Þw½1� . . .w½q� ð2:10Þ

for all ððv½1�;w½1�Þ; . . . ; ðv½q�;w½q�ÞÞ A ðCmþr;a;0
� ðqD;CÞ � Cm;b

� ðqD;CÞÞq, where the

‘b’ symbol on a factor denotes that such factor should not appear in the

product.

Proof. We first prove that ~TT is of class Cr. It clearly su‰ces to

show that given ð f #; g#Þ A Cmþr;a;0
� ðqD;CÞ � Cm;b

� ðqD;RDÞ, the map ~TT is of

class Cr in an open neighborhood of ð f #; g#Þ. Now we set Ce 1 fz A C :

j jzj � 1j < eg for all e > 0. By uniform continuity of E½g#� on clðRDÞ and

by the inclusion E½g#�ðqDÞJRD, there exists e > 0 such that E½g#�ðcl CeÞJ
RD. Clearly, W# 1 fg A Cm;b

� ðqD;RDÞ : E½g�ðcl CeÞJRDg is an open

neighborhood of g# in Cm;b
� ðqD;CÞ. By [16, Thm. 5.3] and Lemma 2.1, T is

of class Cr from Cmþr;a;0ðclðRDÞ;CÞ � Cm;bðcl Ce;RDÞ to Cm; gmða;bÞðcl Ce;CÞ.
Furthermore, the restriction operator is easily seen to be linear and contin-

uous from Cm; gmða;bÞðcl Ce;CÞ to C
m; gmða;bÞ� ðqD;CÞ (for example, by arguing as

in [18, Lem. 2.8 (ii)].) Thus, ~TT is of class Cr from Cmþr;a;0
� ðqD;CÞ �W#

to C
m; gmða;bÞ� ðqD;CÞ. Formula (2.10) follows by formula (2.5) and by the

formula for the derivatives of T of [16, Rmk. 5.4]. By definition of the

space Cm;b;0ðcl Ce;CÞ and by continuity of T from Cm;a;0ðclðRDÞ;CÞ�
Cm;bðcl Ce;RDÞ to Cm; gmða;bÞðcl Ce;CÞ, and by Lemma 2.4 (i), T maps

Cm;a;0
� ðqD;CÞ � Cm;b;0

� ðqD; qDÞ to C
m; gmða;bÞ;0� ðqD;CÞ. r

We now turn to the study of the inversion operator by showing the validity of

the following variant of [15, Thm. 5.9].
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Theorem 2.11. Let m A Nnf0g, r A N, a A �0; 1�. Let J be the operator of

Cmþr;a;0
� ðqD; qDÞVAqD to Cm;a

� ðqD; qDÞ defined by equality J½ f �1 f ð�1Þ, for all

f A Cmþr;a;0
� ðqD; qDÞVAqD. If r ¼ 0, then J is continuous and the image of J is

contained in Cm;a;0
� ðqD; qDÞ. If rb 1, then for all f0 A Cmþr;a;0

� ðqD; qDÞVAqD,

there exist an open neighborhood Wf0 of f0 in Cmþr;a;0
� ðqD;CÞVAqD, and

an operator ~JJf0 of class C r in the real sense from Wf0 to Cm;a;0
� ðqD;CÞ, such

that

~JJf0 ½ f � ¼ J½ f �; Ef A Wf0 VCmþr;a;0
� ðqD; qDÞ: ð2:12Þ

Furthermore, the following formula holds

d~JJf0 ½ f �ðwÞ ¼ �ð f 0 � f ð�1ÞÞ�1
w � f ð�1Þ; Ew A Cmþr;a;0

� ðqD;CÞ; ð2:13Þ

for all f A Wf0 VCmþr;a;0
� ðqD; qDÞ.

Proof. We first consider case r ¼ 0. By Lemma 2.3 (v), (vii),

the following inclusion holds JðCm;a;0
� ðqD; qDÞVAqDÞJCm;a

� ðqD;CÞ. We

now prove that J is continuous from Cm;a;0
� ðqD; qDÞVAqD to Cm;a

� ðqD;CÞ.
To do so, we proceed by induction on m. Let m ¼ 1, limj!y fj ¼ f in

C 1;a;0
� ðqD; qDÞVAqD. Since the sequence f fjgj AN converges uniformly to

f in qD, and qD is compact, a simple contradiction argument shows

that limj!y f
ð�1Þ
j ¼ f ð�1Þ pointwise on qD. By Lemma 2.2 (ii), (iii), there

exists d > 0 such that minqDj f 0
j jb d, minqDj f 0jb d. Then a simple compu-

tation shows that supj ANk f
ð�1Þ
j k

C
1; a
� ðqD;CÞ < y. Since C1;a

� ðqD;CÞ is compactly

imbedded in C 0;1
� ðqD;CÞ, and limj!y f

ð�1Þ
j ¼ f ð�1Þ pointwise on qD, a simple

contradiction argument shows that limj!y f
ð�1Þ
j ¼ f ð�1Þ in C 0;1

� ðqD;CÞ.
Then by Theorem 2.9, case r ¼ 0, and by Lemma 2.3 (iii), we have

limj!y½ f 0
j ð f

ð�1Þ
j Þ��1 ¼ ½ f 0ð f ð�1ÞÞ��1 in C 0;a

� ðqD;CÞ. Since limj!y f
ð�1Þ
j ¼ f ð�1Þ

in C 0;1
� ðqD;CÞ, we conclude that limj!y f

ð�1Þ
j ¼ f ð�1Þ in C 1;a

� ðqD;CÞ. Now

let the statement be true for mb 1 and limj!y fj ¼ f in Cmþ1;a;0
� ðqD;CÞ. By

case m we have limj!y f
ð�1Þ
j ¼ f ð�1Þ in Cm;a

� ðqD;CÞ. Then by Lemma 2.3

(iii), by Theorem 2.9, by the limiting relation limj!y f 0
j ¼ f 0 in Cm;a;0

� ðqD;CÞ,
and by equality ½ f ð�1Þ

j � 0 ¼ ½ f 0
j ð f

ð�1Þ
j Þ��1, we conclude that the sequence

f½ f ð�1Þ
j � 0gj AN converges to ½ f ð�1Þ� 0 in Cm;a

� ðqD;CÞ, and the proof of case r ¼ 0

is complete. We now prove that JðCm;a;0
� ðqD; qDÞVAqDÞJCm;a;0

� ðqD; qDÞ.
Let f A Cm;a;0

� ðqD; qDÞVAqD. Then there exists a sequence f fjgj AN in

Cy
� ðqD;CÞVAqD such that limj!y fj ¼ f in Cm;a

� ðqD;CÞ. Since for j

su‰ciently large we have
fj

j fj j A Cy
� ðqD; qDÞVAqD, then we have J

fj

j fj j

h i
A

Cy
� ðqD; qDÞVAqD for the same j’s. Now let w A CyðR2;R2Þ be such that

wðxÞ ¼ xjxj�1, for jxjb 1=2. By [16, Thm. 5.3], and by Lemma 2.1, and

by the continuity of the restriction to qD (cf. e.g., [18, Lem. 2.8]), we have

Di¤erentiability properties of some nonlinear operators 67



limj!y
fj

j fj j ¼ limj!y wðE½ fj�ÞjqD ¼ wð f Þ ¼ f in Cm;a
� ðqD;CÞ, with E as in

Lemma 2.4. Then the continuity of J implies that J½ f � A Cm;a;0
� ðqD; qDÞ.

We now consider case rb 1. We take R > 1 and we define the operator

Y of ðCmþr;a;0
� ðqD;CÞVAqDÞ � Cm;a;0

� ðqD;RDÞ to Cm;a;0
� ðqD;CÞ by setting

Y½ f ; g� ¼ ðE½ f �Þ � g� idqD, where idqD denotes the identity map in qD. By

Theorem 2.9, the operator Y is of class Cr. We now observe that for all

f A Cmþr;a;0
� ðqD;CÞVAqD such that f ðqDÞ ¼ qD, we have Y½ f ; g� ¼ 0 if

g ¼ f ð�1Þ. We now apply the Implicit Function Theorem to equation

Y½ f ; g� ¼ 0 around the pair ð f0; f ð�1Þ
0 Þ. By Theorem 2.9, the partial di¤er-

ential of Y at ð f0; f ð�1Þ
0 Þ with respect to the variable g is defined by

dgY½ f0; f ð�1Þ
0 �ðhÞ ¼ f 0

0 ð f
ð�1Þ
0 Þh, for all h A Cm;a;0

� ðqD;CÞ. Since f 0
0 belongs to

Cmþr�1;a;0
� ðqD;CÞ, which is contained in Cm;a;0

� ðqD;CÞ, and since f 0
0 ðtÞ0 0

for all t A qD, then Lemma 2.3 (ii), (iii) and Theorem 2.9 imply that

dgY½ f0; f ð�1Þ
0 � is a linear isomorphism of Cm;a;0

� ðqD;CÞ. Thus the Implicit

Function Theorem implies the existence of an open neighborhood Wf0 of f0
in Cmþr;a;0

� ðqD;CÞVAqD, and of an open neighborhood V
f
ð�1Þ
0

of f
ð�1Þ
0 in

Cm;a;0
� ðqD;CÞ, and of a map ~JJf0 of class Cr from Wf0 to V

f
ð�1Þ
0

such that the

graph of ~JJf0 coincides with the set of zeros of Y in Wf0 �V
f
ð�1Þ
0

. By the

obvious inclusion of Cmþr;a;0
� ðqD;CÞ in Cm;a;0

� ðqD;CÞ, and by case r ¼ 0, J is

continuous on Wf0 VCmþr;a;0
� ðqD; qDÞ. Then by possibly shrinking Wf0 , we can

assume that J maps Wf0 VCmþr;a;0
� ðqD; qDÞ to V

f
ð�1Þ
0

. Since Y½ f ; J½ f �� ¼ 0, for

all f A Wf0 VCmþr;a;0
� ðqD; qDÞ, we conclude that (2.12) holds. The validity of

the formula (2.13) for the first di¤erential follows from formula (2.10) and by

the Implicit Function Theorem. r

If f A C1
� ðqD;CÞ, and if f is a function of L ¼ fðqDÞ to C, then we denote

by
Ð
f
f ðsÞds the line integral of the function f computed with respect to

the parametrization y 7! fðeiyÞ, with y A ½0; 2p�, of fðqDÞ. Let f A AqD. We

denote by ind½f� the index of the curve y 7! fðeiyÞ, y A ½0; 2p� with respect to

any of the points of I ½f�. Thus ind½f�1 1
2pi

Ð
f

dx

x�z
, for all z A I ½f�. The map

ind½�� is obviously constantly equal to 1 or to �1 on the open connected

components of AqD in C1
� ðqD;CÞ. We set Aþ

qD1ff AAqD : ind½f�> 0g. The

following Theorem collects known facts related to singular integrals with

Cauchy kernels and to Cauchy type integrals.

Theorem 2.14. Let a A �0; 1½, m A N, f A C 1;a
� ðqD;CÞVAþ

qD, L ¼ fðqDÞ.
Let I be the identity operator in C1;a

� ðL;CÞ. Then the following statements hold.

( i ) For all f A Cm;a
� ðL;CÞ, the singular integral

Sf½ f �ðtÞ1
1

pi

ð
f

f ðsÞ
s� t

ds; Et A L; ð2:15Þ
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exists in the sense of the principal value, and Sf½ f �ð�Þ A Cm;a
� ðL;CÞ. The

operator Sf defined by (2.15) is linear and continuous from Cm;a
� ðL;CÞ to

itself. If f coincides with the identity map idqD, then we set S1Sf.

( ii ) For all f A Cm;a
� ðL;CÞ, the function �f½ f � of CnfLg to C defined by

�f½ f �ðzÞ1
1

2pi

ð
f

f ðsÞ
s� z

ds; Ez A CnL;

is holomorphic. The function �f½ f �jI ½f� admits a continuous extension to

cl I ½f�, which we denote by �þ
f ½ f �, and the function �f½ f �jE½f� admits a

continuous extension to cl E½f�, which we denote by ��
f ½ f �. Then we have

�þ
f ½ f � A Cm;aðcl I ½f�;CÞVHðI ½f�Þ, ��

f ½ f � A C 0ðcl E½f�;CÞVCm;a
� ðL;CÞV

HðE½f�Þ, and the Plemelj formulas �G
f ½ f �ðtÞ ¼G1

2
f ðtÞ þ 1

2
Sf½ f �ðtÞ for all

t A L hold. Furthermore, �þ
f ½�� defines a linear and continuous operator of

Cm;a
� ðL;CÞ to Cm;aðcl I ½f�;CÞ. If f coincides with the identity map idqD,

then we set �1�f.

(iii) The function f A Cm;a
� ðL;CÞ satisfies equation ðI� SfÞ½ f � ¼ 0, if and

only if there exists a function F A Cm;aðcl I ½f�;CÞVHðI ½f�Þ such that

F ðtÞ ¼ f ðtÞ, for all t A L. The function F, if it exists, is unique.

(iv) The function f A Cm;a
� ðL;CÞ satisfies equation ðIþ SfÞ½ f � ¼ 0, if and only

if there exists a function F A C 0ðcl E½f�;CÞVCm;a
� ðL;CÞVHðE½f�Þ such

that limz!y F ðzÞ ¼ 0, and FðtÞ ¼ f ðtÞ, for all t A L. The function F, if it

exists, is unique.

( v ) If f A C1;a
� ðL;CÞ, then ðSf½ f �Þ0 ¼ Sf½ f 0�.

For case m ¼ 0 of statements (i) and (ii), we refer to Hackbusch [8, Thm.

7.2.5]. Statement (v) follows by Gakhov [6, p. 30]. Case m > 0 of statements

(i) and (ii) follows by case m ¼ 0 and by statement (v). Statements (iii) and

(iv) follow by Gakhov [6, p. 27] together with statement (ii).

3. Di¤erentiability properties of the conformal welding operator

As we have said in the introduction, the conformal welding map is a

composite function of Riemann maps. Thus we introduce the following

Theorem, which summarizes some well-known properties of Riemann maps.

For a proof we refer to Ahlfors [1, Ch. 6, § 1] together with Pommerenke

[26, Thms. 2.6, 3.5, 3.6].

Theorem 3.1. Let m A Nnf0g, a A �0; 1½ . Let z A Cm;a
� ðqD;CÞVAqD.

Then the following statements hold.

( i ) There exists a unique homeomorphism g½z� A C1ðCnD;CÞVHðCncl DÞ
of CnD onto cl E½z�, such that g½z�ðyÞ1 limz!y g½z�ðzÞ ¼y, g½z� 0ðyÞ1
limz!y g½z� 0ðzÞ A �0;þy½ . Furthermore g½z�jqD A Cm;a

� ðqD;CÞVAþ
qD.
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( ii ) Let a1; a2; a3 be three distinct points of qD. Let z be orientation preserving.

There exists a unique homeomorphism f ½z� A Cm;aðcl D;CÞVHðDÞ of cl D

onto cl I ½z� such that f ½z�ðajÞ ¼ zðajÞ, for all j ¼ 1; 2; 3. Furthermore,

f ½z�jqD A Aþ
qD.

(iii) For all b A I ½z�, there exists a unique homeomorphism ~ff ½z; b� of cl D onto

cl I ½z� such that ~ff ½z; b� A Cm;aðcl D;CÞVHðDÞ and such that ~ff ½z; b�ð0Þ ¼ b,
~ff ½z; b� 0ð0Þ A �0;þy½ . For short, we set ~ff ½z� ¼ ~ff ½z; 0� if b ¼ 0.

We note that the map f ½z� of Theorem 3.1 (ii) depends also on a1; a2; a3.

However, throughout the paper, we will assume the three points a1; a2; a3 to be

fixed. Thus we have chosen not to display the dependence on a1; a2; a3 in the

notation for f ½z�. By Lemma 2.3 (iv), (v), and by Theorem 3.1, the function

f ½g½z�jqD�
ð�1Þ � g½z�jqD belongs to Cm;a

� ðqD; qDÞVAþ
qD, for all z A Cm;a

� ðqD;CÞV
AqD, with m A Nnf0g, a A �0; 1½. Then we can introduce the following.

Definition 3.2. Let m A Nnf0g, a A �0; 1½ . Let a1; a2; a3 be three distinct

points of qD. If z A Cm;a
� ðqD;CÞVAqD, then we define as conformal welding

map associated to z (and to the triple ða1; a2; a3Þ), the map

w½z�1 f ½g½z�jqD�
ð�1Þ � g½z�jqD: ð3:3Þ

We define as conformal welding operator, the operator w½�� of Cm;a
� ðqD;CÞVAqD

to Cm;a
� ðqD; qDÞVAþ

qD, which takes z to w½z�.

Clearly, one can define the conformal welding map by normalizing f ½z�
and g½z� in a di¤erent way, and the corresponding w½z� would di¤er from the

w½z� defined above by a suitable composition with Möbius transformations.

Now we introduce the following Theorem, whose first statement has been

proved in Lanza and Rogosin [20, Thm. 5.4]. Both statements can be con-

sidered as a variant of [17, Thm. 3.10, Thm. 4.7].

Theorem 3.4. Let m A Nnf0g, a A �0; 1½ . Then the following statements

hold.

( i ) The map ðz; bÞ 7! ~ff ½z; b�ð�1Þ � z is real analytic from

Em;a 1 fðz; bÞ A ðCm;a
� ðqD;CÞVAqDÞ � C : b A I ½z�g

to Cm;a
� ðqD;CÞ.

(ii) Let r A N. The map ðz; bÞ 7! ~ff ½z; b� of Emþr;a V ðCmþr;a;0
� ðqD;CÞ � CÞ to

Cm;a;0
� ðqD;CÞ is of class C r.

Proof. Statement (i) is contained in Lanza and Rogosin [20, Thm. 5.4].

By Theorem 3.1, we deduce that ~ff ½z; b� A Cy
� ðqD;CÞ if z A Cy

� ðqD;CÞVAqD,

b A I ½z�. Then by statement (i), we have ~ff ½z; b�ð�1Þ � z A Cm;a;0
� ðqD;CÞ if z A

Cm;a;0
� ðqD;CÞVAqD, b A I ½z�. Then statement (ii) follows by statement (i), and

by Theorems 2.9, 2.11. r
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We now turn to consider the dependence of f ½z�ð�1Þ � z upon z. Since f ½z� has
been normalized in a di¤erent way from ~ff ½z; b�, we need the following Lemma

in order to exploit the previous Theorem.

Lemma 3.5. Let a1; a2; a3 be three distinct points of qD. Let

A1 fðz; p1; p2; p3Þ A C4 : p1; p2; p3 are distinct;

ðz� p3Þðp1 � p2Þða1 � a3Þ � ðz� p2Þðp1 � p3Þða1 � a2Þ0 0g:

Let Q be the rational function of A to C defined by

Qðz; p1; p2; p3Þ1
a2ðz� p3Þðp1 � p2Þða1 � a3Þ � a3ðz� p2Þðp1 � p3Þða1 � a2Þ
ðz� p3Þðp1 � p2Þða1 � a3Þ � ðz� p2Þðp1 � p3Þða1 � a2Þ

;

for all ðz; p1; p2; p3Þ A A. If p1; p2; p3 are three distinct points of qD, and if

the triple ðp1; p2; p3Þ induces on qD the same orientation of the triple ða1; a2; a3Þ,
then ðz; p1; p2; p3Þ A A for all z A cl D, and Qð� ; p1; p2; p3Þ is the unique homeo-

morphism of cl D onto itself which is holomorphic in D and which maps pj to aj,

for j ¼ 1; 2; 3.

Proof. By elementary Conformal Mapping Theory (cf. e.g., Ahlfors

[1, p. 79]), the function Qð� ; p1; p2; p3Þ is the only linear fractional transfor-

mation which maps pj to aj. Since p1; p2; p3 are three distinct points of qD,

the function Qð� ; p1; p2; p3Þ is well-known to map qD onto itself. If the

triple ðp1; p2; p3Þ induces on qD the same orientation of ða1; a2; a3Þ, then

Qð� ; p1; p2; p3Þ is well-known to be a bijection of cl D onto itself. The

uniqueness follows by the Riemann Mapping Theorem. r

We are now ready to prove the following.

Theorem 3.6. Let m A Nnf0g, a A �0; 1½ . Let a1; a2; a3 be three distinct

points of qD. Then the nonlinear operator z 7! f ½z�ð�1Þ � z is real analytic from

Cm;a
� ðqD;CÞVAþ

qD to Cm;a
� ðqD; qDÞVAþ

qD, and maps Cm;a;0
� ðqD;CÞVAþ

qD to

Cm;a;0
� ðqD; qDÞVAþ

qD.

Proof. Let z0 A Cm;a
� ðqD;CÞVAþ

qD, z0 A I ½z0�. Let W be an open

neighborhood of z0 in Cm;a
� ðqD;CÞVAþ

qD such that z0 A I ½z�, for all z A W.

By the uniqueness inferred by the Riemann Mapping Theorem, we have

f ½z� z0� ¼ f ½z� � z0. Thus there is no loss of generality in assuming that

0 ¼ z0 A I ½z�, for all z A W. By Lemma 3.5, and by the uniqueness inferred by

the Riemann Mapping Theorem, we have

f ½z�ð�1Þ � zð�Þ ¼ Qð ~ff ½z�ð�1Þ � zð�Þ; ~ff ½z�ð�1Þ � zða1Þ; ~ff ½z�ð�1Þ � zða2Þ; ~ff ½z�ð�1Þ � zða3ÞÞ;
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where Q is as in Lemma 3.5. Thus the analyticity of f ½z�ð�1Þ � zð�Þ on z

follows by Theorem 3.4 (i), and by Lemmas 2.3 (ii), (iii) and 3.5. By Theorem

3.1, we have f ½z�ð�1Þ � z A Cy
� ðqD; qDÞ if z A Cy

� ðqD;CÞVAþ
qD. Then the last

statement follows by the continuity of z 7! f ½z�ð�1Þ � z, and by the definition of

the spaces Cm;a;0
� . r

We now show that on a suitable subset Tm;a of Cm;a
� ðqD;CÞVAþ

qD we have

g½z�jqD ¼ z, for all z A Tm;a. Thus the conformal welding operator coincides

with the nonlinear operator of the previous Theorem on Tm;a.

Proposition 3.7. Let m A Nnf0g, a A �0; 1½ . Let

Dm;a 1

�
z A Cm;a

� ðqD;CÞ : bZ A HðCncl DÞVC 0ðCnD;CÞ

such that z ¼ ZjqD; lim
z!y

Z 0ðzÞ1Z 0ðyÞ A R

�
: ð3:8Þ

Then the following statements hold.

( i ) If z A Dm;a, then the map Z of (3.8) is unique. Furthermore, Z 0ðyÞ ¼
1
2pi

Ð
qD

zðsÞ
s2 ds, and limz!y ZðzÞ � z

2pi

Ð
qD

zðsÞ
s2 ds� 1

2pi

Ð
qD

zðsÞ
s

ds
n o

¼ 0.

( ii ) Dm;a is a real Banach subspace of Cm;a
� ðqD;CÞ.

(iii) Let Z½z� be the unique map of statement (i) corresponding to z A Dm;a.

Then the set

Tm;a 1 fz A Dm;a VAþ
qD : Z½z� 0ðyÞ > 0g

is open in Dm;a.

(iv) If z A Tm;a, then limz!y Z½z�ðzÞ ¼ y, and Z½z� ¼ g½z�.

Proof. We first prove statement (i). If Z A HðCncl DÞV
C 0ðCnD;CÞ, then standard properties of holomorphic functions imply

that condition limz!y Z 0ðzÞ1Z 0ðyÞ A C is equivalent to the existence of

a; b A C and K A HðCncl DÞVC 0ðCnD;CÞ such that limz!y KðzÞ ¼ 0 and

ZðzÞ ¼ azþ bþ KðzÞ. Moreover, it is easily checked that if such condi-

tion holds, then Z 0ðyÞ ¼ a ¼ 1
2pi

Ð
qD

ZðsÞ
s2 ds, b ¼ 1

2pi

Ð
qD

ZðsÞ
s

ds. Then by

Theorem 2.14 (iv), the membership of z in Dm;a is equivalent to condi-

tion ðIþ SÞ zðzÞ � z
2pi

Ð
qD

zðsÞ
s2 ds� 1

2pi

Ð
qD

zðsÞ
s

ds
h i

¼ 0 together with condition

1
2pi

Ð
qD

zðsÞ
s2 ds A R. Thus the uniqueness of Z follows. The completeness of

Dm;a follows by the same argument, by Theorem 2.14 (i), and by the con-

tinuous dependence of 1
2pi

Ð
qD

zðsÞ
s

ds and of 1
2pi

Ð
qD

zðsÞ
s2 ds on z A Cm;a

� ðqD;CÞ.
Statement (iii) follows by Lemma 2.2 (ii) and by the continuous dependence

of Z 0ðyÞ ¼ 1
2pi

Ð
qD

zðsÞ
s2 ds on z A Dm;a. We now prove statement (iv). By (i),
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we have limz!y Z½z�ðzÞ ¼ y. Now let o0 A I ½z�. Since Z½z� 0ðyÞ0 0, then

the function Z½z� is injective in a neighborhood of y. Since we also have

z A Aþ
qD and o0 A I ½z�, then a standard argument based on the Argument

Principle shows that Z½z�ð�Þ � o0 does not vanish. Thus the function

½Z½z�ð1=ð�ÞÞ � o0��1 extends to a holomorphic map in D. Since z A Aþ
qD, then

the curve ½zð1=ð�ÞÞ � o0��1 is one to one. Then again by the Argument

Principle, ½Z½z�ð1=ð�ÞÞ � o0��1 is one to one in cl D, and a simple topological

argument shows that ½Z½z�ð1=ð�ÞÞ � o0��1 maps D onto I ½½zð1=ð�ÞÞ � o0��1�.
Accordingly, Z½z� is one to one and Z½z�ðCncl DÞ ¼ Cncl I ½z�. Since

Z½z� 0ðyÞ > 0, Theorem 3.1 (i) implies that Z½z� ¼ g½z�. r

As an immediate Corollary of Theorem 3.6 and of Proposition 3.7, we

obtain the following.

Theorem 3.9. Let m A Nnf0g, a A �0; 1½ . Then the conformal welding

operator is real analytic from the set Tm;a to Cm;a
� ðqD; qDÞVAþ

qD.

We now turn to the di¤erentiability properties of g½��, by means of the

following.

Theorem 3.10. Let m A Nnf0g, a A �0; 1½, r A N. Then the map which

takes z to g½z�jqD is of class C r in the real sense from Cmþr;a;0
� ðqD;CÞVAqD to

Cm;a;0
� ðqD;CÞVAþ

qD.

Proof. Let z0 A Cmþr;a;0
� ðqD;CÞVAqD, z0 A I ½z0�. Let W be an open

neighborhood of z0 in Cmþr;a;0
� ðqD;CÞVAqD such that z0 A I ½z�, for all

z A W. By the uniqueness inferred by the Riemann Mapping Theorem, we

have g½z� z0� ¼ g½z� � z0. Thus there is no loss of generality in assuming

that z0 ¼ 0, for all z A W. Let ~ff ½�� be as in Theorem 3.1. Clearly, g½z�ðzÞ ¼
½ ~ff ½1=z�ð1=zÞ��1, for all z A Cncl D, and for all z A W. In particular, Theorem

3.1 implies that g½z�jqD A Cy
� ðqD;CÞ if z A Cy

� ðqD;CÞVAqD. Thus we can

conclude the proof by Lemma 2.3 (iii), by Theorem 2.9, and by Theorem

3.4 (ii). r

As a consequence of Theorem 3.6, and of Theorem 3.10, we obtain the

following.

Theorem 3.11. Let m A Nnf0g, a A �0; 1½, r A N. Then the conformal

welding operator maps Cm;a
� ðqD;CÞVAqD to Cm;a

� ðqD; qDÞVAþ
qD and is of

class C r in the real sense from Cmþr;a;0
� ðqD;CÞVAqD to Cm;a;0

� ðqD; qDÞVAþ
qD.

We note that it can be proved that Theorem 3.11 is optimal in the frame

of Schauder spaces (cf. [19, Thm. 2.14].)
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4. Preliminaries on the conformal sewing problem, and definition of the

generalized conformal sewing operator.

The problem of finding a suitable right inverse for the noninjective

operator w½�� is called the conformal sewing problem and is a particular

Haseman problem. In this section, by following the classical theory of the

Haseman problem we recall a known existence and uniqueness result for the

conformal sewing problem. Moreover, we prove a slightly more general

regularity result for the solution in order to perform our perturbation analysis

of the conformal sewing problem. To introduce a suitable right inverse of

w½��, we first look at the injection which is naturally associated to the con-

formal welding operator.

Proposition 4.1. Let m A Nnf0g, a A �0; 1½ . Let ‘@’ be the equiva-

lence relation in Cm;a
� ðqD;CÞVAqD which is naturally associated to the con-

formal welding operator, i.e., z1 @ z2 if and only if w½z1� ¼ w½z2�, with z1; z2 A
Cm;a

� ðqD;CÞVAqD. If z1 A Cm;a
� ðqD;CÞVAqD, then the equivalence class ½z1�@

of z1 with respect to the relation@ contains exactly one element ~zz1 A Tm;a such

that 1
2pi

Ð
qD

~zz1ðsÞ
s

ds ¼ 0, 1
2pi

Ð
qD

~zz1ðsÞ
s2 ds ¼ 1. Furthermore,

~zz1 ¼ lim
z!y

g½z1� 0ðzÞ
n o�1

g½z1�jqD � 1

2pi

ð
qD

g½z1�ðsÞ
s

ds

� �
: ð4:2Þ

The map z 7! ½z�@ is a bijection of the set

~TTm;a 1 z A Tm;a :
1

2pi

ð
qD

zðsÞ
s

ds ¼ 0;
1

2pi

ð
qD

zðsÞ
s2

ds ¼ 1

� �
onto the quotient set Cm;a

� ðqD;CÞVAqD=@. In particular, the conformal weld-

ing operator is injective from the set ~TTm;a to Cm;a
� ðqD; qDÞVAþ

qD.

Proof. Let z1 A Cm;a
� ðqD;CÞVAqD. By definition of conformal weld-

ing map, we have w½z1� ¼ f ½g½z1�jqD�
ð�1Þ � g½z1�jqD. Also, if we set z#1 1 g½z1�jqD,

we have g½z#1 �jqD ¼ z#1 and z#1 A Tm;a. Then w½z1� ¼ w½z#1 �. We now note

that if a > 0, b A C, then az#1 þ b A Tm;a, g½az#1 þ b� ¼ ag½z#1 � þ b, f ½az#1 þ b� ¼
af ½z#1 � þ b, and that accordingly w½z1� ¼ w½az#1 þ b�. In particular, the ele-

ment ~zz1 defined by the right-hand side of (4.2) belongs to Tm;a and satis-

fies w½~zz1� ¼ w½z1�. Since g½z1�jqD ¼ z#1 belongs to Dm;a, Proposition 3.7 (i)

implies that limz!y g½z1� 0ðzÞ ¼ 1
2pi

Ð
qD

g½z1�ðsÞ
s2 ds. Then one can easily check that

~zz1 A ~TTm;a. Conversely, if h A ~TTm;a, and if w½~zz1� ¼ w½h�, then we have g½h�jqD ¼
h, g½~zz1�jqD ¼ ~zz1, f ½~zz1�ð�1Þ � ~zz1 ¼ f ½h�ð�1Þ � h, and thus ~zz1 � hð�1Þ ¼ f ½~zz1� � f ½h�ð�1Þ

on qD. Now the function K of C to itself defined by KðzÞ1 g½~zz1� � g½h�ð�1ÞðzÞ
if jzjb 1, KðzÞ1 f ½~zz1� � f ½h�ð�1ÞðzÞ if jzj < 1, is a homeomorphism of C to
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itself, and is holomorphic on CnqD. Then it is well-known that K must be

holomorphic on all C. Now the only entire homeomorphisms of C are the

complex a‰ne maps. Thus there exist a A C, b A C such that KðzÞ ¼ azþ b,

for all z A C. In particular, g½~zz1� ¼ ag½h� þ b, and thus we obtain ~zz1 ¼ ahþ b.

Then by exploiting the assumption that both ~zz1 and h belong to ~TTm;a, one can

easily deduce that a ¼ 1, b ¼ 0. r

The previous Proposition says, in particular, that the natural injection of the

quotient set Cm;a
� ðqD;CÞVAqD=@ to Cm;a

� ðqD;CÞVAþ
qD associated to the con-

formal welding operator can be identified with the restriction of w½�� to ~TTm;a.

Thus we now turn to define a right inverse of the restriction of w to ~TTm;a.

By Proposition 3.7, we easily deduce the following.

Lemma 4.3. Let m A Nnf0g, a A �0; 1½ . Then

~TTm;a ¼
�
z A Cm;a

� ðqD;CÞVAþ
qD : bZ A HðCncl DÞVC 0ðCnD;CÞ;

such that z ¼ ZjqD; lim
z!y

ZðzÞ � z ¼ 0

�
: ð4:4Þ

Also, if z A ~TTm;a and if Z is as in (4.4), then Z ¼ g½z�.

Proof. If z and Z are as in the right hand side of (4.4), then Zð1=vÞ�1=v

has a removable singularity at v ¼ 0 and limiting value 0 at 0. Then by the

Cauchy formula, we obtain 1
2pi

Ð
qD

zðsÞ
s

ds ¼ 0. Since ½Zð1=vÞ � 1=v� 0 must have

finite limit at v ¼ 0, we deduce that limv!0 Z
0ð1=vÞ ¼ 1. Then by Prop-

osition 3.7, we have z A ~TTm;a. Conversely, by Proposition 3.7 we easily deduce

that if z A ~TTm;a, then z belongs to the set in the right hand side of (4.4) and

Z ¼ g½z�. r

As a next step we derive by classical means a system of two integral equations

involving z, w½z� (cf. e.g., Lu [22].)

Theorem 4.5. Let a A �0; 1½ . Let f A C 1;a
� ðqD;CÞVAþ

qD. Let F A
C 0;aðcl I ½f�;CÞVHðI ½f�Þ, G A C 0ðCnD;CÞVHðCncl DÞVC 0;a

� ðqD;CÞ such that

limz!y GðzÞ � z ¼ 0, and F � f ¼ GjqD. Then z1GjqD satisfies the following

two equations

zðtÞ þ 1

2pi

ð
qD

zðsÞ
s� t

ds� 1

2pi

ð
qD

zðsÞf 0ðsÞ
fðsÞ � fðtÞ ds ¼ t; Et A qD; ð4:6Þ

1

2pi

ð
qD

zðsÞ
s� t

dsþ 1

2pi

ð
qD

zðsÞf 0ðsÞ
fðsÞ � fðtÞ ds ¼ t; Et A qD: ð4:7Þ

In particular, if m A Nnf0g, and z A ~TTm;a, then the pair ðf1w½z�; zÞ satisfies

equations (4.6) and (4.7).
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Proof. By Theorem 2.14 (iii) and (iv), we have fðI�SfÞ½z � fð�1Þ�g � f¼ 0

and ðIþ SÞ½z� idqD� ¼ 0. Then by adding and subtracting such two equa-

tions, we obtain (4.6) and (4.7), respectively. r

Next we show, by exploiting known results, that for all f A Cm;a
� ðqD;CÞVAþ

qD,

the system of equations (4.6) and (4.7) has a unique solution. We start by

analyzing equation (4.6). To do so, we need some information on the integral

operator associated to (4.6). Thus we introduce the following variant of a

result of Kantorovich and Akilov [12, Thm. 4 p. 363, Rmk. 2 p. 365] (see also

Gorenflo and Vessella [7, Thm. 4.1.7, p. 69].)

Lemma 4.8. Let a A �0; 1½ . Let kð� ; �Þ be a complex valued continuous

function on the set B1 fðt; xÞ A ðqDÞ2 : t0 xg. Let

M1 1 sup
ðt;xÞ AB

jkðt; xÞj jx� tj1�a < þy: ð4:9Þ

Then the following statements hold.

( i ) The integral

U½g�ðtÞ1
ð
qD

kðt; xÞgðxÞdx

is convergent for all t A qD and for all g A LyðqD;CÞ.
( ii ) Let X be normed space continuously imbedded in LyðqD;CÞ. Let

r > 0. If

M2 1 sup

( ð
qDnLðt1; t2Þ

ðkðt2; xÞ � kðt1; xÞÞgðxÞdx
�����

����� kgk�1
X jt2 � t1j�a

t1; t2 A qD; 0 < jt2 � t1ja r; g A Xnf0g
)

< þy; ð4:10Þ

where Lðt1; t2Þ1 fx A qD : jx� t1j < 2jt2 � t1jg. Then U defines a linear

and continuous operator of X to C 0;a
� ðqD;CÞ.

(iii) If qtkð� ; �Þ exists and is continuous, and if

M3 1 sup
ðt;xÞ AB

jqtkðt; xÞj jx� tj2�a < þy; ð4:11Þ

then U defines a linear and continuous operator of LyðqD;CÞ to

C 0;a
� ðqD;CÞ.

Proof. Let jdxj denote the usual arc-length measure on qD. It is

well-known and easy to verify that ca 1 supt A qD
Ð
qD

jdxj
jt�xj1�a < y. Then by

assumption (4.9), we have

jU½g�ðtÞjaM1cakgkLyðqD;CÞ; Eg A LyðqD;CÞ;
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and for all t A qD, and statement (i) holds. We now prove statement (ii). We

can clearly assume ra 2�1. Let t1; t2 be two points of qD. If jt1 � t2jb r,

then we have

jU½g�ðt2Þ �U½g�ðt1Þj jt2 � t1j�a
a 2r�a sup

t A qD
jU½g�ðtÞja 2r�acaM1kgkLyðqD;CÞ:

ð4:12Þ

We now assume that 0 < jt1 � t2ja r. Then we have

jU½g�ðt2Þ �U½g�ðt1ÞjaM2kgkXjt1 � t2ja

þ
ð
Lðt1; t2Þ

jkðt2; xÞj jdxj þ
ð
Lðt1; t2Þ

jkðt1; xÞj jdxj
( )

kgkLyðqD;CÞ: ð4:13Þ

Now it can be readily verified that there exists c 0a > 0 independent of t1; t2
such thatð

Lðt1; t2Þ

jdxj
jt2 � xj1�a

a c 0ajt2 � t1ja;
ð
Lðt1; t2Þ

jdxj
jt1 � xj1�a

a c 0ajt2 � t1ja: ð4:14Þ

By assumption (4.9), by inequalities (4.12)–(4.14), we conclude that there exists

c 00 > 0 depending only on a, ca, c 0a, r, M1, M2, and on the norm of the

imbedding of X into LyðqD;CÞ such that

jU½g�ðt2Þ �U½g�ðt1Þj jt2 � t1j�a
a c 00kgkX;

for all g A X, for all t1; t2 A qD. Then statement (ii) follows. We now prove

statement (iii). Let 0 < r < 2�1. Let 0 < jt1 � t2ja r. By parametrizing the

arc joining t1 to t2 and contained in Lðt1; t2Þ by the map y 7! eiyt1, and by

applying the Mean Value Inequality, we obtain that

jkðt2; xÞ � kðt1; xÞja
p

2
jt2 � t1j sup

jh�t1jajt2�t1j
h A qD

jqtkðh; xÞj

a
p

2
jt2 � t1j sup

jh�t1jajt2�t1j
h A qD

M3

jh� xj2�a

 !
;

for all x A qDnLðt1; t2Þ. Now, if x A qDnLðt1; t2Þ, and if h A qD satisfies

inequality jh� t1ja jt2 � t1j, then we have jh� xjb jt1 � xj � jh� t1jb
jt1 � xj � jt2 � t1jb 2�1jt1 � xj. Furthermore, it is well-known and easy to

verify that there exists c 000a > 0 independent of t1; t2 such thatð
qDnLðt1; t2Þ

jt1 � xja�2jdxja c 000a jt2 � t1ja�1:
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Then the following inequality holdsð
qDnLðt1; t2Þ

jkðt2; xÞ � kðt1; xÞj jdxja c 000a p2
1�aM3jt2 � t1ja; ð4:15Þ

and thus the supremum in (4.10) is finite and the conclusion follows by state-

ment (ii) and by taking X ¼ LyðqD;CÞ. r

By the previous Lemma, and by arguing as in Lu [22, p. 418], we obtain the

following.

Proposition 4.16. Let a; b A �0; 1½ . Let f A C1;a
� ðqD;CÞVAqD. If g A

C 0;b
� ðqD;CÞ, then the map Uf½g�ð�Þ defined by

Uf½g�ðtÞ1
1

2pi

ð
qD

1

s� t
� f 0ðsÞ
fðsÞ � fðtÞ

� �
gðsÞds; Et A qD; ð4:17Þ

belongs to C 0;a
� ðqD;CÞ. The operator Uf½�� of C 0;b

� ðqD;CÞ to C 0;a
� ðqD;CÞ

defined by (4.17) is compact.

Proof. By arguing as in Lu [22, p. 418], we can show that there exists a

constant cf > 0 depending only on f such that

fðsÞ � fðtÞ
s� t

� f 0ðsÞ
���� ����a cfjs� tja; ð4:18Þ

for all t; s A qD with t0 s. Then we obtain that

1

s� t
� f 0ðsÞ
fðsÞ � fðtÞ

���� ���� ¼ 1

jfðsÞ � fðtÞj
fðsÞ � fðtÞ

s� t
� f 0ðsÞ

���� ����a cf

lqD½f�
js� tja�1:

Thus the kernel kðt; sÞ1 1
s�t

� f 0ðsÞ
fðsÞ�fðtÞ satisfies inequality (4.9). Similarly, one

can prove that k satisfies inequality (4.11). Thus Lemma 4.8 (iii) implies that

Uf maps LyðqD;CÞ to C 0;a
� ðqD;CÞ with continuity. Since C 0;b

� ðqD;CÞ is well-
known to be compactly imbedded in LyðqD;CÞ, the proof is complete. r

We now introduce the following two statements, which we exploit later. For

the sake of completeness we include a proof.

Proposition 4.19. Let a A �0; 1½ . Let f1; f2 A C1;a
� ðqD;CÞVAþ

qD, L1 1
f1ðqDÞ, L2 1 f2ðqDÞ. Let F A C 0ðcl I ½f1�;CÞVHðI ½f1�Þ, G A C 0ðCnI ½f2�;CÞV
HðCncl I ½f2�Þ. Let Fjf1ðqDÞ A C 0;a

� ðL1;CÞ, Gjf2ðqDÞ A C 0;a
� ðL2;CÞ, limz!y GðzÞ ¼

0, F ðf1ðtÞÞ ¼ Gðf2ðtÞÞ, for all t A qD. Then both F and G vanish identically.

Proof. Clearly, F nðf1ðtÞÞ ¼ Gnðf2ðtÞÞ, for all t A qD, n A Nnf0g. By

Theorem 2.14, we have fðIþ Sf2Þ½Gn
jf2ðqDÞ�g � f2 ¼ 0, fðI� Sf1Þ½Gn � f2 �

f
ð�1Þ
1 �g � f1 ¼ 0. Then by adding such two equalities, we obtain ðIþUf1 �

Uf2Þ½Gn � f2� ¼ 0. Since Uf1 �Uf2 is compact in C 0;a
� ðqD;CÞ, the kernel of
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IþUf1 �Uf2 is finite dimensional. Thus the family fGn � f2gn AN must be lin-

early dependent, and accordingly there exists a natural k such that G0 � f2; . . . ;
Gk � f2 are linearly dependent. If G is not identically zero, then the func-

tion G � f2 cannot be constant on qD. Thus there exist k þ 1 distinct points

x0; . . . ; xk in G � f2ðqDÞ. By the linear dependence of G0 � f2; . . . ;Gk � f2,
we deduce that the determinant of the Vandermonde matrix of the numbers

x0; . . . ; xk must vanish, contrary to the assumption that x0; . . . ; xk be distinct.

Thus G ¼ 0, and accordingly F is identically zero. r

Then we have the following Theorem (cf. Lu [22, pp. 419–420].)

Theorem 4.20. Let a A �0; 1½, f A C1;a
� ðqD;CÞVAþ

qD. Let I be the identity

operator of C 0;a
� ðqD;CÞ. Let Uf be the operator of C 0;a

� ðqD;CÞ to itself defined

in (4.17). Then IþUf is a complex linear homeomorphism of C 0;a
� ðqD;CÞ to

itself.

Proof. By Proposition 4.16, the operator IþUf is a compact pertur-

bation of the identity. Thus by the Fredholm Alternative, and by the

Open Mapping Theorem, it su‰ces to show that IþUf is injective. If g A
C 0;a

� ðqD;CÞ and ðIþUfÞ½g� ¼ 0, then we have 1
2
ðIþ SÞ½g� þ 1

2
fðI� SfÞ �

½g � fð�1Þ�g � f ¼ 0, and by Theorem 2.14 (ii) we have �þ½g� ¼ ��
f ½g � fð�1Þ� � f

on qD. Then by Proposition 4.19, it follows that �þ½g� ¼ 0, ��
f ½g � fð�1Þ� ¼ 0,

and accordingly, ðIþ SÞ½g� ¼ 0, fðI� SfÞ½g � fð�1Þ�g � f ¼ 0 by Plemelj’s for-

mula. By Theorem 2.14 (iii), (iv), there exist F A C 0ðcl I ½f�ÞVHðI ½f�Þ, G A
C 0ðCnD;CÞVHðCncl DÞ such that limz!y GðzÞ ¼ 0, g ¼ GjqD, g � fð�1Þ ¼
FjfðqDÞ, and thus G ¼ F � f on qD. Then by Lemma 2.3 (i), (iv), (v) and by

Proposition 4.19, we conclude that F and G are identically zero. Thus g ¼ 0.

r

The previous Theorem shows that equation Uf½g� þ g ¼ f can be uniquely

solved in C 0;a
� ðqD;CÞ if f is in C 0;a

� ðqD;CÞ. We now wish to prove that the

solution is of class Cm;a
� if f is of class Cm;a

� . To do so, we prove the fol-

lowing technical Lemma.

Lemma 4.21. Let m A Nnf0g, 0 < b < a < 1. Let f A Cm;a
� ðqD;CÞVAþ

qD.

Then the operator Uf defined in (4.17) maps Cm;b
� ðqD;CÞ to Cm;a

� ðqD;CÞ with

continuity.

Proof. By well-known properties of the Cauchy integral, and by Lemma

2.3 and Theorem 2.14, the operator Uf maps Cm;b
� ðqD;CÞ to itself with

continuity. Since Cm;b
� ðqD;CÞ is imbedded with continuity in Cm

� ðqD;CÞ, it

su‰ces to show that the operator g 7! ðUf½g�ÞðmÞð�Þ maps Cm;b
� ðqD;CÞ to

C 0;a
� ðqD;CÞ with continuity. To do so, we find convenient to introduce the

following notation. We set
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~SS½f; g�1Sf½g � fð�1Þ� � f ð4:22Þ

for all g A C 0;a
� ðqD;CÞ. As a first step, we show by induction that for

h ¼ 0; . . . ;m there exists a continuous operator Vf;h of Cm;b
� ðqD;CÞ to

Cm�h;a
� ðqD;CÞ such that

2
d h

dth
Uf½g� ¼ S½gðhÞ� � ~SS f;

gðhÞ

ðf 0Þh

" #
ðf 0Þh þ Vf;h½g�: ð4:23Þ

Case h ¼ 0 holds with Vf;h ¼ 0. We now assume that Vf;h exists for 0a h <

m, and prove the existence of Vf;hþ1. By Theorem 2.14 (v), we have

d

dt
f~SS½f; g�ðtÞg ¼ ~SS f;

g 0

f 0

	 

ðtÞf 0ðtÞ; Et A qD;

for all g A C 1;b
� ðqD;CÞ. Then if h ¼ 0, we can take Vf;hþ1 ¼ 0. If hb 1, then

mb 2 and by di¤erentiating formula (4.23), we can easily see that the same

formula (4.23) holds for hþ 1 provided that

Vf;hþ1½g�ð�Þ1 h~SS f;
gðhÞfð2Þ

ðf 0Þhþ2

" #
ð�Þðf 0ð�ÞÞhþ1 � h~SS f;

gðhÞ

ðf 0Þh

" #
ð�Þðf 0ð�ÞÞh�1fð2Þð�Þ

þ ðVf;h½g�Þ0ð�Þ:

By Lemma 2.3 (ii), (iii), by Theorem 2.14 (i), by the continuity of the

imbeddings of Cm�h;b
� ðqD;CÞ, of Cm�1;a

� ðqD;CÞ, and of Cm�2;a
� ðqD;CÞ in

Cm�h�1;a
� ðqD;CÞ, and by the continuity of Vf;h½�� from Cm;b

� ðqD;CÞ to

Cm�h;a
� ðqD;CÞ, we deduce that Vf;hþ1½�� is continuous from Cm;b

� ðqD;CÞ to the

space C
m�ðhþ1Þ;a
� ðqD;CÞ. Thus we conclude that formula (4.23) holds for all

h ¼ 0; . . . ;m, and that in particular it holds for h ¼ m. To conclude the proof

it su‰ces to show that the operator which takes g A Cm;b
� ðqD;CÞ to S½gðmÞ� �

~SS f;
gðmÞ

ðf 0Þm
h i

ðf 0Þm is linear and continuous from Cm;b
� ðqD;CÞ to C 0;a

� ðqD;CÞ.
Since Uf maps continuously C 0;b

� ðqD;CÞ to C 0;a
� ðqD;CÞ, then it su‰ces to

show that the integral operator which takes gð�Þ to
Ð
qD

kmð� ; xÞgðxÞdx, with

kmðt; xÞ1
f 0ðxÞ

fðxÞ � fðtÞ
ðf 0ðtÞÞm � ðf 0ðxÞÞm

ðf 0ðxÞÞm
� �

maps continuously C 0;b
� ðqD;CÞ to C 0;a

� ðqD;CÞ. We shall exploit Lemma 4.8.

A simple computation based on the Hölder continuity of f 0, on assumption

lqD½f� > 0, and on Lemma 2.2 (i), (iii) shows that kmð� ; �Þ satisfies (4.9). We

now consider case m ¼ 1 and we show that we can apply statement (ii) of

Lemma 4.8 with X ¼ C 0;b
� ðqD;CÞ. Clearly,
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ð
qDnLðt1; t2Þ

ðk1ðt2; xÞ � k1ðt1; xÞÞgðxÞdx
�����

�����
a

ð
qDnLðt1; t2Þ

ðf 0ðt2Þ � f 0ðxÞÞðfðt2Þ � fðt1ÞÞ
ðfðxÞ � fðt2ÞÞðfðxÞ � fðt1ÞÞ

gðxÞdx
�����

�����
þ jf 0ðt2Þ � f 0ðt1Þj

ð
qDnLðt1; t2Þ

gðxÞ
ðfðxÞ � fðt1ÞÞ

dx

�����
�����

a
kgkLyðqD;CÞ

lqD½f�2
ð
qDnLðt1; t2Þ

jf 0 : qDjajt2 � xjajfðt2Þ � fðt1Þj
jx� t2j jx� t1j

jdxj

þ jf 0 : qDjajt2 � t1ja
ð
qDnLðt1; t2Þ

gðxÞ
ðfðxÞ � fðt1ÞÞ

dx

�����
�����; ð4:24Þ

andð
qDnLðt1; t2Þ

gðxÞ
ðfðxÞ � fðt1ÞÞ

dx ¼
ð
qDnLðt1; t2Þ

gðxÞ
f 0ðxÞ �

gðt1Þ
f 0ðt1Þ

� �
f 0ðxÞ

ðfðxÞ � fðt1ÞÞ
dx

þ gðt1Þ
f 0ðt1Þ

ð
qDnLðt1; t2Þ

f 0ðxÞ
ðfðxÞ � fðt1ÞÞ

dx:

Now, it can be easily verified that 2
3
jx� t2ja jx� t1ja 2jx� t2j for all

t1; t2 A qD, and x A qDnLðt1; t2Þ and that
Ð
qDnLðt1; t2Þ

jt1�t2j1�a

jx�t1j2�a jdxj is bounded

uniformly in t1; t2 A qD. Then by the Lipschitz continuity of f (see Lemma

2.3 (i)), there exists c > 0 depending only on a and f such that the right hand

side of inequality (4.24) is less or equal to

c

(
kgkLyðqD;CÞ þ

ð
qDnLðt1; t2Þ

gðxÞ
f 0ðxÞ �

gðt1Þ
f 0ðt1Þ

� �
f 0ðxÞ

ðfðxÞ � fðt1ÞÞ
dx

�����
�����

þ gðt1Þ
f 0ðt1Þ

���� ���� ð
qDnLðt1; t2Þ

f 0ðxÞ
ðfðxÞ � fðt1ÞÞ

dx

�����
�����
)
jt2 � t1ja: ð4:25Þ

The membership of g in C 0;b
� ðqD;CÞ, of 1

f 0ð�Þ in C 0;a
� ðqD;CÞ, Lemma 2.2 (i),

Lemma 2.3 (i), (ii), and the finiteness of supt A qD
Ð
qD

jdxj
jx�tj1�b imply that there

exists c 0 > 0 depending only on a and f such that the first integral in

(4.25) is bounded by c 0kgk
C

0; b
� ðqD;CÞ uniformly in t1; t2 A qD. By Lemma

2.2 (iii) we have jgðt1Þ=f 0ðt1Þja lqD½f��1kgkLyðqD;CÞ. Thus it su‰ces to show

that Iðt1; t2Þ1
Ð
qDnLðt1; t2Þ

f 0ðxÞ
ðfðxÞ�fðt1ÞÞ dx is bounded for 0 < jt1 � t2j < 2�1. Let
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qDnLðt1; t2Þ ¼ feiy : ya a ya ybg with t1 ¼ eiy1 , y1 < ya < yb < y1 þ 2p,

a1 eiya , b1 eiyb . By a well-known computation, we have

expfIðt1; t2Þg ¼ fðbÞ � fðt1Þ
fðaÞ � fðt1Þ

: ð4:26Þ

Since f A C 1;a
� ðqD;CÞVAqD, a simple computation based on Lemma 2.2

(i), and on inequality (4.18) shows that there exists d A �0; 2�1½ such that
fðbÞ�fðt1Þ
fðaÞ�fðt1Þ

þ 1
��� ��� < 1

4
whenever 0 < jt1 � t2j < d. Since Ið� ; �Þ is continuous on

B1 fðt; xÞ A ðqDÞ2 : t0 xg, we have supfjIðt1; t2Þj : d < jt1 � t2ja 2�1g <

þy. Thus it su‰ces to show that supfjIðt1; t2Þj : 0 < jt1 � t2ja dg < þy.

Since the map I is continuous on Bd 1 fðt1; t2Þ A B : jt1 � t2ja dg and Bd has a

finite number of connected components, then the set IðBdÞ has at most a finite

number of connected components. Now the set A1 fw A C : jexpðwÞ þ 1j <
4�1g is a countable union of bounded disjoint connected sets. Since IðBdÞJA,

then the set IðBdÞ must be bounded. Then by Lemma 4.8 (ii), the proof of

case m ¼ 1 is complete. We now consider case mb 2. A simple computation

based on the Hölder continuity of f 0, on assumption lqD½f� > 0, and on Lemma

2.2 (i), (iii), shows that kmð� ; �Þ satisfies the assumptions of Lemma 4.8 (iii), and

thus the proof of case mb 2 is complete. r

By the previous statement, by the compactness of the imbedding of

Cm;a
� ðqD;CÞ to Cm;b

� ðqD;CÞ for 0 < b < a, by the injectivity of IþUf inferred

by Theorem 4.20, by the Fredholm Alternative, and by the Open Mapping

Theorem, we immediately deduce the following.

Theorem 4.27. Let m A Nnf0g, a A �0; 1½ . Let f A Cm;a
� ðqD;CÞVAþ

qD.

Then IþUf is a complex linear homeomorphism of Cm;a
� ðqD;CÞ to itself.

We now turn to the analysis of the system of equations (4.6)–(4.7), and we

prove the following.

Theorem 4.28. Let m A Nnf0g, a A �0; 1½ . Let a1; a2; a3 be three distinct

points of qD. Then the following statements hold.

( i ) If f A Cm;a
� ðqD;CÞVAþ

qD, then the system of equations (4.6) and (4.7)

admits a unique solution z A Cm;a
� ðqD;CÞ, which we denote by s½f� and

define as the generalized conformal sewing corresponding to f. The system

of equations (4.6) and (4.7) is equivalent to equation (4.6).

( ii ) If f A C1;a
� ðqD;CÞVAþ

qD, then there exist two uniquely determined

functions G A C 0ðCnD;CÞVHðCncl DÞVC 0;a
� ðqD;CÞ and F A

C 0;aðcl I ½f�;CÞVHðI ½f�Þ such that limz!y GðzÞ � z ¼ 0, and F � f ¼ GjqD.

Moreover, GjqD ¼ s½f�, and FjfðqDÞ ¼ s½f� � fð�1Þ. We denote such unique

functions F and G by F ½f� and G½f�, respectively.
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(iii) If f A Cm;a
� ðqD;CÞVAþ

qD, then the function s½f� belongs to ~TTm;a, and

G½f� ¼ g½s½f��, and F ½f� ¼ f ½s½f�� � ð f ½f�Þð�1Þ A Cm;aðcl I ½f�;CÞVHðI ½f�Þ.
Furthermore, s½ f ½f�ð�1Þ � f� ¼ s½f�.

(iv) If f A Cm;a
� ðqD; qDÞVAþ

qD, and if fðajÞ ¼ aj for j ¼ 1; 2; 3, then

f ½s½f�� ¼ F ½f�, and w½s½f�� ¼ f.

Proof. We first prove statement (i). By Theorem 4.27, equation (4.6)

admits a unique solution z A Cm;a
� ðqD;CÞ. We now show that such solution

satisfies also equation (4.7). We note that by Theorem 2.14 (ii), equation (4.6)

can be rewritten as

�þ½z� idqD�ðtÞ ¼ ��
f ½z � fð�1Þ� � fðtÞ; Et A qD:

Then by Theorem 2.14 (ii), and by Proposition 4.19, the functions �þ½z� idqD�
and ��

f ½z � fð�1Þ� vanish identically. In particular, we have

�þ½z� idqD�ðtÞ ¼ ���
f ½z � fð�1Þ� � fðtÞ; Et A qD: ð4:29Þ

By Theorem 2.14 (ii), equation (4.29) coincides with equation (4.7). We now

prove statement (ii). By adding and subtracting equation (4.6) and (4.7),

we obtain that ðIþ SÞ½z� idqD� ¼ 0 and that fðI� SfÞ½z � fð�1Þ�g � f ¼ 0 for

z1 s½f�. Thus by Theorem 2.14 (iii), (iv), F and G as in the statement exist.

The uniqueness of F and G and equality GjqD ¼ s½f� follow by Theorem 4.5

and by (i). We now prove statement (iii). By equality F ½f� � f ¼ G½f� ¼
s½f� on qD, we deduce that F ½f� � f ½f� � ð f ½f�ð�1Þ � fÞ ¼ G½f� on qD. Then by

statement (ii), we have G½ f ½f�ð�1Þ � f� ¼ G½f�, F ½ f ½f�ð�1Þ � f� ¼ F ½f� � f ½f�, and
thus s½f� ¼ s½ f ½f�ð�1Þ � f�. We are now ready to prove that s½f� A ~TTm;a. Since

s½f� ¼ s½ f ½f�ð�1Þ � f�, we can assume that fðqDÞ ¼ qD. By arguing as in Lu

[22, pp. 427, 428], we prove that F ½f� and G½f� are injective. Then by arguing

as in Gakhov [6, pp. 128, 129], it follows that F ½f� 0 and G½f� 0 do not vanish

up to the boundary. Then by Lemma 2.2, we have G½f�jqD ¼ s½f� A AqD.

Since s½f� ¼ F ½f� � f and F ½f� and f are orientation-preserving, we also have

s½f� A Aþ
qD. By Lemma 4.3 an by (ii), we conclude that s½f� A ~TTm;a and G½f� ¼

g½s½f��. To prove equality F ½f� � f ½f� ¼ f ½s½f��, it su‰ces to note that both

hand sides of such equality define homeomorphisms of cl D onto cl I ½s½f�� which
are holomorphic in D and coincide on a1; a2; a3. Finally, we note that under

the assumptions of statement (iv), f ½f� is the identity, and thus F ½f� ¼ f ½s½f��
and w½s½f�� ¼ f by statement (iii). r

We are now ready to introduce the following.

Definition 4.30. Let m A Nnf0g, a A �0; 1½ . We define the generalized

conformal sewing operator, to be the nonlinear operator of Cm;a
� ðqD;CÞVAþ

qD

to itself which takes f to s½f�. We define as conformal sewing operator, the

restriction of s½�� to Cm;a
� ðqD; qDÞVAþ

qD.
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We note that statement (iii) of Theorem 4.28 implies that the generalized

conformal sewing of f can be expressed as the conformal sewing of f ½f�ð�1Þ � f.
By Theorem 4.28 (iv), and by the definition of s½��, we have the following.

Theorem 4.31. Let m A Nnf0g, a A �0; 1½ . Let a1; a2; a3 be three distinct

points of qD. Then the conformal welding operator w is a bijection of ~TTm;a onto

the set Sm;a 1 ff A Cm;a
� ðqD; qDÞVAþ

qD : fðajÞ ¼ aj; j ¼ 1; 2; 3g. The inverse of

the operator wj ~TTm; a
is the restriction of the generalized conformal sewing operator

to Sm;a.

The advantage of having defined the generalized conformal sewing oper-

ator s is that its domain Cm;a
� ðqD;CÞVAþ

qD is open, contrary to the domain

Cm;a
� ðqD; qDÞVAþ

qD of the classical conformal sewing operator.

5. Di¤erentiability results for the generalized conformal sewing operator

In this section we analyze the regularity of the operator s½�� and of a

related operator, which we introduce below. We first consider s½�� by means of

the following.

Theorem 5.1. Let m A Nnf0g, a A �0; 1½ . Then the generalized conformal

sewing operator s is complex analytic from Cm;a
� ðqD;CÞVAþ

qD to ~TTm;a.

Proof. Let ~SS½� ; �� be the operator introduced in (4.22). Let G be the

nonlinear map of the set ðCm;a
� ðqD;CÞVAþ

qDÞ � Cm;a
� ðqD;CÞ to the space

Cm;a
� ðqD;CÞ defined by

G½f; g�1 gþUf½g� � idqD ¼ gþ 1

2
~SS½idqD; g� �

1

2
~SS½f; g� � idqD;

for all ðf; gÞ A ðCm;a
� ðqD;CÞVAþ

qDÞ � Cm;a
� ðqD;CÞ. By definition of the gen-

eralized conformal sewing operator s and by Theorem 4.28 (i), the graph of s

coincides with the set of zeros of G. By [18, Prop. 4.1], which can be con-

sidered as a Schauder space version of a known result of Coifman and Meyer

[3, § 4], the map ~SS½� ; ��, and thus the map G½� ; ��, is complex analytic. We now

deduce the complex analyticity of s by the Implicit Function Theorem (cf. e.g.,

Deimling [5, Thm. 15.3, p. 151].) To do so, we must show that the partial

di¤erential dgG½f; s½f�� of G at ðf; s½f�Þ is a complex linear homeomorphism of

Cm;a
� ðqD;CÞ to itself, for all f A Cm;a

� ðqD;CÞVAþ
qD. Since G is a‰ne in the

variable g, we have dgG½f; s½f��ðmÞ ¼ ðIþUfÞ½m�, for all m A Cm;a
� ðqD;CÞ. Then

by Theorem 4.27, dgG½f; s½f�� is a complex linear homeomorphism. r

By Theorem 4.28 (ii), the function F ½f�jqD can be written as s½f� � fð�1Þ. We

now turn to study the dependence of F ½f�jqD ¼ s½f� � fð�1Þ upon the shift f by

means of the following.
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Theorem 5.2. Let m A Nnf0g, a A �0; 1½ . The (nonlinear) operator t

defined by t½f�1 s½f� � fð�1Þ, for all f A Cm;a
� ðqD; qDÞVAþ

qD, maps Cm;a
� ðqD; qDÞ

VAþ
qD to Cm;a

� ðqD;CÞVAþ
qD, and is continuous from Cm;a;0

� ðqD; qDÞVAþ
qD to

Cm;a;0
� ðqD;CÞVAþ

qD. Let r A Nnf0g, f0 A Cmþr;a;0
� ðqD; qDÞVAþ

qD. Then there

exist an open neighborhood Uf0
of f0 in Cmþr;a;0

� ðqD;CÞVAþ
qD and an operator

~ttf0
of class C r in the real sense from Uf0

to Cm;a;0
� ðqD;CÞ such that ~ttf0

½f� ¼ t½f�,
for all f A Uf0

VCmþr;a;0
� ðqD; qDÞ.

Proof. By Theorem 5.1, s½�� is complex analytic from Cmþr;a
� ðqD;CÞV

Aþ
qD to itself. In particular, the function s½f� is of class Cy

� if f A Cy
� ðqD;CÞV

Aþ
qD. Thus s½�� is complex analytic from Cmþr;a;0

� ðqD;CÞVAþ
qD to itself. Then

we can conclude the proof by Theorem 2.9, by Theorem 2.11, and by the

definition of the operator t. r

We note that it can be actually shown that Theorem 5.2 is optimal in the frame

of Schauder spaces (cf. [19, Thm. 2.17].)
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