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ABSTRACT. As it is well-known, to a given plane simple closed curve { with non-
vanishing tangent vector, one can associate a conformal welding homeomorphism w[(]
of the unit circle to itself, obtained by composing the restriction to the unit circle of a
suitably normalized Riemann map of the domain exterior to { with the inverse of the
restriction to the unit circle of a suitably normalized Riemann map of the domain
interior to {. Now we think the functions ¢ and w[{] as points in a Schauder function
space on the unit circle, and we show that the correspondence w which takes { to w[(] is
real differentiable for suitable exponents of the Schauder spaces involved. Then we
show that w has a right inverse which is the restriction of a holomorphic nonlinear
operator.

1. Introduction

As it is well-known, given an element { of the set .o/;p of the complex-
valued differentiable injective functions, with nonvanishing first derivative,
defined on the boundary ¢D of the open unit disk D of the complex plane
C, the function { parametrizes a Jordan curve. To each (e .oZ;p, one can
associate a pair (G,F) of Riemann maps, with G a suitably normalized
holomorphic homeomorphism of the exterior C\cl D of D onto the exterior
E[{] of {, and with F a suitably normalized holomorphic homeomorphism
of D onto the interior I[{] of {. It is also well-known that G and F can
be extended with continuity to boundary homeomorphisms. Thus one can
consider the so-called conformal welding homeomorphism F(-1 o Gyp of dD,
which we denote by w[(]. Now let C"*(dD,C) be the Schauder space of
m-times continuously differentiable complex-valued functions on JD, whose
m-th order derivative is a-Ho6lder continuous, with « €]0,1[, m > 1. It is well-
known that if { e C*(dD,C) N .oZp, then w[{] € C*(0D,C)N .op. In this
paper we first prove some differentiability theorems for the nonlinear ‘con-
formal welding operator’ w[-]. We note that such theorems can be shown to
be optimal in the frame of Schauder spaces (cf. [19, Thm. 2.14].) Moreover,
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we observe that by restricting w[-] to the set of {’s which are boundary values of
Riemann maps defined on C\D, the operator w[-] becomes real analytic.

Next we turn to the problem of constructing a right inverse of w[-]. The
problem of constructing a suitably normalized pair of functions (G,F) as
above, such that F(-Vo Gip = ¢ by a given regular orientation preserving
homeomorphism ¢ of ¢D to itself, a so-called ‘shift’ of JD, is known as the
conformal sewing problem and is a particular type of boundary value problem
with shift for sectionally holomorphic functions. By exploiting a classical
method (cf. e.g., Lu [22]), one can show that to each shift ¢ € C*(oD,C)N
“/sp, one can associate a unique suitably normalized pair of functions (G, F) as
above. Then the nonlinear operator s, which takes ¢ to s[¢] = Gjop is a right
inverse of w, and will be called the ‘conformal sewing operator’. Next we
prove that s[¢] e C™%(¢D,C) if the shift ¢ e C"*(dD,C)N.o/p. Then we
analyze the differentiability properties of s. Since the domain of s, namely the
set of positively oriented ¢ € C*(dD, C) N .oZp such that ¢(dD) = JD is not
open in the Banach space C”*(0D,C), we construct an extension of s to the
open set of orientation preserving elements of C*(dD,C) N .«Zp, and we show
that such extension is complex-analytic. In other words, we show that the
boundary values of the Riemann map G of the domain exterior to the curve
s[#], depend complex-analytically on ¢. Then we consider the Riemann map
F which is related to G by the equality Fj;p = Go¢(_1) = s[¢) o¢(_l). We
deduce the differentiability properties of the dependence of the boundary values
of F upon ¢ by ‘ad hoc’ variants of the differentiability results on the inversion
and on the composition operator of [15]. We note that the differentiability
results for the dependence of F on ¢ can be shown to be sharp by means of
inverse theorems. In particular, one can show that F does not depend complex
analytically on ¢ (cf. [19, Thm. 2.17].)

The theory of boundary value problems with shift for sectionally holo-
morphic functions, also called Haseman problems, is well-known and started
with Haseman [9]. Kveselava [13] developped an existence and uniqueness
theory in case ¢ is of class C!'*. Later, other Haseman type problems have
been studied, also for more general shifts (cf. Litvinchuk [21], Monakhov
(23, pp. 357-367].) In the direction of the perturbation results however, the
authors are only aware of the continuity result for the conformal welding
operator of David [4], and of the continuity results for the conformal sewing
operator of Monakhov [23, p. 363], and of Huber and Kiihnau [11], in different
function space settings. We mention also the work of Nag [24], who has
considered a one-parameter family {¢,} of shifts depending real analytically
on a real parameter ¢, and who has provided an algorithm to compute the
coefficients of the formal expansion of the corresponding families of curves
s[¢,] and s[¢,] o¢,(_l), under the assumption that such expansions converge.
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We believe that our results could be employed in the perturbation analysis
of other well-posed Haseman problems. Indeed, the operator which maps a
shift to the corresponding solution of the Haseman problem can be expressed in
terms of the conformal sewing operator and of operators of known regularity
(cf. e.g., Gakhov [6, p. 129, §14].)

This paper is organized as follows. Section 2 is a section of preliminaries
and notation. Section 3 concerns the definition of the conformal welding map
and contains differentiability theorems for the conformal welding operator.
Section 4 is devoted to the definition of the conformal sewing operator and of
its extension. Section 5 contains a complex differentiability theorem for the
conformal sewing operator.

2. Technical preliminaries and notation

Let 2, % be normed spaces over the field K, with K=R or K=C. We
say that Z is continuously imbedded in % provided that 2" = % and that the
inclusion map is continuous. We say that a map T of a subset of 2 to % is
compact, provided that it maps bounded sets to sets with compact closure.
For standard definitions of Calculus in normed spaces, we refer to Prodi and
Ambrosetti [28] or to Berger [2]. Unless otherwise specified, we understand
that a finite product of normed spaces is endowed with the supremum of the
norms of the components. Let N be the set of nonnegative integers includ-
ing zero. Throughout the paper, n denotes an element of N\{0}. A com-
plex normed space can be viewed naturally as a real normed space. Accord-
ingly, we will say that a certain map between complex normed spaces is real
linear, real differentiable, or real analytic, to indicate that such map is linear,
differentiable or analytic between the corresponding underlying real spaces,
respectively. To emphasize that we are retaining the complex structure, we
will say that the map is complex linear, complex differentiable, or complex
analytic, respectively. The inverse function of a function f is denoted f(=1),
as opposed to the reciprocal of a complex valued function g, which is denoted
g~'. For all subsets B of R”, the closure of B is denoted cl B. We now define
the Schauder spaces on the closure of an open subset of R”. Let 2 be an open
subset of R", meN. We denote by C™"(Q,C) the space of m-times contin-
uously real-differentiable complex-valued functions on Q, and by C™(cl 2,C)
the subspace of those functions of C™(L,C) such that for all n = (3,...,1,) €
N", with |y|=n +---+#n,<m, the function D'f = % can be
extended with continuity to cl Q. If © is bounded, then C™(cl 2, C) endowed
with the norm defined by | flcn@e.c) = 22 <mSuPaelD"f| is a Banach
space. If Q is bounded and if «€]0,1], we denote by C"™*(cl 2,C) the
subspace of C™(cl 2,C) of those functions which have o-Hoélder contin-
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uous derivatives of order m. If fe C%*(clQ,C), then we set |f:Q|, =
sup{w:x,yecl .Q,x;éy}. The space C™%*(cl Q,C) is endowed with

|x

its usual norm || f|lcme=(10,c) = ZI’?\SW supy ol D] + Z\’?lzm |Df : Q|,, and it
is well-known to be a Banach space. If B < C, then C"%(cl Q,B) denotes
the set {f € C"™*(cl 2,C): f(cl Q) = B}. By H(Q) we understand the space
of holomorphic functions of Q to C. Finally, the space C"™*%(clQ,C) is
defined as the closure of C*(cl Q,C) in C™%cl Q,C). Then we have the
following.

LemMA 2.1. Let meN, ael0,1]. Let Q be a bounded open con-
nected subset of R" of class C™*'. Then C™*%(cl Q,C) coincides with the
closure in C"™%(cl Q,C) of the set of restrictions to cl Q of the polynomials with
complex coefficients in n real variables. Moreover, C™*°(cl Q,C) contains
C"™ Nl Q,C) and C™F(cl ,C), for all pela,l].

ProOOF. Since Q is of class C”*!, then all functions of C"*!(cl Q,C) are
restrictions of some element of C"*!(R",C) (cf. e.g., Troianiello [30, p. 13].)
Then by Weierstrass Theorem (cf. e.g., Rohlin and Fuchs [29, p. 185]), all
elements of C”*!(R",C) can be approximated in the C”*!(cl 2,C)-norm by
polynomials. Since cl Q is of class C”*!, then C"*!'(clQ,C) is continu-
ously imbedded in C™*(cl 2,C) (cf. e.g., [15, p. 460].) Then the first part of
the statement and the inclusion C”*!(cl Q,C) = C"™*%(cl Q,C) follow. Now
let feC™P(clQ,C). Since Q is of class C”*! then f admits an extension
of class C™# and with compact support in a ball containing cl 2 (cf. e.g.,
Troianiello [30, Thm. 1.3, p. 13].) By taking the convolution with a family of
mollifiers, such extension can be approximated by a sequence of C* functions
bounded in C”#(cl Q,C) and convergent in C"*(cl Q,C) (cf. e.g., Troianiello
[30, pp. 20, 21].) Then f e C™*%clQ,C). ]

We now define the Schauder spaces on plane Jordan curves, which are par-
ticular compact subsets of C with no isolated points. With somewhat more
generality, we define the Schauder spaces on a general compact subset K of
C with no isolated points. We say that a function f of K to C is complex
differentiable at zo € C if limg5-_., w exists finite. We denote such limit
by f’(zp). As usual the higher order derivatives, if they exist, are defined
inductively. Let meN. We denote by C”(K,C) the complex normed space
of the m-times continuously complex differentiable functions f of K to C
endowed with the norm ||flcrikc) = 2% supg|fU]. If x€]0,1], we denote
by C"™*K,C) the subspace of C"(K,C) of those functions having o-
Holder continuous m-th order derivative in K. If f e C**(K,C), then we set
|/ K|, = sup{% iz, €K,z # zz}. We endow C™*(K,C) with the

norm || fl¢me k. c) = I/ lenx,c) + | . K|,. If B<C, we set C"*K,B) =
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{feCm*K,C):f(K)< B}. We denote by C™*°(K,C) the closure of
Cr(K,C) in C™*(K,C). Then the following variant of [14, Cor. 4.24,
Prop. 4.29] holds (cf. [18, Lem. 2.5].)

LemMma 2.2. The following statements hold.

(i) Let $eCHaD,C). Then lplg] = inf{XE0 . y e op,x 2y} > 0 4f
and only if ¢ is injective and ¢'(&) # 0 for all & in D.

(ii) The function of C}(0D,C) to R which maps ¢ to lp|d] is continuous,
and in particular, the set <fop = {¢e C}(dD,C) : Lip[p] > 0} is open in
cl(op,C).

(iii) minyeapl¢’ ()] = lnlg), for all ¢ € C!(aD,C).

We are now ready to state the following, which collects a few facts which
we need on the spaces C'™*(K,C). For a proof and for appropriate refer-
ences, we refer to [18, Lems. 2.7, 2.8].

LemMa 2.3. Let meN, o, €]0,1], ¢ € op, L =¢(0D). Then the fol-
lowing statements hold.
(i) C™YL,C) is continuously imbedded in C™*(L,C). If a<p, then
C™P(L,C) is compactly imbedded in C"™*(L,C).
(ii) The pointwise product is continuous in the Banach space C™*(L,C).
(ili)  The reciprocal map in C*(L,C), which maps a nonvanishing function f to
its reciprocal, is complex analytic from C"™*(L,C\{0}) to itself.
(iv) Let ¢, € A, L = ¢ (D). If feC™*L,,C) and if ge C™P(L,L,),
then foge cin(b) (L,C) with yy(a,f) = off and y,,(a, f) = min{o, f} if
m > 0.
(v) Letm=1Ifge C"*(L,C) is injective and satisfies condition g'(£) # 0,
for all &€ L, then g=" e C™*(g(L),L).
(vi) If I[§] and E[§] denote the bounded and the unbounded open connected
component of C\¢(0D), respectively, then 0I[¢] = OE[¢] = ¢(dD).
(vii) Iff € oo, andif f(D) < 0D, then f(0D) = dD and f isa homeomorphism of
dD to itself.

We now introduce two differentiability theorems, for the composition and
for the inversion operator. To do so, we need the following, which we use to
study the regularity of the operator w[-], and the regularity of the dependence
of F on the shift ¢.

LemMa 2.4. Let meN, a€]0,1], Re]l,+o[. Let RD={xeR’:
|x| < R}. Then there exists a linear and continuous extension operator E of
Cm*(0D,C) to C™*(cl(RD),C) such that the following statements hold.

(1) (E[f])p =1, for all feC"*(0D,C), and E[f]e C"™*9(cl(RD),C) for
all feC™*%D,C).
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(i) Let1<j<m. Forall feC™*(D,C), the real differential of order j of
the function E[f] at t e dD satisfies the following equation

dE[f](z)(a1,...,0) = [V ()1 ...q, (2.5)

for all (a1,...,0/)€C’. In particular, d’E[f](z) is also a complex j-
multilinear operator, whenever t € 0D.

Prook. To prove statement (i), we first show that there exists a linear
and continuous operator Z of [, C""*(@D,C) to C™*(cID,C) such
that (Z[f]lﬁD""’%\aD) =f for all fe [[,C""*@D,C), where v is the
outer unit normal to dD. If r,se{0,...,m}, then we set d,,=1 if r=s,
s =0 if r#s. As a first step we fix an arbitrary /€ {0,...,m}, and we
show the existence of a linear and continuous operator Z; of C”~'*(dD,C)
to C™*(clD,C) such that al;ﬂ[h]lmz ylth for 0 <j </, and for all he
C"™%(9D,C). By a standard argument based on the partition of unity and
on the use of local charts for 0D, the existence of Z; follows from that of
a linear and continuous operator Z, of cm1*([-1,1],C) to C™*(cl(]—1,
1[x]—1,0[),C) such that ‘QL’M‘ (=dllg for 0<j< 1. Let K be a linear and
2 xp=
continuous operator of C"~'#([-1,1],C) to C""*([-2,2],C) with K[g] = ¢ on
[—1,1] and supp K[g] =]-2,2[, for all ge C""*([-1,1],C). Furthermore,
one can choose K so that K maps C"'*!([-1,1],C) to C""*1([-2,2],C)
(cf. eg., the construction of Troianiello [30, Thm. 1.3, p. 13] with k=
m—1+1.) To construct Z;, we take [+ 1 distinct real numbers «, ...,
and we determine f, ..., [, by solving the (Vandermonde) system E.ﬁ:o wlB, =
dul!, j=0,...,1, and we set Zj[g](x1,x2) = S B.Gilg)(x1 + a5x2), where
Gilg] is the m times differentiable function of R to C determined by condi-
tions 4 Gj[g] = K|g], %\t:O Gilg] =0 for 0 <j < /. Then one can define Z by

]
exploiat”ing the operators Z; and formula (5.8) of Necas [25, p. 93]. It is
also clear that Z maps [[", C"*!'~/(éD,C) to C"*!(cI D,C). Since cl D is of
class C®, it is also known that there exists a linear and continuous exten-
sion operator Eg of C"™*(c1D,C) to C"*(cl(RD),C) such that Eg[v],p = v,
for all ve C™%(cl D,C). Furthermore, one can choose Eg so that Egx maps
C"(c1 D,C) to C"*!(cl(RD),C) (cf. e.g., the construction of Troianiello [30,
Thm. 1.3, p. 13] with k =m +1.) Then we set E[f] = Eg o Z[f (1), /' (),. ..,
(7). If feC®(@D,C), then E[f] e C"!(cl(RD),C) and thus E[f] e
C™*%cl(RD),C) by Lemma 2.1. We now prove (ii). By construction, the
function E[f] is m-times real differentiable at each point 7e dD, and the
real differential d/E[f](z) is a real j-multilinear operator of R¥ to R%. Also,
the right hand side of equation (2.5) delivers a complex j-multilinear oper-
ator, which we denote by M of C’/ to C, and thus a real j-multilinear
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operator of R¥ to R?. In order to prove equality (2.5), it suffices to show
that d/E[f](r) = My((;) on the j-tuples of elements of a real basis of R°.

[ terms
To shorten our notation, we write o) instead of 7.....0 in the argu-
ment of a multilinear operator. Once 7 = (71,7) € D is fixed, we choose
{(z1,72), (—72,71)} as a real basis of R>. Note that 7 equals the exterior unit
normal to D at 7, and that it = (—1,71) lies in the tangent space to dD at .
Since d/E[f](t) and My, are multilinear and symmetric operators, it suffices
to check that for 0 </ <j, we have

d'E[f)(0) (=72, 7)), (z1,22)V 1) = O (o) (i) o0 (2.6)

We now prove (2.6) by induction on je {1,...,m}. In case j =1, it suffices
to prove the following two equalities

dE[f](0)((r1,2)) = f'(D)r,  dE[f)(D)((—2,11)) = f'(D)iz. (2.7)

The first equality of (2.7) follows by equality %E[ f1(x) = f'(r)r, which holds
by construction of E.  'We now turn to prove the second equality of (2.7). We
know that E[f](cos 0,sin 0) = f(e?), for all 6e[0,2n]. Then by differ-
entiating with respect to 6, we obtain JdE[f](cos 6,sin §)((—sin 0, cos ¢)) =
f'(e™)ie®, which implies the validity of the second equation of (2.7). If
m =1, the proof is complete, thus we can assume that m > 1. We assume
that equality (2.6) holds for je {l,...,m— 1}, and for all 0 </ <, and we
prove (2.6) for j+1, and for all 0 </ <,j+1. If /=0, then (2.6) follows
by equality (f;’,!lE[ f1(z) = e/ U (7), which holds by construction of E[f].
Thus we can assume that /> 1. By inductive assumption, we have

d'E[f)(0)((=72, 7)Y, (21, )V ) = O (@) (i) L (2.8)

Now by setting 7 = (71, 72) = (cos ,sin €) in (2.8), and by differentiating with
respect to 6, we obtain

dTELF1(0) (=72, 1), (21, 1))
+ (= DAE[f)(0) (=71, —12), (12, 70)" 7, (21, 20) 1)
+U-1+ l)djE[f](T)((—TzaTl)[lil], (—12,71), (11, rz)[j’l])

= SO (i) '+ SO @) = () (e

/]

+ D) e) (G = 1+ D)/ in

By exploiting the symmetry, the real j-multilinearity of d/E[f](r), and the
inductive assumption, we obtain that (2.6) holds for j+1, and for all
0</<j+1. O
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We now have the following variant of [15, Thm. 4.19]. See also Henry
[10, p. 96]. For references to previous contributions on this issue by various
authors, we refer to [15].

THEOREM 2.9. Let m,reN, o,f€]0,1]. Let y,,(x,p) be defined as in
Lemma 2.3 (iv). Let Re|l,+ow[. Let E be the extension operator of Lemma
2.4, The operator T from C"+*°(0D,C) x C™F#(0D, RD) to C,:”’y”’(“’ﬂ)(éD,C)
defined by setting T[f,g] = (E[f])og, for all (f,g)e C""*%dD,C) x
C™P(0D,RD) is of class C" in the real sense. The restriction of T to
Cm%0(aD, C) x C™P (0D, D) coincides with the ordinary composition operator
T defined by T[f,g| = fog. The ordinary composition T maps C"™*°(oD, C) x
CmBO(oD, oD) to P D C). Ifr>1, ge{l,....r}, and if (fy,g0) €
Cmr0(9D, C) x C™F(0D, dD), then the real differential of order q of T at
(fo,90) is delivered by the formula

dT[ fo, 9o] (v, wii))s - - - (Vg1 Wig)))
S -1 @
= Z(U[?] o QO)W[I] < W Wiy + (foq o QO)W[I] - Wiy (210)

Sor all ((vpy, wyy), - - -, (vig, wigp)) € (C7%0(0D, C) x C™F(0D, C))?, where the
= symbol on a factor denotes that such factor should not appear in the
product.

Proor. We first prove that T is of class C". It clearly suffices to
show that given (1% g%)e C"=0(3D,C) x C™F(dD,RD), the map T is of
class C" in an open neighborhood of (f# g%). Now we set C,={zeC:
||z| = 1] <&} for all ¢ >0. By uniform continuity of E[g#] on cl(RD) and
by the inclusion E[g¥#](dD) = RD, there exists ¢ > 0 such that E[g#](cl C,) =
RD. Clearly, ## ={ge C™F(D,RD):E[g)(cl C;) < RD} is an open
neighborhood of g# in C"#(0D,C). By [16, Thm. 5.3] and Lemma 2.1, T is
of class C" from C”*"%%(cl(RD),C) x C™#(cl C,,RD) to C™ " (cl C,,C).
Furthermore, the restriction operator is easily seen to be linear and contin-
uous from C™m®A)(cl C,,C) to C""*P (3D, C) (for example, by arguing as
in [18, Lem. 2.8 (ii)].) Thus, T is of class C" from C”*%(3D,C) x #*#
to P (aD,C). Formula (2.10) follows by formula (2.5) and by the
formula for the derivatives of T of [16, Rmk. 5.4]. By definition of the
space C"™#%cl C,,C) and by continuity of T from C"™*°(cl(RD),C) x
C™P(cl C,,RD) to C™m*P(cl C,,C), and by Lemma 2.4 (i), T maps
Cm%0(9D, C) x C"FO(3D, D) to C*P0(5p, C). O

We now turn to the study of the inversion operator by showing the validity of
the following variant of [15, Thm. 5.9].
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THEOREM 2.11. Let me N\{0}, reN, a€]0,1]. Let J be the operator of
Cr7%0(0D, 0D) N Zsp to C™*(0D, dD) defined by equality J[f] = 1, for all
feCmrx0(0D, D) N .otop.  If ¥ = 0, then J is continuous and the image of J is
contained in C™*°(0D,dD). If r > 1, then for all fy e C"*"*%(0D,oD) N ap,
there exist an open neighborhood W, of fo in C™"*%(oD,C)N.Zp, and
an operator jﬁ) of class C" in the real sense from #j, to C™*°(dD,C), such
that

I lf1=31f, Yfew;nCrr=0(oD, D). (2.12)
Furthermore, the following formula holds
dJp[f1w) = —(f o f TN wo D vwe CA0(0D, €),  (2.13)
Sor all feW;NCmr=0(oD, D).

Proor. We first consider case r=0. By Lemma 23 (v), (vii),
the following inclusion holds J(C”*°(dD,dD)N./pp) < C™*(0D,C). We
now prove that J is continuous from C"*°(0D,dD)N.«Zp to C™*(D,C).
To do so, we proceed by induction on m. Let m=1, limj_., f;=f in
Cl*0(0D,oD) N .o/op. Since the sequence { fitjen converges uniformly to
f in ¢D, and ¢D is compact, a simple contradiction argument shows
that lim;_., fj(fl) = D pointwise on dD. By Lemma 2.2 (ii), (iii), there
exists 6 > 0 such that mingp|f;/| =6, mingp|f’| >J. Then a simple compu-
tation shows that supjeNH];-(*l)Hc*l.x(QD,C) < c0. Since C*(dD,C) is compactly
imbedded in C%!(dD,C), and lim,_,, f/(_]) = £ pointwise on 0D, a simple
contradiction argument shows that lim;_ . fj(fl) = f=D in C%'(éD,C).
Then by Theorem 2.9, case r=0, and by Lemma 2.3 (iii), we have
lim; oo (£ ()7 = 1700 in €2(@D, C). - Since lim, ., £ = Y
in C%!(éD,C), we conclude that lim;_. fj'-(fl) ==Y in Cl*(6D,C). Now
let the statement be true for m > 1 and lim;_., f; = f in C"*1*%(0D,C). By
case m we have lim;_ ., fj'-H) =Y in C™*@D,C). Then by Lemma 2.3
(iii), by Theorem 2.9, by the limiting relation lim; .., f = f' in cm=0(oD, C),
and by equality | ];(_1)]’ = [f( ]?(—1))]717 we conclude that the sequence
{[f]'-(*l)]/}j ~ converges to [fV]" in C™*(dD,C), and the proof of case r = 0
is complete. We now prove that J(C"™*°(D,oD)N.oZp) = C™*0(dD, D).
Let fe C™*%0D,0D)N.o%p. Then there exists a sequence {fitjen In
C*(0D,C)N.Zp such that lim;., fj=f in C™*(0D,C). Since for j
sufficiently large we have ‘% € CF(dD,dD) N o/pp, then we have J L%} €
C* (0D, D) N .Z;p for the same ;’s. Now let y € C*(R? R?) be such that
%(x) = x|x|™", for |x| >1/2. By [16, Thm. 5.3], and by Lemma 2.1, and
by the continuity of the restriction to dD (cf. e.g., [18, Lem. 2.8]), we have
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lim, .. 2= limy_.. 2(E[f)p =2(/) =/ in C2*(@D,C), with E as in
Lemma 2.4. Then the continuity of J implies that J[f]e C™*%(0D, D).
We now consider case r > 1. We take R>1 and we define the operator
© of (C"%9(3D,C)N fop) x C™*0(4D, RD) to C"*°(3D,C) by setting
O[f,g] = (E[f]) o g — idsp, where idsp denotes the identity map in JdD. By
Theorem 2.9, the operator @ is of class C". We now observe that for all
feCcmr=00D,C)N.ofop such that f(dD) =D, we have O[f,g] =0 if
g=f"Y. We now apply the Implicit Function Theorem to equation
O[f,9] =0 around the pair (f, féfl)). By Theorem 2.9, the partial differ-
ential of @ at (f, fo(fw) with respect to the variable g is defined by
d,0[fo, £ V1(h) = 1)k, for all he C™*0(aD,C). Since f; belongs to
Ccmtr=129(9D, C), which is contained in C™*°(0D,C), and since fj(7) # 0
for all 7edD, then Lemma 2.3 (ii), (i) and Theorem 2.9 imply that
d, 0] fo, f0(71>] is a linear isomorphism of C"™*°(¢D,C). Thus the Implicit
Function Theorem implies the existence of an open nelghborhood “Wfo of fo
in C""%9%(0D,C)N.o%p, and of an open neighborhood “// of fo

Cr»*%(dD,C), and of a map J;, of class C” from %} to “V< n such that the
graph of J,«“ coincides with the set of zeros of @ in Wﬁ) X "V . By the
obvious inclusion of C"*"*%(gD,C) in C™*%(D,C), and by case r=0,Jis
continuous on #;, N C""*%(dD, dD). Then by possibly shrinking #7,, we can
assume that J maps %, N C"*"%9(D, dD) to "V . Since O[f,J[f]] =0, for
all few;NCr*%0D, oD), we conclude that (2.12) holds. The validity of
the formula (2.13) for the first differential follows from formula (2.10) and by
the Implicit Function Theorem. O

If g Cl(éD C), and if f is a function of L = ¢(dD) to C, then we denote
by f¢ s)ds the line 1ntegral of the function f computed with respect to
the parametrization 0 — ¢(e™), with 0 € [0,2x], of #(dD). Let ¢ € .op. We
denote by ind[¢] the index of the curve 0 +— ¢( i ) 0 € [0,2n] with respect to
any of the points of /[¢]. Thus ind[¢] = 5~ fm -, for all zeI[g]. The map
ind[-] is obviously constantly equal to I or to —1 on the open connected
components of p in C!(0D,C). We set o/} ={pe.o/p:ind[#] >0}. The
following Theorem collects known facts related to singular integrals with
Cauchy kernels and to Cauchy type integrals.

THEOREM 2.14. Let 2 €]0,1[, meN, ¢e C*(0D,C)N .oy, L= ¢(oD).
Let 1 be the identity operator in CL-%(L,C).  Then the following statements hold.
(1) For all feC™*(L,C), the singular integral

g—71

Syl f(r) = nlj(ﬁ& do, VtelL, (2.15)



Differentiability properties of some nonlinear operators 69

exists in the sense of the principal value, and Sy[f](-) € C"*(L,C). The
operator S, defined by (2.15) is linear and continuous from C!*(L,C) to
itself. If ¢ coincides with the identity map idsp, then we set S =Sy,
(ii) For all f'e C"*(L,C), the function X4[f] of C\{L} to C defined by
TN = 5| 1% veerr,
¢

T 2ni),o—z

is holomorphic. The function X 4[f ]l 1] admits a continuous extension to
cl I[g], which we denote by T;{[f], and the function X4[f] g, admits a
continuous extension to cl E[§], which we denote by X ;[ f].  Then we have
i (/] e Cmel 11g],C) N H(Ilg). T;Lf) e COel Elg, ©) N Cri(2,€)N
H(E[§]), and the Plemelj formulas T;—’ [fl(z) = i%f(‘c) —|—%S¢[f](‘c) Sfor all
v € L hold.  Furthermore, 'I‘(;[] defines a linear and continuous operator of
C™*(L,C) to C™*(clI[§],C). If ¢ coincides with the identity map idyp,
then we set X = Y.

(iii) The function f e C!™*(L,C) satisfies equation (I—Sy)[f]=0, if and
only if there exists a function Fe C™*(clI[g],C)NH(I[P]) such that
F(t) = f(7), for all te L. The function F, if it exists, is unique.

(iv) The function f e C™*(L,C) satisfies equation (I+Sy)[f] =0, if and only
if there exists a function F e C°(cl E[¢],C)NC™*(L,C)NH(E[§]) such
that lim,_,, F(z) =0, and F(t) = f (1), for all t € L. The function F, if it
exists, is unique.

(V) If £ e CIHL,C), then (Sylf1) = Sylf")

For case m = 0 of statements (i) and (ii), we refer to Hackbusch [8, Thm.
7.2.5]. Statement (v) follows by Gakhov [6, p. 30]. Case m > 0 of statements
(i) and (ii) follows by case m =0 and by statement (v). Statements (iii) and
(iv) follow by Gakhov [6, p. 27] together with statement (ii).

3. Differentiability properties of the conformal welding operator

As we have said in the introduction, the conformal welding map is a
composite function of Riemann maps. Thus we introduce the following
Theorem, which summarizes some well-known properties of Riemann maps.
For a proof we refer to Ahlfors [1, Ch. 6, §1] together with Pommerenke
[26, Thms. 2.6, 3.5, 3.6].

THEOREM 3.1. Let meN\{0}, oe]0,1[. Let (e C"*(D,C)N oZp.
Then the following statements hold.
(i) There exists a unique homeomorphism g[(] e C'(C\D,C)N H(C\cl D)
of C\D onto cl E[{], such that g[{](o0) = lim, .., g[{](z) = o0, g[¢]'(0) =
lim._.. g[¢)'(z) €10, +00[.  Furthermore g[(];p € CI*(0D, C) N A,
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(ii) Let ay,ay, a3 be three distinct points of dD. Let { be orientation preserving.
There exists a unique homeomorphism f[{] € C™*(c1 D,C)NH(D) of cI D
onto cl I{] such that f[{|(a;) = {(a;), for all j=1,2,3. Furthermore,
T1Cep € Zopy _

(iii) For all b e I[{], there exists a unique homeomorphism f[(,b] of cl D onto
cl I[¢) such that f[¢,b] e C™*(c1 D, C) N H(D) and such that f[(,b](0) = b,
f1¢,b)'(0) €10, +0[.  For short, we set f[{]=f[¢,0] if b=0.

We note that the map f[{] of Theorem 3.1 (ii) depends also on a;,ay, as.
However, throughout the paper, we will assume the three points a,a;, a3 to be
fixed. Thus we have chosen not to display the dependence on a;,a,,a; in the
notation for f[¢]. By Lemma 2.3 (iv), (v), and by Theorem 3.1, the function
f1al)p) " 0 gl¢) o belongs to C*(8D,dD) Ny, for all { e C"*(@D,C)N
fsp, with m e N\{0}, 2 €]0,1[. Then we can introduce the following.

DEerINITION 3.2.  Let me N\{0}, « €]0,1[. Let ay,a2,as be three distinct
points of dD. If (e C"*(dD,C)N <lpp, then we define as conformal welding
map associated to { (and to the triple (a1,az,a3)), the map

wlZ] = f19(8,00] " © 9l¢) op- (3.3)

We define as conformal welding operator, the operator w[-] of CI"*(dD,C) N oZ;p
to C"™*(0D, D) N oLy, which takes { to w[{].

Clearly, one can define the conformal welding map by normalizing f/[(]
and g¢[{] in a different way, and the corresponding w[{] would differ from the
w[{] defined above by a suitable composition with Md&bius transformations.
Now we introduce the following Theorem, whose first statement has been
proved in Lanza and Rogosin [20, Thm. 5.4]. Both statements can be con-
sidered as a variant of [17, Thm. 3.10, Thm. 4.7].

THEOREM 3.4. Let me N\{0}, o €]0,1[. Then the following statements
hold. .
(1) The map ({,b) — fC, b](fl) o is real analytic from

Ema ={((,b) € (C"*(0D,C)Nyp) x C: b e I[(]}

to C™*(0D, C). )
(i) Let reN. The map ({,b)— f[(,b] of EmiryN(CMT%0(0D,C) x C) to
Cm»%(0D,C) is of class C".

ProOF. Statement (i) is contained in Lanza and Rogosin [20, Thm. 5.4].
By Theorem 3.1, we deduce that f[(,h] € C*(dD,C) if { e C*(dD,C) N .Zp,
belI[{]. Then by statement (i), we have f[(,b]“l) 0leCm™*%(oD,C) if (e
Cm%9(0D,C)N.Zp, b e I[{]. Then statement (ii) follows by statement (i), and
by Theorems 2.9, 2.11. O
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We now turn to consider the dependence of f (€] o ¢ upon . Since f[¢] has
been normalized in a different way from f[(, 5], we need the following Lemma
in order to exploit the previous Theorem.

LeEmMMA 3.5. Let ay,ay, a3 be three distinct points of 0D. Let
A= {(Z»PI;PLP,%) ect : p1, P2, p3 are distinct,
(z=p3)(p1 — p2)(a1 — a3) — (z — p2)(p1 — p3)(a1 — az) # 0}.

Let Q be the rational function of A to C defined by

a(z —p3)(p1 — p2)(ar — a3) — a3(z — p2)(p1 — p3) (a1 — a2)
(z=p3)(p1 = p2) (a1 — az) — (z = p2)(p1 — p3)(a1 — a2)

Q(Z»PlaP27P3) = ;
for all (z,p1,p2,p3) €A If p1,p2, p3 are three distinct points of oD, and if
the triple (p1, p2, p3) induces on 0D the same orientation of the triple (ay,az,a3),
then (z, p1, p2, p3) € A for all zeclD, and Q(-, p1, p2, p3) is the unique homeo-
morphism of cl D onto itself which is holomorphic in D and which maps p; to a;,
for j=1,2,3.

ProOF. By elementary Conformal Mapping Theory (cf. e.g., Ahlfors
[1, p. 79]), the function Q(-, pi, p2, p3) is the only linear fractional transfor-
mation which maps p; to a;. Since pi, ps, p3 are three distinct points of 0D,
the function Q(-,pi, p2, p3) is well-known to map JD onto itself. If the
triple (p1, p2, p3) induces on 0D the same orientation of (aj,a»,a3), then
O(-, p1,p2, p3) is well-known to be a bijection of cID onto itself. The
uniqueness follows by the Riemann Mapping Theorem. OJ

We are now ready to prove the following.

THEOREM 3.6. Let me N\{0}, a€]0,1[. Let a),az,a; be three distinct
points of dD. Then the nonlinear operator { — f[C](fl) o { is real analytic from
Cm*(0D,C)N ./, to C™*(0D, D) N .oy, and maps C™*%(0D,C) N .oty to
Cm*9(oD, 0D) N /3.

ProoF. Let (ye C*(dD,C)N.o/yy, zoellly]. Let # be an open
neighborhood of {, in C/*(dD,C) N .o/5 such that zy e I[{], for all {e W .
By the uniqueness inferred by the Riemann Mapping Theorem, we have
fI¢ —z0] = f[{] —zo. Thus there is no loss of generality in assuming that
0=zyel[l], for all {e #". By Lemma 3.5, and by the uniqueness inferred by
the Riemann Mapping Theorem, we have

Y 0t = o) 0 ¢(), 107V 0 Llan), f10) TV 0 Clan), £V 0 Las)),
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where Q is as in Lemma 3.5. Thus the analyticity of f[¢]""o¢() on ¢
follows by Theorem 3.4 (i), and by Lemmas 2.3 (ii), (iii) and 3.5. By Theorem
3.1, we have f[{]"" o e C*(D, D) if { € CX(dD,C)N./;;. Then the last
statement follows by the continuity of { — f[C](_l) o({, and by the definition of
the spaces C™*0. n

We now show that on a suitable subset 7,,, of C*(dD,C)N /5, we have
g[C]MD =¢, for all {€ 7, ,. Thus the conformal welding operator coincides
with the nonlinear operator of the previous Theorem on .7, ,.

ProposITION 3.7. Let me N\{0}, 2 €]0,1[. Let

Dy = {c e C™*(0D,C) : 3Z € H(C\cI D) N C°(C\D, C)

such that { = Zp, hm Z'(z) = Z'(0) eR}. (3.8)

Then the following statements hold.

(i) If CeDm 0 then the map Z of (3.8) is unique. Furthermore, Z'(c0) =
= [op 02 ) do, and llmHm{Z(z) - %[ C((Ifzf do — 5= fan@ da} =0.

(i) Dm,y is a real Banach subspace of C!™*(dD,C).

(iii) Let Z[(] be the unique map of statement (i) corresponding to { € Dy, ,.
Then the set

Tma ={L € Dy y Ny : Z[() (00) > 0}

is open in Dy, .
(iv) If (€ Ty then lim._., Z[(](z) = o0, and Z[{] = g[{].

Proor. We  first prove statement (i). If ZeH(C\cID)N
C°(C\D,C), then standard properties of holomorphic functions imply
that condition lim,_, Z'(z) = Z’(0) € C is equivalent to the existence of
a,beC and Ke H(C\cID)NC’C\D,C) such that lim.., K(z) =0 and
Z(z) =az+ b+ K(z). Moreover, it is easily checked that if such condi-
tion holds, then Z'(o0)=a=5=[12%dg, b=31[ 2% ds. Then by
Theorem 2.14 (iv), the membership of { in D, , is equivalent to condi-

tion (I +9S) {C (2) =5 Jp C((f) do —5= [ 0> da} =0 together with condition

21” m = 9 dseR. Thus the uniqueness of Z follows. The completeness of

D,, , follows by the same argument, by Theorem 2 14 (i), and by the con-
tinuous dependence of - [, J> do and of - J}D - Y do on ¢ e C™*(dD,C).
Statement (iii) follows by Lemma 2.2 (ii) and by the continuous dependence

of Z'(w0) = 27” D ‘g‘f do on (€ D, ,. We now prove statement (iv). By (i),
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we have lim._., Z[{](z) = co. Now let wg e I[{]. Since Z[{]'(o0) # 0, then
the function Z[{] is injective in a neighborhood of oo. Since we also have
4 eaz/jD and wo € I[¢], then a standard argument based on the Argument
Principle shows that Z[{](-) —@¢ does not vanish. Thus the function
[Z[C)(1/(-)) — wo] " extends to a holomorphic map in D. Since { e <3, then
the curve [((1/(:)) —wq]™' is one to one. Then again by the Argument
Principle, [Z[(](1/(-)) — wo] ™" is one to one in cI D, and a simple topological
argument shows that [Z[(](1/(-)) — wo] " maps D onto I[[((1/(-)) — wo] ']
Accordingly, Z[{] is one to one and Z[{](C\clD)= C\clI[{]. Since
Z[{)'(o0) > 0, Theorem 3.1 (i) implies that Z[{] = g[¢]. ]

As an immediate Corollary of Theorem 3.6 and of Proposition 3.7, we
obtain the following.

THEOREM 3.9. Let meN\{0}, a€]0,1[. Then the conformal welding
operator is real analytic from the set T, , to C™*(0D,dD)N .o/,

We now turn to the differentiability properties of g[-], by means of the
following.

THEOREM 3.10. Let me N\{0}, «€]0,1[, reN. Then the map which
takes { to g[C]op is of class C" in the real sense from Cmr20(0D, C) N otop to
Cm20(D, C) N A,

PrOOF. Let {ye C"*%(0D,C)N.Zp, zo€I[ly]. Let # be an open
neighborhood of {;, in C""*%(dD,C)N.oZ;p such that zyeI[{], for all
{ew'. By the uniqueness inferred by the Riemann Mapping Theorem, we
have g[{ — zo] = g[{] — zo. Thus there is no loss of generality in assuming
that zo = 0, for all (e #". Let f[] be as in Theorem 3.1. Clearly, g[(](z) =
[£11/¢)(1/2)]7", for all ze C\cI D, and for all { € #". In particular, Theorem
3.1 implies that g[{];p € C(dD,C) if (e CX(dD,C)No/p. Thus we can
conclude the proof by Lemma 2.3 (iii), by Theorem 2.9, and by Theorem
3.4 (ii). O

As a consequence of Theorem 3.6, and of Theorem 3.10, we obtain the
following.

THEOREM 3.11. Let meN\{0}, «€]0,1[, reN. Then the conformal
welding operator maps C!"*(dD,C)N.Zp to CI*(dD,dD)N /5y and is of
class C" in the real sense from C""*%(0D,C) N .Zp to C™*(0D,dD) N /3.

We note that it can be proved that Theorem 3.11 is optimal in the frame
of Schauder spaces (cf. [19, Thm. 2.14].)
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4. Preliminaries on the conformal sewing problem, and definition of the
generalized conformal sewing operator.

The problem of finding a suitable right inverse for the noninjective
operator w[-] is called the conformal sewing problem and is a particular
Haseman problem. In this section, by following the classical theory of the
Haseman problem we recall a known existence and uniqueness result for the
conformal sewing problem. Moreover, we prove a slightly more general
regularity result for the solution in order to perform our perturbation analysis
of the conformal sewing problem. To introduce a suitable right inverse of
w[-], we first look at the injection which is naturally associated to the con-
formal welding operator.

ProposITION 4.1. Let meN\{0}, a«€]0,1[. Let ‘~ be the equiva-
lence relation in C"*(0D,C)N.ofpp which is naturally associated to the con-
formal welding operator, i.e., {{ ~ {5 if and only if w[(i] = w[(5], with {,( €
Cm*(0D,C)Nutpp.  If {; € C™*(0D, C) N op, then the equivalence class [(].
of (i with respect to the relation ~ contains exactly one element le T, o Such

that ZLm o CI{(:) do =0, %mfan é],,(f) do = 1. Furthermore,
(=1 1i V! L[ 9lblo)
b= {ZILIEIC 9lci] (Z)} {g[gl]ﬁD - %LDT dop. (4.2)

The map { — [(]_ is a bijection of the set

g:m,ocz{éeg.m,a- 1J @da:O IJ iz)d0'21}

2ni D O ,27[1' D O

onto the quotient set C"*(0D,C) N olopp/~. In particular, the conformal weld-

ing operator is injective from the set 7, , to CM™*(ID,dD)N <3,

Proor. Let {; € C™*(0D,C)N.o/p. By definition of conformal weld-
ing map, we have w[(j] = f[g[51]|gp](7l) og[li]ap-  Also, if we set S 9] jons
we have g[CﬁMD:Cl# and (¥ e7,., Then wi(]=w[(f]. We now note
that if @ > 0, b e C, then al¥ + b e 7, ,, glall +b] = ag[t?] + b, flalf +b) =
af (] + b, and that accordingly w[(;] = w[al¥ +b]. In particular, the ele-
ment C~1 defined by the right-hand side of (4.2) belongs to 7, , and satis-
fies w[{;] =w[(]. Since g[{l]lﬁD:Cf belongs to D, ,, Proposition 3.7 (i)

implies that lim._.. g[&1]"(z) =& [ 2% dg.  Then one can easily check that

T 2riJID g2 "
{y € T, Conversely, if 5 € ., and if w[{;] = w[y], then we have glnlop =
1. 9l =& S16]7 0 = fInTV o, and thus & on™Y = (G o /[
on ¢D. Now the function K of C to itself defined by K(z) = g[¢i] o g[;y](q)(z)
if |z| =1, K(2) Ef[Cl]of[iﬂ(*l)(z) if |z] <1, is a homeomorphism of C to
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itself, and is holomorphic on C\@D. Then it is well-known that K must be
holomorphic on all C. Now the only entire homeomorphisms of C are the
complex affine maps. Thus there exist a € C, b € C such that K(z) = az + b,
for all ze C. In particular, g[{;] = ag[y] + b, and thus we obtain {; = an + b.
Then by exploiting the assumption that both ; and 5 belong to Tom., ONE CAN
easily deduce that a =1, b =0. O

The previous Proposition says, in particular, that the natural injection of the
quotient set C™*(0D, C) N .oZp/~ to C"™*(D, C) N .oz, associated to the con-
formal welding operator can be identified with the restriction of w[-] to fm,“.
Thus we now turn to define a right inverse of the restriction of w to j'm,x.
By Proposition 3.7, we easily deduce the following.

LemMA 4.3. Let me N\{0}, o €]0,1[. Then

Ton.x {C e C™*(dD,C)N.o/qy, : 3Z € H(C\cl D) N C°(C\D, C),
such that { = Zp, lim Z(z) —z = 0}. (4.4)

Also, if L€ Tp.y and if Z is as in (4.4), then Z = g[(].

Proor. If { and Z are as in the right hand side of (4.4), then Z(1/v)—1/v
has a removable singularity at v = 0 and limiting value 0 at 0. Then by the
Cauchy formula, we obtain ﬁ an@ do =0. Since [Z(1/v) — 1/v]" must have
finite limit at v =0, we deduce that lim,.y Z'(1/v) =1. Then by Prop-
osition 3.7, we have { € ﬂlmja. Conversely, by Proposition 3.7 we easily deduce
that if { € ,, ,, then { belongs to the set in the right hand side of (4.4) and

Z = g[C]. O

As a next step we derive by classical means a system of two integral equations
involving {, w[(] (cf. e.g., Lu [22].)

TaeoreM 4.5. Let «€)0,1[. Let ¢e CM*(0D,C)Ntyyy. Let Fe
C%*(cl I[¢],C)NH(I[4]), Ge C°(C\D,C)NH(C\cI D)N C**(0D,C) such that
lim, ., G(z) —z=0, and Fo¢ = Gsp. Then { = Gsp satisfies the following
two equations

LI <o TP U (U RV
C(r)+2m.LDa_Td 2m,LD¢(a)_¢(T)d =1, VredD, (4.6)

1) g L L) oy,
27TiJ5D0—Td +2niLD¢(a)_¢(7)d J Ve dD. (4.7

In particular, if m e N\{0}, and Ceﬂl,,w, then the pair (¢ =w[(],() satisfies
equations (4.6) and (4.7).
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Proor. By Theorem 2.14 (iii) and (iv), we have {(I—Sy)[(o dVYogp=0
and (I+S)[{ —idsp] =0. Then by adding and subtracting such two equa-
tions, we obtain (4.6) and (4.7), respectively. ]

Next we show, by exploiting known results, that for all ¢ € C*(éD,C) N .oZyp,
the system of equations (4.6) and (4.7) has a unique solution. We start by
analyzing equation (4.6). To do so, we need some information on the integral
operator associated to (4.6). Thus we introduce the following variant of a
result of Kantorovich and Akilov [12, Thm. 4 p. 363, Rmk. 2 p. 365] (see also
Gorenflo and Vessella [7, Thm. 4.1.7, p. 69].)

Lemma 4.8. Let 2 €]0,1[. Let k(-,-) be a complex valued continuous
function on the set B={(1,&) e (D)* : v # &}, Let
M= sup |k(r,d)|]€ —7|'"™* < +oo. (4.9)
(r.9)eB
Then the following statements hold.
(1) The integral

Upi(e) = jmku, p(E)de

is convergent for all € dD and for all y e L* (0D, C).
(ii) Let ¥ be normed space continuously imbedded in L*(dD,C). Let
p>0. If

—1 —
171z 172 =™

j (k(12,&) — k1, E))p(E)dE

Mz = Sup
8D\L<T1 5 ‘[2)

rl,rgeaD,0<|72—11|§p,yeﬁt"\{0}}<+oo, (4.10)

where L(t1,72) ={&€dD: | —1| < 2|ta —n1]}. Then U defines a linear
and continuous operator of 4 to C%*(D,C).
(iii) If 0.k(-,-) exists and is continuous, and if

Ms= sup |0:k(z,&)||E— )% < +oo, (4.11)
(1,§)eB

then U defines a linear and continuous operator of L*(dD,C) to

C%*(oD, C).
Proor. Let |d| denote the usual arc-length measure on JD. It is
well-known and easy to verify that ¢, = sup,.p fan%< o0. Then by

assumption (4.9), we have

UBI()] < Mica|ly]

L*(0D,C)>» VV € Lm(6D7 C)7



Differentiability properties of some nonlinear operators 77

and for all 7 € D, and statement (i) holds. We now prove statement (ii). We
can clearly assume p < 27!, Let 71,7, be two points of dD. If |t; — 2| > p,
then we have

UD)(z2) = UPl(e)l 2 =" < 2p7" sup U@ < 2p™ "My |ly|

L*(éD,C)-
(4.12)

We now assume that 0 < |t} — 72| < p. Then we have

[U(z2) = Ull(n)] < Malyllzlti — 7ol

+ {J |k(T27f)||df|+J |k(T17f)||df|}|V|Lv~(aD,C)- (4.13)
L(t1,12) L(t1,12)

Now it can be readily verified that there exists ¢, > 0 independent of 7y,7,
such that

d ‘
J L <C/|T2_Tl|x,
L

(1,72) |T2 - f|1_“ -

|d<]

J —_— SC;‘U—TH“. (4.14)
L(z,0) |11 — €]

By assumption (4.9), by inequalities (4.12)—(4.14), we conclude that there exists
¢” >0 depending only on o, ¢,, ¢,, p, M, M, and on the norm of the
imbedding of Z into L*(dD,C) such that

UDI(z2) = URN )l 2 = 1" < "yl

for all ye Z, for all 71,7, € D. Then statement (ii) follows. We now prove
statement (iii). Let 0 < p <27'. Let0 < |t; — 12| <p. By parametrizing the
arc joining 7; to 7, and contained in L(zy,7,) by the map 0 — ey, and by
applying the Mean Value Inequality, we obtain that

k(e2,8) = k(@O < Sl =7l sup  [ack(y )|

[n—71|<|e2—71]
nedD

Tl =l sup M

S1T2—T1 P

2 —al<lo-ul \|n — &)
nedD

for all ¢edD\L(t),72). Now, if &edD\L(t},72), and if 5 e dD satisfies
inequality |7 — 71| <|ta — 71|, then we have |p—¢| =t —¢—p—7|=
|ty — €| = |ta — 11| = 277y — &|.  Furthermore, it is well-known and easy to

verify that there exists ¢} > 0 independent of 71,7, such that

IA

j o1 — &2 de] < s — ]
(‘}D\L(‘L’] N ‘L’z)
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Then the following inequality holds
J (22, 8) — k(r0, )| [dE] < "m2' *Maley — 1|, (4.15)
5D\L(T],Tz>
and thus the supremum in (4.10) is finite and the conclusion follows by state-
ment (ii) and by taking 2 = L*(dD, C). O

By the previous Lemma, and by arguing as in Lu [22, p. 418], we obtain the
following.

PROPOSITION 4.16. Let o,€]0,1[. Let ¢e CH*(D,C)N.tsp. If ye
CYF(0D,C), then the map Uy[y|(-) defined by

_ 1 ! ¢'(o)
Uylyl(z) = %LD <U 70— y(o)da, Ve dD, (4.17)
belongs to C%*(0D,C). The operator Uy[-] of C%F(oD,C) to C»*(oD,C)
defined by (4.17) is compact.

Proor. By arguing as in Lu [22, p. 418], we can show that there exists a
constant ¢4 > 0 depending only on ¢ such that

’4/5(0) —4(0)

P —¢'(0)| < ¢ylo—1|%, (4.18)

for all 7,0 € 0D with 7 # 0. Then we obtain that

1 ¢'(o) 1 ¢lo) —¢(x) ¢ a1
- = —¢ (o) < o—1 .
= Ho) — 90| @ 9@l ot L= gl
Thus the kernel k(7,0) = L — (/)(f)/f;(f) satisfies inequality (4.9). Similarly, one

can prove that k satisfies inequality (4.11). Thus Lemma 4.8 (iii) implies that
U, maps L* (oD, C) to C%*(dD,C) with continuity. Since C>#(dD, C) is well-
known to be compactly imbedded in L*(JD,C), the proof is complete. []

We now introduce the following two statements, which we exploit later. For
the sake of completeness we include a proof.

PrOPOSITION 4.19. Let 0€)0,1[. Let ¢;,¢, € CH*(0D,C)N /sy, Li =
$1(0D), Ly = ¢,(D). Let F e COel I[y], C) N H(I[]), G € COC\I[g),©) N
H(C\Cl I[¢2]) Let FWI(@D) € CB‘“(Ll,C), G‘¢2(5D) € CB"“(LQ, C), lim,_,, G(Z) =
0, F(¢,(1)) = G(¢,(7)), for all 1€ D. Then both F and G vanish identically.

Proofr. Clearly, F"(¢,(1)) = G"(¢,(7)), for all te€dD, neN\{0}. By
Theorem 2.14, we have {(I+ S¢2)[G‘”¢2(5D)]} o, =0, {(I-Sy)[G"og¢,0
¢§_1)}} o¢, =0. Then by adding such two equalities, we obtain (I+ Uy —
Uy,)[G" o ¢,] = 0. Since Uy — Uy, is compact in C*»*(0D,C), the kernel of
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I+ Uy, — Uy, is finite dimensional. Thus the family {G" o ¢,},.n must be lin-
early dependent, and accordingly there exists a natural k such that G’ o ¢,, ...,
G* o ¢, are linearly dependent. If G is not identically zero, then the func-
tion G o ¢, cannot be constant on ¢dD. Thus there exist £+ 1 distinct points
&y ..., in Go ¢,(0D). By the linear dependence of G0 ¢,,...,Gro ¢,
we deduce that the determinant of the Vandermonde matrix of the numbers
&o, - - -, &, must vanish, contrary to the assumption that &,,..., &, be distinct.
Thus G =0, and accordingly F is identically zero. O

Then we have the following Theorem (cf. Lu [22, pp. 419-420].)

THEOREM 4.20. Let 0.€]0,1[, ¢ € C1*(0D,C)Notspy.  Let 1 be the identity
operator of C%*(0D,C). Let Uy be the operator of C*»*(dD,C) to itself defined
in (4.17). Then 1+ Uy, is a complex linear homeomorphism of C%*(0D,C) to
itself.

Proor. By Proposition 4.16, the operator I4+ Uy is a compact pertur-
bation of the identity. Thus by the Fredholm Alternative, and by the
Open Mapping Theorem, it suffices to show that I+ Uy is injective. If ye
C¥*(oD,C) and (I4+Uy)[y]=0, then we have 1(I+S)[]+3{(I—Sy)-
[7o¢"V]} o ¢ =0, and by Theorem 2.14 (i) we have Y"[3] = Y, [yo ¢ "] o ¢
on dD. Then by Proposition 4.19, it follows that X" [y] = 0, Y,lyo ¢V =0,
and accordingly, (I+S)[y] =0, {(I—Sy)[yo¢ "]} op=0 by Plemelj’s for-
mula. By Theorem 2.14 (iii), (iv), there exist F e C°(cl I[¢])NH(I[¢]), G e
CO(C\D,C)NH(C\cI D) such that lim._.. G(z) =0, y=Gpp, yog' " =
Fyp), and thus G = Fo¢ on ¢D. Then by Lemma 2.3 (i), (iv), (v) and by
Proposition 4.19, we conclude that F and G are identically zero. Thus y = 0.

O

The previous Theorem shows that equation Uy[y]+y = f can be uniquely
solved in C%*(dD,C) if f is in C%*(0D,C). We now wish to prove that the
solution is of class C/»* if f is of class C* To do so, we prove the fol-
lowing technical Lemma.

LemMa 421, Let meN\{0}, 0 <f<a< 1. Let ¢ C"*(dD,C)N Ly
Then the operator Uy defined in (4.17) maps C"F(oD,C) to C™*(dD,C) with
continuity.

Proor. By well-known properties of the Cauchy integral, and by Lemma
2.3 and Theorem 2.14, the operator Uy maps C™#(dD,C) to itself with
continuity. Since C”#(éD,C) is imbedded with continuity in C(dD,C), it
suffices to show that the operator y— (U¢[y])<’”)(~) maps C"™#(8D,C) to
C%*(0D,C) with continuity. To do so, we find convenient to introduce the
following notation. We set
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Slg, 7] = Sylyo ¢V o ¢ (4.22)
for all ye C%*(@D,C). As a first step, we show by induction that for
h=0,...,m there exists a continuous operator Vj, of C™#(oD,C) to

C"h2(oD, C) such that

¢')
Case /=0 holds with V;;, =0. We now assume that V; exists for 0 </ <
m, and prove the existence of Vj ;.. By Theorem 2.14 (v), we have

h T
2%%[?} =Sp"] -8 [qﬁ(y,] ()" + Vg ilyl. (4.23)

/

d & =, 7

B =805 ¥ @, veeop,
4 ¢

for all y e C#(0D,C). Then if 7 =0, we can take V; 1 =0. If 4 > 1, then

m > 2 and by differentiating formula (4.23), we can easily see that the same

formula (4.23) holds for &+ 1 provided that

- (h)
’(¢/>—h+2] ()('()" =S [¢7((};W] (' ()@ ()

+ (Vgnl2)'()-

By Lemma 2.3 (ii), (iii), by Theorem 2.14 (i), by the continuity of the
imbeddings of C""f(oD,C), of C”'#(D,C), and of C">%*@D,C) in
Cm'=1%(9D,C), and by the continuity of V,,[] from C™#(D,C) to
C=12(9D, C), we deduce that Vj ;1] is continuous from C™#(éD,C) to the
space C""*(aD,C). Thus we conclude that formula (4.23) holds for all
h=0,...,m, and that in particular it holds for # =m. To conclude the proof
it suffices to show that the operator which takes y e C"™#(oD,C) to S[y™]—

g{qﬁ,((y;,—)),} (¢")™ is linear and continuous from C"#(0D,C) to C%*(D,C).
Since Uy maps continuously C*#(dD,C) to C%*(0D,C), then it suffices to
show that the integral operator which takes y(-) to [, km(-,&)p(&)dE, with

¢’ [@P)" — (¢’(é))m}

ke (7, &) = $(&) — 4(v) { (¢'(€)"

maps continuously C*#(0D,C) to C>*(0D,C). We shall exploit Lemma 4.8.
A simple computation based on the Hélder continuity of ¢’, on assumption
Is;p[¢] > 0, and on Lemma 2.2 (i), (iii) shows that k,(-,-) satisfies (4.9). We
now consider case m =1 and we show that we can apply statement (ii) of
Lemma 4.8 with 2 = C%#(oD,C). Clearly,

B () 4(2)
Vornll() =8| 4.2
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LD\L(Tl 172)

(ki(12,¢) = kl(fl,f))y(f)df‘

J (¢'(r2) = 4"(9))(#(r2) — ¢(r1))
D\L(rm) (P(E) = 9(72))(4(E) — b))

<

2(&)dé

(&)

14(w) = '@l LD\LM @@ — 6)

dé‘

+1¢': Do — | LD\L(W) m bl (4.24)
and
LD\M,@%“:LD\W,Q( v G gy
il Lo ) —(2< 0

Now, it can be easily verified that 2|é -1 < -1 <2|¢ -1 for all

71,72 € 0D, and e dD\L(r1,72) and that [ . “2 sz‘lk |dé| is bounded

uniformly in 71,7, € dD. Then by the Lipschitz continuity of ¢ (see Lemma
2.3 (i), there exists ¢ > 0 depending only on « and ¢ such that the right hand
side of inequality (4.24) is less or equal to

(O A\ Q)
Ln\uﬂ,n)(qs'(é) e >)< 50 — ()

TV & T — T o
'¢’<f1> D\Lier. o) ($(E) — $(71)) df‘}' -l (4.29)

The membership of y in C%#(dD,C),
Lemma 2.3 (i), (i), and the finiteness of sup,e an

C{”V”Lx’(an,q +

(0D, C), Lemma 2.2 (i),
|a¢]

e
exists ¢’ >0 depending only on o« and ¢ such that the first integral in
(4.25) is bounded by CIHVHC,?-"((?D,C) uniformly in 71,7, € D. By Lemma
2.2 (iii) we have |p(z1)/¢'(z1)] < IQD[¢]71||]/||LM(5D’C). Thus it suffices to show

that 1(1,72) = [ap\ o1 o) ey @€ is bounded for 0 < [z — o <271 Let

imply that there



82 Massimo LaNzA DE CRISTOFORIS and Luca PRECISO

(7D\L(‘L’1,‘L’2) = {e’p 10, <0< 01,} with 1, = eiel, 0, <0, <0, <0, +2m,
i0,

a=e"% b=e? By a well-known computation, we have

¢(b) — ¢(1)

—t L 4.26
#@) — (e (426

Since ¢ e C*(0D,C)N.Zp, a simple computation based on Lemma 2.2
(i), and on inequality (4.18) shows that there exists ¢ €]0,27![ such that

%;:zgi; + 1‘ <% whenever 0 < |7 — 72| <. Since I(-,-) is continuous on

B={(r,&)e (D)’ :t#¢&}, we have sup{|/(t;,m):6< |11 —m| <27'} <
+o0. Thus it suffices to show that sup{|I(z;,72)|: 0 < |7; — 2] <0} < +c0.
Since the map 7 is continuous on B; = {(7;,72) € B: |t; — 12| <J} and B; has a
finite number of connected components, then the set 7(B;) has at most a finite
number of connected components. Now the set A ={we C: |exp(w)+ 1] <
47!} is a countable union of bounded disjoint connected sets. Since I(Bs) € A,
then the set 7(Bs) must be bounded. Then by Lemma 4.8 (ii), the proof of
case m = 1 is complete. We now consider case m > 2. A simple computation
based on the Holder continuity of ¢’, on assumption /;p[4] > 0, and on Lemma
2.2 (i), (iii), shows that k,,(-,-) satisfies the assumptions of Lemma 4.8 (iii), and
thus the proof of case m > 2 is complete. O

exp{I(t1,72)} =

By the previous statement, by the compactness of the imbedding of
C™*(0D,C) to C™F(D,C) for 0 < B < a, by the injectivity of I+ U, inferred
by Theorem 4.20, by the Fredholm Alternative, and by the Open Mapping
Theorem, we immediately deduce the following.

THEOREM 4.27. Let meN\{0}, o €]0,1[. Let ¢e C/*(0D,C)N .Zz,.
Then 1+ Uy is a complex linear homeomorphism of C"*(0D,C) to itself.

We now turn to the analysis of the system of equations (4.6)—(4.7), and we
prove the following.

THEOREM 4.28. Let me N\{0}, «€]0,1[. Let aj,as,a3 be three distinct
points of 0D. Then the following statements hold.

(i) If ¢€ C™*(0D,C)N oLy, then the system of equations (4.6) and (4.7)
admits a unique solution { € C"*(0D,C), which we denote by s[¢] and
define as the generalized conformal sewing corresponding to ¢. The system
of equations (4.6) and (4.7) is equivalent to equation (4.6).

(ii) If ¢e Ch*(0D,C)Netyy, then there exist two uniquely determined
functions Ge C°(C\D,C)NH(C\cl D)N C%*(4D, C) and Fe
CO*(cl I[¢],C) N H(I[4]) such that lim._... G(z) —z =0, and F o ¢ = Gjpp,.
Moreover, Gop = s[¢], and Fyop) = S[¢] o ¢V, We denote such unique
functions F and G by F|¢| and Gl¢], respectively.
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(iii) If ¢ e C*(OD,C)N oLy, then the function s|g] belongs to . ,, and
Glg] = glslgll. and Flg) = f1slg]] o (f[#)"" € C™*(cl I[g). C) N H(I[g).
Furthermore, s f[$)" o ¢] = s[¢].

(iv) If ¢eC*(@D,D)N oAy, and if ¢(a;) =a; for j=1,2,3, then
J1sl9]] = Fl4], and wis[]] = 4.

Proor. We first prove statement (i). By Theorem 4.27, equation (4.6)
admits a unique solution { e C*(dD,C). We now show that such solution
satisfies also equation (4.7). We note that by Theorem 2.14 (ii), equation (4.6)
can be rewritten as

YH¢ —idap)(r) = X, [0 ¢ V] og(r),  VredD.

Then by Theorem 2.14 (ii), and by Proposition 4.19, the functions Y [{ — idsp]
and Y, [ o¢(_1)] vanish identically. In particular, we have

YT —idp)(r) = =X, (Lo ¢ V]og(z),  VredD. (4.29)

By Theorem 2.14 (ii), equation (4.29) coincides with equation (4.7). We now
prove statement (ii). By adding and subtracting equation (4.6) and (4.7),
we obtain that (I+S)[{ —id;p] =0 and that {(I—S4)[lod"V]}op=0 for
{ =s[¢]. Thus by Theorem 2.14 (iii), (iv), F and G as in the statement exist.
The uniqueness of F and G and equality G;p = s[g] follow by Theorem 4.5
and by (i). We now prove statement (iii). By equality F[¢]o ¢ = G[¢] =
s[¢] on 0D, we deduce that F[¢] o f[¢] o (f[(/ﬁ](*l) o ¢) = G[¢#] on ¢D. Then by
statement (i), we have G[f[¢]"" o ¢| = G[¢], F[f[#]"" o §] = F|¢] o f]#], and
thus s[g] = s[f[¢] " o ¢]. We are now ready to prove that s[4] € Ty Since
s[g] = s[fm(*1> o¢], we can assume that ¢(dD) =0D. By arguing as in Lu
[22, pp. 427, 428], we prove that F[¢] and G[g] are injective. Then by arguing
as in Gakhov [6, pp. 128, 129], it follows that F[¢]' and G[¢]' do not vanish
up to the boundary. Then by Lemma 2.2, we have Glg],p = s[4] € .
Since s[¢] = F[¢] o ¢ and F[$] and ¢ are orientation-preserving, we also have
s[¢] € ;. By Lemma 4.3 an by (ii), we conclude that s[¢] € 7, , and G[¢] =
glsl#]]. To prove equality F[¢]of[¢] = f[s[#]], it suffices to note that both
hand sides of such equality define homeomorphisms of cl D onto cl /[s[¢]] which
are holomorphic in D and coincide on a;,a;,a3. Finally, we note that under
the assumptions of statement (iv), f[¢] is the identity, and thus F[@] = f[s[¢]]
and wis[¢]] = ¢ by statement (iii). O
We are now ready to introduce the following.

DeriNITION 4.30.  Let me N\{0}, o €]0,1[. We define the generalized
conformal sewing operator, to be the nonlinear operator of C!"*(dD,C)N .o/,

to itself which takes ¢ to s|¢g]. We define as conformal sewing operator, the
restriction of s[-] to C"™*(ID,dD) N .y,
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We note that statement (iii) of Theorem 4.28 implies that the generalized
conformal sewing of ¢ can be expressed as the conformal sewing of f [¢](") o ¢.
By Theorem 4.28 (iv), and by the definition of s[-], we have the following.

THEOREM 4.31. Let me N\{0}, a €]0,1[. Let ay,ay,a3 be three distinct
points of OD.  Then the conformal welding operator w is a bijection of Ty, o onto
the set %, = {¢p € C™*(0D, D) Nty : Pa;) = aj, j = 1,2,3}.  The inverse of
the operator Wi, S the restriction of the generalized conformal sewing operator
10 .o

The advantage of having defined the generalized conformal sewing oper-
ator s is that its domain C"*(dD,C) N .<Zy, is open, contrary to the domain
C™*(0D,0D) N oy, of the classical conformal sewing operator.

5. Differentiability results for the generalized conformal sewing operator

In this section we analyze the regularity of the operator s[-] and of a
related operator, which we introduce below. We first consider s[-] by means of
the following.

THEOREM 5.1. Let m e N\{0}, . €]0,1[. Then the generalized conformal
sewing operator s is complex analytic from C"*(dD,C)N sy 10 T, o

ProOF. Let S[-,] be the operator introduced in (4.22). Let T' be the
nonlinear map of the set (C!"*(éD,C)N.oZp) x C"*(0D,C) to the space
C"*(0D,C) defined by

. 1~. 1~ .
g,y = y+ Uyly] —idop = V—I—Es[ldamﬂ —ES[¢7 7] — idsp,

for all (¢,y) e (C"*(dD,C)N.otp) x C™*(@D,C). By definition of the gen-
eralized conformal sewing operator s and by Theorem 4.28 (i), the graph of s
coincides with the set of zeros of I'. By [18, Prop. 4.1], which can be con-
sidered as a Schauder space version of a known result of Coifman and Meyer
[3, §4], the map S|-,-], and thus the map I'[-,], is complex analytic. We now
deduce the complex analyticity of s by the Implicit Function Theorem (cf. e.g.,
Deimling [5, Thm. 15.3, p. 151].) To do so, we must show that the partial
differential d,I'[¢,s[¢]] of T at (¢,s[¢]) is a complex linear homeomorphism of
C*(0D,C) to itself, for all ¢ € C/*(dD,C)N oy, Since I' is affine in the
variable y, we have d,I'[¢, s[#]](1) = (I+ Uy)[y], for all ue C»*(éD,C). Then
by Theorem 4.27, d,I'[$,s[4]] is a complex linear homeomorphism. ]

By Theorem 4.28 (ii), the function F[4], can be written as s[¢] o oV We
now turn to study the dependence of F[¢],p, = s[¢] o ¢~V upon the shift ¢ by
means of the following.
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THEOREM 5.2. Let meN\{0}, o €]0,1[. The (nonlinear) operator t
defined by t[g] = s[¢] o ¢V, for all $ € C*(dD,dD) N oLfy, maps C*(0D, D)
Nty to C™*(0D,C)N sy, and is continuous from CM™*°(0D, D) N oy to
Cr20(0D, C) N sy Let r e N\{0}, ¢y € C"*%(0D, 0D) N oy Then there
exist an open neighborhood Uy, of ¢, in C""*°(0D, C) N Ay, and an operator
ty, of class C" in the real sense from Uy, to C™*°(0D, C) such that t; 4] = t[¢),
Jor all ¢ €Uy, NC™ (0D, 0D).

ProoF. By Theorem 5.1, s[] is complex analytic from C”*"-*(6D,C)N
<y to itself. In particular, the function s[¢] is of class C° if ¢ € C*(dD,C)N
/5. Thus s[] is complex analytic from C"*%(dD, C) N .o/ to itself. Then
we can conclude the proof by Theorem 2.9, by Theorem 2.11, and by the
definition of the operator t. ]

We note that it can be actually shown that Theorem 5.2 is optimal in the frame
of Schauder spaces (cf. [19, Thm. 2.17].)

Acknowledgement

This paper represents an extension of a part of the work performed by
L. Preciso in his Doctoral Dissertation under the guidance of M. Lanza de
Cristoforis.

References

[1] L. V. Ahlfors, Complex Analysis, An Introduction to the Theory of Analytic Functions of
One Complex Variable, third edition, McGraw-Hill Book Co. New York, etc., 1979.

[2] M. S. Berger, Nonlinearity and Functional Analysis, Academic Press, New York, 1977.

[3] R. R. Coifman and Y. Meyer, Lavrentiev’s Curves and Conformal Mappings, Institut
Mittag-Leffler, Report No. 5 (1983).

[4] G. David, Courbes corde-arc et espaces de Hardy généralisés, Ann. Inst. Fourier (Gre-
noble), 32 (1982), pp. 227-239.

[5] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, etc., 1985.

[6] F.D. Gakhov, Boundary Value Problems, Pergamon Press, Oxford, etc., 1966.

[7] R. Gorenflo, S. Vessella, Abel Integral Equations, Lecture Notes in Mathematics, 1461,
Springer Verlag, Berlin, etc., 1991.

[8] W. Hackbusch, Integral Equations, theory and numerical treatment, Birkhduser Verlag,
Basel, etc., 1995.

[9] C. Haseman, Anwendungen der Theorie der Integralgleichung auf einige Randwertaufgaben
der Funktiontheorie, Dissertation, University of Goéttingen, 1907.

[10] D. Henry, Topics in nonlinear analysis, Trabalho de Matematica n® 192, Universidade de
Brasilia, 1982.

[11] A. Huber and R. Kithnau, Stabilitidt konformer Verheftung, Comment. Math. Helvetici, 69
(1994), pp. 311-321.



86

[12
[13]
[14]
[15]
[16]
[17]
[18]

(19]

(20]

(21]
(22]

(23]

[24]
23]
[26]
[27]

28]
(29]

(30]

Massimo LaNzA DE CRISTOFORIS and Luca PRECISO

L. V. Kantorovich and G. P. Akilov, Functional analysis in normed spaces, Pergamon
Press, Oxford, etc., 1964.

D. A. Kveselava, Some boundary problems of the theory of functions (in Russian), Akad.
Nauk Gruzin. SSR. Trudy Tibliss. Mat. Inst. Razmadze, 16 (1948), pp. 39-80.

M. Lanza de Cristoforis, Properties and Pathologies of the Composition and Inversion
Operators in Schauder Spaces, Acc. Naz. delle Sci. detta dei XL, 15 (1991), pp. 93-109.
M. Lanza de Cristoforis, Higher order differentiability properties of the composition and of
the inversion operator, Indag. Mathem. N.S., 5 (1994), pp. 457-482.

M. Lanza de Cristoforis, Differentiability Properties of an Abstract Autonomous Com-
position Operator, J. London Math. Soc., 61 (2000), pp. 923-936.

M. Lanza de Cristoforis, A functional decomposition theorem for the conformal repre-
sentation, J. Math. Soc. Japan, 49 (1997), pp. 759-780.

M. Lanza de Cristoforis and L. Preciso, On the analyticity of the Cauchy integral in
Schauder spaces, Journal of Integral Equations and Applications, 11 (1999), pp. 363-391.
M. Lanza de Cristoforis and L. Preciso, Regularity Properties of a Nonlinear Operator
associated to the Conformal Welding, Proceedings on Analysis and Geometry, Sobolev
Institute Press, Novosibirsk, pp. 300-317, 2000.

M. Lanza de Cristoforis and S. V. Rogosin, Analyticity of a nonlinear operator associated
to the conformal representation in Schauder spaces. An integral equation approach, Math.
Nachr., 220 (2000), pp. 59-77.

G. S. Litvinchuk, Boundary value problems and singular integral equations with shift
(in Russian), Izdat. Nauka, Moscow, 1977.

J. K. Lu, Boundary Value Problems for Analytic Functions, World Scientific, Singapore,
etc., 1993.

V. N. Monakhov, Boundary Value Problems with Free Boundaries for Elliptic Systems of
Equations, Translations of Mathematical Monographs, 57, American Mathematical Society,
Providence, 1983.

S. Nag, Singular Cauchy Integrals and Conformal Welding on Jordan Curves, Ann. Acad.
Scient. Fennicae Math., 21 (1996), pp. 81-88.

J. Necas, Les méthodes directes en théorie des équations elliptiques, Masson et C., Paris,
1967.

C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer Verlag, Berlin, etc.,
1992.

L. Preciso, Perturbation Analysis of the Conformal Sewing Problem and Related Problems,
Doctoral Dissertation, University of Padua, 1998.

G. Prodi and A. Ambrosetti, Analisi non lineare, Editrice tecnico scientifica, Pisa, 1973.
V. Rohlin and D. Fuchs, Premier cours de Topologie—chapitres géométriques, Editions
Mir, Moscou, 1981.

G. M. Troianiello, Elliptic Differential Equations and Obstacle Problems, Plenum Pub-
lishing Co., New York, 1987.

Massimo Lanza de Cristoforis and Luca Preciso
Dipartimento di Matematica Pura ed Applicata
Universita di Padova
Via Belzoni T
Padova 35131, Italy
E-mail: mldc@math.unipd.it, preciso@math.unipd.it



