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ABSTRACT. Upper and lower bounds of rates of decay in time are studied for non-
stationary Navier-Stokes flows in R” with the aid of Besov spaces in which the solutions
exist for all time. It is shown that there is a Besov space, with norm || - ||, in which the
solution u(¢) satisfies the estimate 0 < ¢ < |ju(z)|| < ¢’ for all 1> 0 provided the initial
velocity satisfies suitable moment conditions. Our argument is then applied to the
analysis of flows with cyclic symmetry, introduced by Brandolese (3], and it is shown
that these flows decay more rapidly in space and time than proved in [3]. However, the
existence of a lower bound as mentioned above remains open for such flows.

1. Introduction and results

This paper continues the previous works [4, 8, 9, 11] on the asymptotic
behavior as ¢t — oo of nonstationary Navier-Stokes flows u = (”/)/‘”:1 in R",
n > 2, which are governed by the integral equation:

t
(IE) u(t) = e a — J e APY - (u @ u)(s)ds, t>0.

0
Here, V = (01,...,0,), 0j=0/0x;, V- (u®@u) = (3_; 0;(wjux));_ys u = ()}, is
unknown velocity and @ = (a;);_; is a given initial velocity, both of which are
required to satisfy the divergence-free condition

V.-u=20, V.-a=0.

A = —4 is the Laplacian on R", e7a = E, * a is the convolution with the heat
kernel

Ei(x) = (dmr) 2N/
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and P = (Py) is the Fujita-Kato bounded projection onto the divergence-free
vector fields. As shown in [4, 9], the operator e~/ PV- has the kernel function
[}
(L.1) Fj(x,t) = 0/ E((x) 0 + J 0j0k0s Egiy(x)ds,
0
so that each component of the vector-valued function e ™PV . (u®u) is
written as

PV @) = [P~y 0w )y, j=Leon

Hereafter, we employ the summation convention and integration with respect
to the spatial variables will be performed over the whole space R” unless other-
wise specified.

In [4, 8, 9, 10, 11] we studied asymptotic behavior as t — oo of weak and
strong solutions u in various L7 spaces, 1 < ¢ < oo, assuming that

(1.2) J(l T IyDla(y)ldy < o,

and proved, among others, the following result.

THEOREM 1.1. (i) Let ae L" satisfy (1.2) and suppose a is small in L"
in case n>3. Then there uniquely exists a global strong solution u of (1E)
satisfying

(1.3) lim /2(+1/n=1/q)

—0o0

w;(t) + (OkEr)(-) Jykaj(y)dy

=0

+ F/ (-, 1) J: J(uku,»)(y, s)dyds )

Jor j=1,...,nand 1 < q < oo, with || - ||, the L%-norm. If n>3 and if a € L?
satisfies (1.2), there exists a weak solution u of (1E) which satisfies (1.3) for all
l<g<2.

(i) Under the same assumptions on a as above, we have

0<co<t™u)|,<er  for large t >0

with appropriate constants ¢y and cy, if and only if

(1.4) (Jyjam(y)dy, J

0

o0

J(uku/)(y,s)dyds> # (0,¢oks)  for all ¢ > 0.

(i) Let a satisfy (1.2) and

—n—1

la(»)| < Co(1+ |¥)
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Then the corresponding strong solution u satisfies
(1.5)  |ulx,0)| < ce(1+x) " "0+ 07" forall 0<Kx<n+1.

Furthermore, if [|y|"|a(y)|dy < oo, then we have

B
(1.6)  lim A/20mm=Va) () — % <_;,) (aifEf)(-)Jy“aj(y)dy

t— o0

I1<|a|<m
(_I)WHP p © p
b S @R | [ s =0
|Bl4+2p <m—1 o
q
for 1<g<oo, j=1,....nand m=1,... n.

(iv) Let n=3,4 and let a satisfy [(1+|y])" " |a(y)|dy < o and
[+ 1y))"|a(y)|Pdy < oo. Then there is a weak solution u which satisfies (1.6)
for 1<g<2and m=1,...,.n—1.

Assertions (i) and (iv) are proved in [4], and assertion (ii) in [11]. Assertion
(iii) was proved in [4] under more stringent conditions on a as employed
in [9]. We show in Section 6 that these conditions can be relaxed to the
form stated in (iii). See also [20] for (1.5) with k =n+ 1. Results of [9] are
reproduced in [10] under weaker assumptions on initial data a.

In this paper we extend the above results to those in the following function
spaces:

X1=L1  1<q<o0;

1.7 .

(-7 o J BV 0<q<lg# 2 meN,
Bin;o? q:nfm7m€Na

where B;y , stands for the homogeneous Besov spaces modulo polynomials (1,
17, 18]). These spaces were employed in [8, 9] as an extrapolation of the scale
of Banach spaces LY to ¢ <1. The norm of X? will be denoted by |||,
Note that (see [3, 8]) since V -a =0, condition (1.2) implies

(1.8) me@:m JM%@wam%@:O

Combining (1.2) with the first condition of (1.8), we obtain (see Lemma 2.1
below)

(1.9) ae X" hnxt,

Furthermore, we can show that (see Lemma 2.1)

(1.10) X" xt e X9 for all %<q< 1.
n
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So, the results of [8] apply to deduce the upper bounds

(L11) (o), < Cq(l + t)*(n/Z)(lJrl/nfl/q) (nn? <qg< I’l),
’ 4= qu*(l‘l/Z)(l‘Fl/l‘l*l/l]) (n <q< 00)7
for strong solutions; and
/ —(n/2)(1+1/n-1/q)
1) ol < ¢l +0) (2 <a=2).

for weak solutions. (1.11) is due to [20] for ¢ = co and (1.11)" is due to [19]
for ¢ =2. They were extended to ;!7 < ¢ in [8]. Our first main result is the
following, which extends (i) and (ii) of Theorem 1.1 to smaller values of q.

THEOREM 1.2. (i) If a satisfies the assumptions of Theorem 1.1 (i), the
corresponding strong solution satisfies (1.3) for all ;25 < q < oo, and the weak
solution satisfies (1.3) for all '7 < q <?2.

(i) Under the assumptions of (i) above, the two-sided bound

(1.12) 0<c, < t(”/z)(l“/”_l/q)Hu(l)||q <c¢,  for large t >0,

is obtained with appropriate constants ¢, and c;, if and only if a and u together
satisfy (1.4).  Here, ;25 < q < oo if u is a strong solution, and ;15 < q <2 if u
is a weak solution.

Estimate (1.12) shows in particular that
0 <co < u(@)ll,ymey < for large t > 0,

if and only if ¢ and u together satisfy (1.4). In particular, u is bounded and
does not decay in X"V whenever ([yra;j(y)dy)# (0). We shall prove
Theorem 1.2 in Section 3 after preparing necessary lemmas in Section 2. Our
key result is Lemma 2.2, by which we can deduce (1.3) for 2y <¢ <1.
Theorem 1.2 shows that we have to consider functions which do not satisfy
(1.4) to find a class of flows with more rapid decay property. A class of such
flows has recently been found by Brandolese [3], and we next examine the
decay properties of these flows in more detail, by systematically employing the

spaces X?. Consider the velocity fields a satisfying

(113 [ <o, [0+ )Py < o
(1.14) a; is odd in y; and is even in y; for all k # j,
and

(115)  ar(y1,-- -, ¥n) = @(Vns Y15y Y1) = - = @u( Y2, - -5 Y V1)
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We can directly verify that if @, u and v satisfy (1.14) and (1.15), so does the
function
t
w(x,t) = e a — J e PY (4 ® v)(s)ds.
0
So, the standard iteration method as given in [5, 6, 7, 12] yields a weak or
strong solution u satisfying (1.14), (1.15), and, moreover,

j(l D)y 2y < C for all 120

which follows from (1.13) (see [4, Appendix] or [16]). Hereafter, up to the end
of this section, by a strong solution we mean the solution given in Theorem 1.1
(iii); and a weak solution means the solution given in Theorem 1.1 (iv). Thus,
our strong solutions satisfy (1.5), which was the starting point in [4] for
deducing Theorem 1.1 (iii). Moreover, since n =3 or n =4 in Theorem 1.1
(iv), we may assume (see [6] or [12]) that our weak solutions satisty the strong
energy inequality

(1.16) .
||u(t)||§+2j [Vul3dt < ||u(s)|;  for s=0, ae. s>0 and all 7> s.

In this paper we call a solution satisfying (1.14) and (1.15) a solution with cyclic
symmetry. Direct calculation gives

(1.17) j<ukw><y, )dy = A1), jy](ukw)(y, Ndy =0

if u is a solution with cyclic symmetry. Moreover, by (1.8) and (1.14) we get
[ yjai(y)dy =0 for all j and k; so in view of (1.17), a and u do not satisfy
(1.4). Theorem 1.2 (i) thus implies

lim t<"/2><1+1/”’1/4)||u(t)||q =0

11—

" . . L " . .
for ;#5 < ¢ <o if u is a strong solution and ;}; <¢ <2 if u is a weak

solution. Actually, we can show more. Indeed, condition (1.8) and (1.14)
together imply
(1.18) Jy}'a(y)dy =0 whenever |y| <2
provided that a satisfies (1.13). This, together with (1.6) and (1.17), implies
(1.19) lim (/221D (1), = 0

1— 00

for all 1 <g¢g < oo, if u is a strong solution,
for all 1 <¢ <2, if u is a weak solution.
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We shall extend (1.19) to the case of smaller ¢q. Indeed, in Section 4 we prove
the following, which is our second main result.

THEOREM 1.3. Let ae & satisfy V-a=0, (1.14) and (1.15).
(i) There exists a strong or weak solution u with cyclic symmetry which
satisfies

(1.20) ()], < cq(1+ £)~(D(+3/n=1/q)

Here, ;!5 < q < o0 for a strong solution, and '5 < q <2 for a weak sol-
ution. In parlzcular
lim Z‘(n/2)(14r2/1171/q) ult -0
lim (o,
Jor 5 <q<oo if uis a strong solution, and '5 <q <2 if u is a weak
solution.
(i) The strong solution u given above satisfies

) u(x,t)| < el +|x +1)" or all 0 <k <n+3.
1.21 1 (L 4y i1 0 3

(i) Let u be a weak or strong solution given above. Then we have
(1.22) t(”/z)(l+3/”_l/")Hu(t)Hq >¢, >0 for large t >0,

if and only if there exists je{l,...,n} such that, for some t> 0,

(123 3 B [
Jou[=3 7

+ Z (0P F, ) (x, Z)J Jyﬁ(uku/)(y, s)dyds # 0.
=Y 0
Brandolese [3] shows the existence of a strong solution with cyclic symmetry
such that

()]l < cq(1+0)" WP for all 1< ¢ < oo,
(1.24)
u(x, 1) < e+ |x) " 21+ forall 0 <k <n+2.

Our (1.20) and (1.21) extend (1.24) to the case ¢ < 1 with improvement. The
main difference between the result of [3] and Theorem 1.3 is that [3] proves the
existence of a cyclically symmetric strong solution with property (1.24), while
Theorem 1.3 asserts that the weaker condition (1.5) and the cyclic symmetry
together imply (1.21) provided that a € &.

A divergence-free vector field a satisfying the assumption of Theorem 1.3
is constructed as follows. Choose b e & satistying (1.14) and (1.15), whose
Fourier transform b vanishes identically near the origin. Then the vector field
a=(ay,...,a,) given by
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& = (O — &/ |E1)Bi (&)
is divergence-free, belongs to %, and satisfies (1.14), (1.15) and (1.18). To get
a vector field » with properties described above, we have only to take a vector
field ¢ e & satistying (1.14) and (1.15), multiply the Fourier transform ¢ by
a smooth radial cutoff function which vanishes identically near the origin, and
then take the inverse Fourier transform of the resulting vector field. Actually,
the above construction gives divergence-free vector fields a such that

(1.25) Jy’a(y)dy =0 for every multi-index 7.

At the end of Section 4, we will give a criterion that ensures the existence of the
constant ¢, > 0 in (1.22) in the case where n =2 or n = 3, assuming (1.25) for
the initial velocity a. However, we do not know whether such solutions exist.

As is seen from the above discussion, study of Navier-Stokes flows with
fast decay involves various cancellation properties of moments of functions.
This is one reason for which the theory of the Besov spaces can be effectively
applied. Indeed, it is well known in Fourier analysis that the scale of Besov
spaces is suitable for treating functions with such cancellation properties.
Another reason for using the spaces (1.7) is that our argument heavily relies on
the properties of spatial derivatives of the heat kernel. As will be shown in
Section 2, these functions are effectively treated in Besov spaces.

It is also possible to consider Navier-Stokes flows with fast decay pos-
sessing other kinds of symmetry. For example, [15] shows that if the space
dimension is even, there exist solutions subject to spherical symmetry. The
reader is referred to [14] for the decay properties of Navier-Stokes flows and
related problems.

We conclude this paper with two appendices; in Section 5 we give a full
proof of (4.6) and Section 6 deals with the existence of solutions treated in
Theorem 1.1 (iii).

2. Preliminaries

We begin by proving (1.9) and (1.10). It suffices to show the following
result.

LemmA 2.1. Let meN.

(i) Suppose [(1+ |.y|)m\f(.y)|dy < o0 and [y'f(y)dy =0 for every y with
y|<m—1. Then feB{"™ NBT for all 0 < o < 1; and we have
1o 1B

o G | (1 5L 0
2.1)
oo < n [(L )10l
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Here, [f] 1, and [f] denote the norms of the spaces Bl’s1 and Bi’&,

—m, 1,00
respectively.
(i) We have B") NL' = B{'{* for all 0 < o < 1, with estimate
(2.2) o1 < cWO‘Hfllll_%[f]imloc
(iii) The Riesz transforms R = (Ry,...,R,) defined by
VLYY _ /T
(ka)(é)_m (6)7 k—l,...,n,l— _la
are bounded from Bl_fl to itself and from Bl_'fo to itself, respectively.

ProoE. (i) We fix y € ¥ so that

for %s|é|s§-

i

suppy = {27 <[¢] <2} and (&) =

assume

(2.3) Y& =1 forall &#0.

jeZ

The norms of BI‘Y1 and BI"ZC are given by

Sl = 27 Sl [t = sup 27|+ £
JE

JeEZL

See [1, 17, 18] for the details. The rescaled functions f;(x) = f(x/4), 4 >0,
then satisfy

(2-4) [fi]—s,l,l = ’15+n[f]—s71,17 [f/l]—m,hoc = )‘m+n[f}—m,lﬁtx'

Now, it is easy to see that

S 2 g flly < WAL 2277 = ol 1

j=0 j=0

sup 27|+ Sy < 1l [1/1] (sup 2‘-”") = L 1711
Jj=0 Jj=0

When j < 0, we apply Taylor’s formula to the function y — y;(x —y). Due to
our assumption on f, we obtain

W+ /)) = Jw,(x )y = ij,j<x, D)y,
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where

1

. 1

Ry j(x.) =m(=2)" [ (1-0)" )" Y @y do.
0 |=m

Applying Fubini’s theorem gives Hlp, * fll; < eV 19" f (»)|dy, and

SO

ST S]]y < e Y 20 j " D)y = e, j ™1 ()|,

j<0 Jj<0
sup 2 < e j 1) ldy,
J<

since « < 1. Estimate (2.1) now follows immediately. This proves (i).
(ii) Suppose /e B NL'. The estimate |y + /] < [lll,]./]; implies

D27y Sl < el 1S -

7=0

Since feBi"jo implies ||y * f1l; <2™[f]_,, ., for all j, and since o < 1, it
follows that

ST sk £l < ) mte D270 = Cnal ] 1o

Jj<0 j<0

Hence, [f]fmot,l,l < C’71~,C<(||fH1 + [f]fm,l,oo)‘ We now insert f)(X) :f(x/ll/m)a
A >0, and apply (2.4) to get

[f]—nm,l,l = Cm,a(}-71||f||1 + llia[f]—m,l.oo)

with ¢, , > 0 independent of 2> 0. Setting 4= ||f|;/[f]_,.1 . gives (2.2).
The proof of (ii) is complete. - .

(iii) For all jeZ, we have (Ret))(&) = (i /IENH(27¢) = (Reh) (27¢)
and so

IRl = (R )11y = I Retf -

Take My e Cy"(R") so that Mi(S) =0 near ¢ =0 and Mi(S) = i¢/[¢| on
supp Y. Then ||Ry||; = || My * ||, < || Myl |||, with M, the inverse Fourier
transform of My, and so [[Ry;l|; < M with M >0 independent of j and k.
On the other hand, the definition of y; and (2.3) together imply

Yixf =W ¥+ ) * g« S
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Since Ry are convolution operators, we see that

1 1
1R * £l < D0 IRy ) 5 Sl < D IRl £l < 3M % £

/=1 /=1
This implies the desired results. The proof of Lemma 2.1 is complete.

We next consider the functions VE;, F,; and their derivatives in the
spaces X7,

LEmMMA 2.2. Let meN. Then V"E, and Vm’lF/,_/k are in X4 for all
M < g < oo and satisfy

n+m

”VmEqu _ thf(n/Z)(ler/nfl/q)’ ”melF/’ijq _ thf(n/Z)(ler/nfl/q).

Proor. The functions V”E, and V" 'F,; are of the form
M2 K (x~1/2) with K such that

(2.5) KeX? forall ' <g<o.
n—+m

This is easily checked for V”E,. Indeed, in this case K = V" E; are derivatives
of the rapidly decreasing function e"x‘z, so they belong to X"/ NL'NL”.
Lemma 2.1 (ii) ensures the desired result (2.5) for V"E,. As for V" 'F, y,
note that F(-,1)’s are kernel functions of the operator PVe 4 at t=1. Since
P=I+R®R with R=(Ry,...,R,) the Riesz transforms, Lemma 2.1 (iii)
implies that K = V" 'F(- 1) are in X"/ We easily see by direct cal-
culation that the functions K are bounded and integrable on R". So, (2.5) is
deduced from Lemma 2.1 (ii). The result now follows from (2.4) and the
corresponding scaling property of L?-norms. This proves Lemma 2.2.

The following lemma will be effectively applied in the subsequent sections.

LemMmA 2.3. Let meN, -2 < g < o0, and let K satisfy (2.5). Then,

n+m —

(2.6) lim ||K(- —yr ") —K()l,=0  for any fixed yeR".

Proor. We use the relation

1
K(x—yr''?) —K(x) = 71—1/2J (y-VK)(x — yr ?7)dx.
0

Since VK € X9 for all -2~ <¢ < o0, and since [[VK(-—yr™'/?)||, = VK],
we get

1
IK(- =71 = K()ll, < 12y L VK|, dr =12y VK], — 0

as t — oo. This shows (2.6), and the proof is complete.
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3. Proof of Theorem 1.2

First we prove assertion (i). It suffices only to discuss the case ;"7 < ¢ <
—14

1. Consider first the linear term e *a. Since a satisfies (1.8), direct calcula-
tion gives
1

(e ay)(x) = j[E,<x —3) — Ela(y)dy = — j

. J(ﬁkEt)(x — 0) yra;(y)dydo,

so that

(e a)(x) + (O Er)() jykaxy)dy

1
= — JO J[(akEt)<x - y@) - (akE,)(x)]ykaj(y)dde.

By (2.4) we get, with ;"5 <¢ <1 and K =VE,

t(n/2)(l+1/n—l/q)

e a;+ Oy Jykaj(y)dy

1
= CJO J”K(' — 3t 120) — K()||, |l a()|dvdo.

Since a satisfies (1.2), applying Lemma 2.3 and the dominated convergence
theorem gives

=0.
q

(3.1) lim (/2(1+1/n=1/q)

[—o0

e "a; + OkE, Jykaj(y)dy

Consider next the nonlinear term of (IE), which is written componentwise as

t

(3.2) w;(f) = — L Fy i (t — ) * (uguy ) (s)ds

t/2 ¢
= — (J +J )F/&j‘k(l — S) * (ukl/l/)(s)ds =1+ 5.

0 12

By (1.11) or (1.11)" we have |ju(s)||? < c(1 +5) 7% so Lemma 2.2 implies

t

t
&), < J/z 1F7 (1= 5)ll, lu(s) 1 3ds < cjﬂ(t — 5) "R =2 g
t

< ctfn/Zf(n/Z)(1+1/n71/q)’

t

because 0 < g(l +%—%) < 3 whenever ;% < ¢ < 1. We thus obtain
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(3.3) DU D| < et -0 as 1 — oo,

We next rewrite I; as
t/2
= ~Foplen) | [ )y
0
t/2
= | [ = =) = Bt = ) ()
0

t/2
*L ﬁ&ﬁ@ﬁ*@*ﬂwﬁﬁmwwﬂ%@@ﬁy

to obtain

(34) L+ Fsi(x,1) J: J(uku/)(y, s)dyds

0

= Fy j(x,1) J J(uku/)(y, s)dyds

t/2

t/2
—L)ﬁﬂwﬁ—yJ—ﬂ—Dﬁﬁﬁ—WWWM%@@ﬁ

t/2
- Jo J[ka(x, t—8) — Fy u(x, )] (ukuy) (p, s)dyds

=i+ + 5.

It is easy to see that

(3.5) AU || < CJ |u(s)|3ds < Cr™* =0 as 1 — .

/2

To estimate J,, we write Fy j(x,t) = t~"*V/2K(x¢71/?) and apply Lemma 2.2
to get

/2
(3.6) NmmﬂwwthScJ ﬁmc—ﬂwﬂrm>
0
— KO July, ) Pdyds

t/2
=c| ooty dvas.

Observe that ¢, is bounded and Lemma 2.3 shows ¢,(y,s) — 0 as t — oo for
fixed s and y. Therefore, the dominated convergence theorem gives
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T

(3.7) tlimJ J%(y,s)\u(y, s)|*dyds = 0 for any fixed 7 > 0.

0

Now, given an arbitrary ¢ >0, choose 7 >0 so that [, u(s)|5ds < e If
t > 2T, then

J;/zJgo,(y,s)|u(y,s)|2dyds _ <J0T+J;/2> J%(y,sﬂu(y,S)lzdyds

o0

T
< j jmy, s>|u(y,s>|2dyds+cJT lu(s)]| s

T
< L j¢,<y,s>|u(y,s>|2dyds+ce

with ¢ > 0 independent of ¢ and ¢. This, together with (3.7), implies

t/2
tim [ [ (3.9t ayds 0

— o0

and so (3.6) yields

(3.8) lim (/2010 )= 0.

—o0

To estimate J3, we write Fy j(x, 1) = K(x,1) = t~"*D/2K(x¢~1/2) and invoke the
relation
1
K(x,t—s5)— K(x,1) = —SJ (0,K)(x,t— s60)d6.
0

From (1.1) we easily see 0,K = 4K, which implies
16.K]|, = 14K, = ¢t~ =210 for ] n”? <q<l.

Therefore, if 0 <s < ¢/2, then
1
K(-,t—s)—K(-,0|, <es| (t—s0)7"0/20+n=1/a) g
1K ( ) — K., (
0

< CSZ_I_(n/2>(1+]/’1_]/q>.

This, together with (1.11) or (1.11)", implies

/2 /2
(R < et | Csluts) s < et | 07

and therefore,
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(3.9) lim (/2D gl = 0.

—o0

By (3.2)-(3.9), we have proved

lim /20+1/n-1/g)

11— o0

=0
q

wi(t) + Fy jk J: J(uku/)(y, s)dyds

n
for all —— < L.
or a n+1_q<

Combining this with (3.1) completes the proof of assertion (i).
To prove assertion (ii), recall that condition (1.4) is equivalent to

n

<6kE,(x)Jykaj(y)dy + F/ je(x, t)LOOJ(uku/)(y, s)dyds) # (0) for all ¢+ > 0,

j=1
as a function of x; see [11, Proposition 2.1]. By Lemmas 2.2 and 2.3, this is
equivalent to

n

(3.10) >

J=1

OkE, Jyka,/(y)dy + Fyji J J(uku/)(y, s)dyds
0

q

= e A S g,

Now, suppose that (1.4) holds, and so (3.10) is valid. Direct calculation then
gives

(D, =

akEt J)’ka](y)dy + F(,jk J J(u/cu/)(ya S)dyds
0

q

o0

(1) + Oy Jykaj(J/)dy + Fyji J

. J(ukw)(y,s)dyds

q

Here we let + — oo and apply (1.3) to get, by (3.10),
n
fu(t)ll, = Y llu(0)ll, = g @D >0 for large 1> 0.
j=1

Thus, (1.11) or (1.11)" implies (1.12). Conversely, suppose (1.12) holds. Since

OcE Jykaj(y)dy + F/ J J(ukw)(y, s)dyds
0 q
> [l (1), — [0 +akE,jykaj<y>dy+F/,.,~kj j<ukw><y,s>dyds ,
0

q
it follows from (1.3), (1.12) and Lemma 2.2 that
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n

>

J=1

= ¢, PR S g,

U, [ () + Fo j:o [ w329

q

This implies (1.4). The proof of Theorem 1.2 is complete.

4. Flows with cyclic symmetry

In this section we first prove Theorem 1.3. We then discuss the problem
of finding a lower bound of rate of decay for these flows. As will be described
below, it is reasonable to expect that the flows treated in Theorem 1.3 never
decays in X"/"3_ However, our consideration is incomplete and so we
cannot yet give a definitive answer to this question.

Recall that a strong solution means a solution given in Theorem 1.1 (iii),
and a weak solution is that given in Theorem 1.1 (iv). We begin by preparing

LEMMA 4.1.  Let u be a strong or weak solution with cyclic symmetry. For
m=0,...,n,
m 2
@n [l
{ em(l 4+ s)_l_(H”/z)(l_m/(”H)) if u is a strong solution,
<

2+4n/2)(1-m/n)

em(1+9) " if uis a weak solution.

Proor. By (1.19) we already know that
(D), < cg(1+2)WPI1a for all 1 <g<2.

When u is a strong solution, we know |y|""'|u(y,s)| < C by (1.5). It follows
that

17 )Py < € [ty slay < 197"

Therefore, when m =0,1,...,n,n+ 1, we have

m/(n+1) 1—m/(n+1)
[117lut ay < (j|y|"“|u<y,s>2dy) (j|u<y,s>|2dy>

< Cm(l + S)717<1+”/2)<1*m/(n+1)).

When u is a weak solution, we know | |y|"|u( y,8)|*dy < C (see [4, Appendix]
or [16]). Thus,

[t ttsay = ([t s>|2dy)m/n ( Iu<y,s>2>lmm

< Cm(l + S)7(2+n/2)(17m/n)

for m=0,1,...,n. This proves Lemma 4.1.
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LemMA 4.2. For every multi-index y with |y| =m >0, we have the esti-
mates
0LE(x)] < ealx ™™™ O F i (x,0)] < x| T
with ¢, > 0 independent of t > 0.
Proor. We easily see that [07E;(x)] < Ot~ /2= 1, Taking the
maximum of the right-hand side with respect to ¢# > 0, we get the first estimate.
On the other hand, direct calculation using (1.1) gives

0
2] = el |

t

Sf(n+z11+3)/2efc,’”|x\2/s dS) )
By the change of the variable 7 = |x|?/s, the last integral is estimated as
/1
_ |x|*n*m*1J ,L.(n-‘rm—l)/Ze—c,’,,r dr < Cm‘xrn*m*l.

This proves Lemma 4.2.

Proor oF THEOREM 1.3. (i) By (1.18) and Taylor’s formula, we get

1
(P et < 3 [ IEE) =y 2015 () dydo.
I7|=3
Since [|(V2Er)(- — yt='/20)||, = |V’Eil,, and since ™4 defines a bounded
semigroup in X9, we obtain

(4.2) lle=al, < (1 + ¢y A=),

We next consider

t

w;(f) = — L Fy it — ) * (wgeuy)(s)ds

0 t/2

/2 ¢
= — (J +J >F/,jlc(l‘ —5) * (uguy)(s)ds = I + L.

By (1.17), we see that

t

L=->" / J[F/,_,-k(x — Yt =) = Fyje(x, 1 — )] (uu ) (y, s)dyds
k12

t
- j/ [Pt =309 = Pt = 9k v, s) v
t/2

— Jt Fy jr(x, t — 8)A(s)ds.
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But, from (1.1) it follows that

o0

(43) F/ﬁj/ = GJE, + J a]AES ds = GJE, +J Q@-ES ds = 0,
t

t
and so
t
L=— J/ J[Ff,jk(x —p,t—58) = Fyj(x, = 5)] (ugay ) (, s)dyds.
12
Applying the second property of (1.17) gives, by Taylor’s formula,

1 1 pt Y
L=-2 Z ;JO J/2 J(l — 0)(0LF, ji)(x — y0,t — 8)y" (urus ) (y, s)dydsd.
=2 7" !

Recall that V2F = ("92K (xr71/2) with K e X? for all ;%3 < g < o0; and
(4.1) implies

(4.4) jmﬂm Pdy < c(1+5)7

n n
for some ¢ > 0. Thus, for ;25 < ¢ <%, we have

t
HIZHqgch (I—S)_(H/2)(l+3/n_l/q)(l+S)_1_£dSSCq(1+l)_(’1/2)(1+3/n_]/q)_€,
t/2

and (/DI L) — 0 as 1 — oo, If ¢ > 1 and if u is a strong solution,
then (1.19) gives [u(s)|, < ¢,(1 +5) WA/ g6 from

!
t/2
and [[F(1—s), = C(I—S)fl/z, it follows that
! t
2 -1/2 —n(142/n—-1/(2
|, < ch 1F(t = 3)1, lu(s)|13,ds < ch (1= s) 2 (1 ) 2D g
t/2 02
< cq(l + l)l/Z—n(1+2/n—l/(2(1)) _ cq(l + l)—n/Z—(n/z)(1+3/n_l/q).

Hence, ("2H3/m=Va|L| —0 as t— co. Applying Lemma 2.1 (i), we
conclude that
(4.5) lim t(n/Z)(l+3/n71/61)H]2||q =0

— o0

n . . .
for all —— < ¢ < oo, if u is a strong solution.
n+3

When u is a weak solution, (1.19) gives [lu(s)], < (1 +5) " WAUR/=VG) for
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1 < ¢ <2; so the above argument shows 7/%|| ||, — 0. Actually, it is possible
to deduce ¢#"/2(1/253/m |||, — 0, and thereby we can prove, via Lemma 2.1 (ii),

(4.6) lim (/2030 L) =0

11— o0

for all 1 < g <2, if uis a weak solution.
n+3

Our proof of (4.6) for ¢ =2 uses (1.16) and (1.19), and it will be given in
Section 5.
Similarly, the term [; is written as

1 1 pt/2 )
n=-2% ;L L 1= 0@z (= 30, - 97w 3. 5)dyvasao
=2 7"

/2
== 37 e [ o saves

[7=2

1 (7? ‘
= | @ = 9 = @t v 01 ) (9,51
=z 7790
172 ) ,
2325l ), Jo-onerme =009 - @Fe -

X " (uruy)(p, s)dydsd6
/2
= —Z (O3 F7 i) (x, I)J Jyy(uku/)(y, s)dyds +J| +J;,
0

so that

1
47) I +gi(x Z (@) (x, z)J

o0

Jyy(ukw)(y, s)dyds + J| + J,

=

/2

where
1 o0
(4.8) Z y— (O1Fy ji)(x, Z)J Jyy(uku/)(y, s)dyds.
= 0

The integral with respect to s in (4.8) is finite, due to (4.4). We write V°F =
IR K (xt71/?), with some K € X7, 5 < ¢ < o0, to obtain

—n - n
(4.9) lgell, = eqt (n/2)(1+3/n-1/q) for all e <g<w.

On the other hand, from (4.4) we have f;/czf|y|2|u|2dyds: O(t%) as t — 0,
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and so the first term on the right-hand side of (4.7) is o(¢~/2(1+3/1=1/4)) a5
t — oo, for all ;25 <g<oco. For J;, we get
t/2

1
(D | CJ J

oo JIIKC = (1= 5)"20) = KOl |7 |u(y, ) *dydsdo

1 p1/2
- J j jmx, 2.5,0.) |y lu(y, ) dydsdo.

Since llim ¢, = 0 by Lemma 2.3, the same argument as in the proof of Theorem
— 0

1.2 (i) gives

lim (20D~ 0 for all % <g< .
n

t— 00

We next rewrite J| as

L (724 ,
J = Z JJ J J(é,@;Fﬂjk)(x, t — st)sy? (uguy ) (y, s)dydsdr.
=2 7770 J0

Since 0,V2F = r~""92K (x171/?), with K € X? for all ;% < ¢ < o0, we get by
(4.4)

t/2 t
t(”/2>(1+3/”*1/‘1)||J1’||q < CflJ Js|y|2|u(y,s)\2dyds < cflJ (145)"ds — 0
0 0

as t — oo. We have thus deduced

(4.10) lim (/2319 (1) 4 g,]|, = 0

1—o0
{for all ;5 <g<oo if u is a strong solution,

for all 25 <¢ <2 if uis a weak solution.

Combining (4.2), (4.9) and (4.10) gives
lu(e)ll, < lle™ally + () + gall, + llgell, < eqr™ W21

for appropriate values of ¢. Since [u(7)]|, is bounded in 7 > 0, the proof of (i)
is complete.
(i) We systematically apply Lemma 4.2. Let

u(t) = e a— JIF(Z —5) * (U@ u)(s)ds = e a+ w(t).
0

In view of (1.20) with ¢ = oo, we need only show that

(e Ma) () < e(l+ )™ and  fwx o < e(l+[x)
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to deduce (1.21). Since |u| and |e~1a| are bounded in x and 7, so is |w(7)|.
Therefore, in what follows we always assume |x| > 1. Now,

(e a)(x) = j T j E(x — y)a(y)dy = Ki + Ka.
[yl<|x]/2 [yI>]x]/2

Since « is in &,

K| < ¢ sup |a(y)| < c(1+|x))™" for all N > 0.
[¥I>[x1/2

We next invoke (1.8), (1.14), (1.15), (1.18) and Taylor’s formula to get

—_ )7
" J| [<hvl/2 [E'(xy) Z( ) @Er)(X)] a(y)dy

<2 !
@EW[
' \;s:z ! Jm /2( y)'a(y)dy
=3 Z IJI J (1= 0)*(07E) (x — y0)(—y) a(y)dydd
[y1=3 o Jyi<p 2

o« (E)) e
Z—jyl>x/2< »)a(y)dy

|
ly|<2 7
= K1 + Ki2.

We ecasily see that

Ko < ¢ > x| j A+ )™ My < e
‘ylgz ‘y‘>‘)€|/2

for all N > 0; and, since |x — y0| > |x| —|y| > |x|/2 whenever |y| < |x|/2, it
follows that

K| < clx] ™3 j ) e
yI<|x]

Hence
(4.11) l(e ™ a)(x)| < (1 + |x|)7"73.

Consider next

t
w;(f) = —J Fyjic(t — ) * (uguy ) (s)ds = —(J —|—J > =1 +1.
0 [yI<|x[/2 [y|>]x]/2
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Since our strong solutions are those given by Theorem 1.1 (iii), they satisfy
(1.5), ie.,

(4.12)  |u(y,s)| < el +[y) " "A+5)""*  for all 0 <rx <n+1.

From ||F(t—s)||, = ¢(t—s)""? and (4.12), we get

t
L] < j J F =yt — $)[(1+ p) ™ (1 + )" Pdyds
0 J|y|>|x|/2

t
<l +|x) > J J|F(x = 8)|(1+5)"dvds
0

t
<1+ |x) 2! J (t—5) V2 12 ds < e(1+ |x]) .
0

On the other hand, we see by Taylor’s formula, (1.17) and (4.3) that

1t
| y
I = —2J J J (1-0) E 7(6;F/7jk)(x —y0,t — )y (uguy)(y, s)dydsd0
0 Jo Jjy<lx/2 =2 7

- J j [Fs (01— ) — (OonFr ) (5, — )] (ts07) (3, )yl
0 J|yl<|x|/2

1 pt
1, )
= —ZJ J J (1=0) Y = (01F, ) (x = y0,1 — )y (i) (y, s)dydsd 0
0 Jo Jiyl<x|/2 = 7

t
+ J j Fy (.t — ) () (3. 5)dyds
0 J|y|>|x]/2

t
- J J (@mFr 1) (%, € — ) ym(atttr) (v, 8)dlydls
0 J|y|>|x|/2

=1I{, + 1}, + 1.

By (4.4) we get

t

1| < c|x|—"—3j

j 2, ) dlyds
0 J|yl<|x]/2

o0
< el J j|y|2|u<y, §)Pdyds = e|x| "3,

To estimate /{, and I{;, suppose first » > 3. Direct calculation using (4.12)
gives
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t

1I},] < C'|3C|7,171 J

j (14 1) 21+ 5)™dyds < clx] ™,
0 J|y|>|x]/2

t
Bl eld " [ ] ) s < e
yI>lx

Collecting terms gives
(4.13) w0l < 1H|+ L) < e+ [x) ™

By (4.11) and (4.13) we obtain |u(x,7)| < ¢(1 + |x|)™ >, and so (1.21) follows
immediately. When n =2, the above argument shows |I/,| < c(1 4 |x|)™" -
logle+1) for k=23, and so |u(x,7)] <c(l1+|x|)™" > log(e+1). This,
together with (1.20), gives

e—rK/2

u(x, )] < (14 X)) (1 +1) for 0<xk<n+3 and ¢>0.

Using this with sufficiently small ¢ > 0, we again estimate //, and I{; and get

t
VMSdﬂ"IJLlé DA 4 ) 2dyds < efx| 7,
y|I>|x

t
MMSdﬂ"ZJL|J DTN 4 ) 2y < cfx]
y|>|x

This implies that (1.21) holds also in case n = 2.
(iii) As in the proof of (ii), we get

t(n/Z)(l+3/n71/q eft + Z a EI Jy a; y)dy
q
<o [ [1@zEe 3P0 — @)l o — o
[o]=3

as t — oo. Combining this with (4.10) and (4.8), and noting that

1 [oe)
Z —OLE; [ y*a(y)dy + Z (OPF)(- P (u® u)(y,s)dyds
o = 0

q

= ¢, 1),

we can deduce (iii) as in the proof of Theorem 1.2 (ii). The proof of Theorem
1.3 is complete.

REMARK. Suppose ae€ & satisfies (1.14), (1.15) and (1.25), and so
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le"all, = o(z~™) for all M >0 as t — oo; and let u be the corresponding
strong solution treated in Theorem 1.3. Then, Theorem 1.3 (iii) shows that
2= |u(1)[|, = ¢4 > 0 for large 7> 0 if and only if g, # 0 for some
t >0, where g, is the function given in (4.8).

Concerning this, we can show the following: consider

Ay = J Jyjzuj2 dyds; By = J Jyjzu;% dyds,
0 0

Dy = J J)’j”ij“k dyds, (J # k).
0

Using (1.15) for u, we easily see that 4 = Aj; is independent of j. Further-
more, we always have Dy = Dy;. Suppose first n =2. Then B = By, = By,
D = Dy, = Dy;; and we readily see that condition g, = 0 implies

(4.14) A=B+D.

Conversely, (4.14) implies g, = 0 for all + > 0. Suppose next n=3. Due to
(1.15) for u and the symmetry of Dy, we always have D = Dj.. Furthermore,
if g, =0, then By = By;. Thus, (1.15) for u implies By = B. We can then
deduce (4.14) by direct calculation. Conversely, one can directly show that if
n =3, if B= By are independent of j and k, and if 4, B and D satisfy (4.14),
then g, =0 for all > 0. We thus conclude that g, # 0 if and only if (4.14)
breaks down, or n =3 and Bj is nonsymmetric.

5. Appendix A: Proof of (4.6)

We give a full proof of (4.6) in case ¢ =2 for weak solutions u given in
Theorem 1.3 satisfying the strong energy inequality (1.16). The basic idea is
due to [2, 5, 13]. Recall that

t

L= —J Fy jic(t — ) * (uguy ) (s)ds.
t/2

Bearing this in mind, we consider for 0 < 7 < ¢ the function v = (vy,...,v,)

with

0) = = || Fent=5) () s)ds = 1) — B v ().

The function uf(t) = E; .+ u;(z) = e”""u;(z) satisfies
t

(5.1) 01 +2 [ IV ldo = @)1} for 125>,

s
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while u satisfies (1.16), i.e.,
!

(5.2) |\u<z)\|§+2j |Vul|3do < ||u(s)|3  for a.e. s>t and all 1> s.
S

On the other hand, since v solves weakly the initial value problem
0w —Adv=—PV - (u®u) (t>1), v(7)

direct calculatuon gives

t t

Vv, Vuydo = Cu(s), u’(s)) — J {u-Vu,uydo

N

<o(),u®(8)) + 2J

N

for > s> 17 and &> 0, where u(g) = e~ (""" D4y(7). Letting ¢ — 0 yields
(5.3) (), u’ (1)) + ZJI Vo, Vuydo = (u(s), u’(s)> — J[ u-Vu,u®>do

for t > s> 1. Adding (5.1) and (5.2) and then subtracting 2 x (5.3), we obtain
(5.4) lo(2)]13 + 2 Jl IVell3do < Jlus)ll3 + 2JI Cu-Vu,u’yda

for a.e. s> 7 and all >s. But, since V-u =0, we have {u-Vu’,u’> =0, so
2 - Vu,u®y = 2 - Vo,u®y < 2l[uly[|Voll, 1], < IVoll3 + Jull3 ]|’

Inserting this in (5.4) gives

! 2 > iz on2

olido < o)1 + | 31l do

N

(5.5) lo(n)]2 + j

N

for a.e. s>t and all 1 >s. Here we define the operators E(4), 4> 0, by

(5.6) [EG)F1(€) = 1) f(£)

with y, the indicator function of {¢: |¢|* < 1}, where f is the Fourier trans-
form of f:

F&) = [ irmar =D,
For any x>0, we have

o)l = [1EPsE oPde > | | 1ellice. o) ae
> u

1<l

> u(llo(0)I? = [ E()e(@)I3),
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and so (5.5) yields
lo()ll; + J u(@)|v(o)l3da < [|o(s)]3 + R(z,5)

for a.e. s> 7 and all # > s, where

t

R(1,5) = J (@) | E(u(@))e(@)ll3 + [lull3]|u’

s

2 ldo.

Here u(o) is a positive decreasing function to be fixed later. On the other
hand, since

vle) = - J AP - (1 ® u)(n)dy,
with P and e defined in terms of the convolution, direct calculation gives

|Ee(o)], < Jg||E(ﬂ)V'(“®u)(77)sz77 for fixed 1> 0.

T

Using (5.6) and the L' — L* estimate for the Fourier transform, we have

IEY - @@l < | 1w uEnla

1<l

< |u®ul(n)

2
@J ¢%d¢
& <p
2 n n 4
< el @ W Pa 2 < e )2,

and so ||E(u)v(a)|l, < eu™ P/ [?||u||3dn. Therefore,

o 2
W B} = o) 2 (| i ).

and

t g 2
Rit.9) < S(t.9) = ¢ | [ulo)"* " (j ||u|§dn) 1), Mo

T

We have thus deduced

(5.7) .
lo(2)||3 — S(1,5) +J u(o)||v(o)|l3do < ||o(s)||;  for ae. s>t and all > s.

N
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It is possible to differentiate z(s) = jfﬂ(a)|\u(a)||§da at a.e. s, to get, by (5.7),

2(0) = —u(0)|(0)|I3 < —p(0)[z(0) + o(1)]3 — S(t,0)].

Here we take u(o) =m(oc—1)""

(6—1)" to get

, m>%5+3, and multiply both sides by

(d/do)|(e —1)"z(0)] < —m(o = )" [||o(1)ll; - S(1,0)].

Since S(z,¢) =0, integrating this by parts over [s, 1] gives

t

(1= )" = (s = D) "]llo(0)ll3 < (s = ©)"=(s) + J m(o —1)""'S(t,0)do

S

< (s—1)"=(s) - Jt(a )" (1,0)do.

s

We then pass to the limit s — 7 and divide both sides by (¢ —17)" to obtain

t

lo(0)]2 < —(r— r)*’"j (6 —7)"S!(t,0)do

T

t a 2
N K e AN N

T T

t
et - r>*’"j (0 — )" |l 1% % do

T

1

l 2
< cmu—r)"/“(j ||u|§do) tenlt=0" [ (o= )" ) o

T T

Now (1.19) gives
(5.8) [u(o)]l, < e(1 +0)"'

and so, since u’(g) = e (" 94y(7), the standard estimate for the heat kernel
gives

[u’ (@), < (o — r)‘”/4||u(f)||2 <c(o— T)—n/4(1 n ,L_)—l—n/4.

Therefore,

; 2
1O < en(t — 1) (j ||u||§dn)

T

t

ben(147) 2"t — 7)™ J (6= )" (1 4 6) " dg.

T
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Here we set 7 =1/2 so that v =1,. Since m >4+ 3, the above estimate gives

2
t t
113 < e [l ) ver> [ (14 0) s
/2 /2

Hence (5.8) implies

l3+”/2||]2||§ < c12 (J

as t — oo. This proves (4.6) for ¢ =2.

o0 o0

2
1+ a)_z_"/2d0> + cll_”/zj (1+0) " do < ct™ —0

/2 t/2

6. Appendix B: On the existence of solutions given in Theorem 1.1 (iii)

The strong solutions treated in Theorem 1.1 (iii) were obtained in [9] under
more stringent assumptions on a. Moreover, in deducing relevant estimates,
the method of [9] employs the Hardy space theory. Here we show that such
solutions are obtained under the (weaker) assumptions on a given in Theorem
1.1 (iii) without appealing to the Hardy space theory.

We begin by establishing the following

LemMA 6.1. Let a satisfy
Vea=0.  Go=sup(l+ )" a0 <o €= | ylla(nldy < e

Then

(6.1)
(e a)(x)| < e(Co+ CHL+ ) A+ 0™ for all 0<k<n+1

with ¢ > 0 independent of k, Cy and Cj.

PROOF. Observe first that |(e~“a)(x)| is bounded in x and 7 > 0; indeed,
l(e7a)(x)| < |lal|, < Co. So, we assume |x| > 1 in estimating |(e~*1a)(x)|
with respect to x, and 7 > 1 in estimating the same function with respect to
t. Our condition on a implies (1.8), so we get

(6.2)
(€ ) =[x ) - ElaG)dy = - |

0

1
j(y VE)(x — y0)a(y)dydo,

and

1 2
63) e o) e @2 [ [y a5 et
0
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On the other hand, let

(¢"a)(x) = j +j E(x—y)a(y)dy =1 + I
[y]>|x]/2 |y<|x]/2

We easily see that
(6.4) || < cCo(l 4+ |>c|)"”1 JEz(Z)dZ =cCo(l + |x\)7”71.

Applying (1.8) yields

L= j [E.(x — ) — Edx)la(y)dy + Ei(x) j a(y)dy
[yI<|x[/2 [ylI<|x|/2
1
- —j j (v -VE)(x — y0)a(y)dyd6 — Et<x>J a(y)dy
0 J]yl<|x]/2 [y[>|x]/2
=D + by

Direct calculation gives
|121| < th(n+1)/2j efc’\xfyﬂ|z/t|y| \a(y)|dy < CC] tf(n+1)/2€fc’|x\2/t
[yl<|xl/2
< cCylx|™,

|| < CCofn/zeﬂv/‘xlz/'J (1+[y) ™" dy < eColx| ™ x x| = eColx| ",
|yI>Ix1/2

Hence |b| < ¢(Co + Cy)|x| ™"

(6.5) (e a)(x)| < e(Co+ C1)Ix[ "

By (6.3) and (6.5), we get (6.1). This proves Lemma 6.1.

Combining this with (6.4) gives

Now that we have proved (6.1), the argument of [9] ensures the existence
of a strong solution u with the initial value a satisfying (1.5), i.e.,

(6.6)  |u(x,)| <cel+[x) " "1+ forall 0<w<n+]1,

if Cp+ C; in (6.1) is sufficiently small. In [9] we proved (6.6), but the proof of
[9] uses the theory of Hardy spaces in dealing with the case x =n+ 1. Here
we give an elementary proof of (6.6). As in [9], the crucial step is to show that
if u and v satisfy (6.6), so does the function

t

w(x, 1) = —J

JF([ —s)* (u®v)(s)ds.
0



Navier-Stokes equations 459

-1/2

From |(u® v)(y,s)| < c(1+[y)>" (1 +5)7"? <c(1 +5)72, it follows that

t
Lds < CJ (t—s) "2 (1 +5)ds <,

i) < [ 1E =)@ o) ds < e

which shows the boundedness of |w(x,?)|. So, we assume that |x| > 1 in
estimating |w(x, ¢)| with respect to x, and that 7 > 1 in estimating |w(x, ¢)| with
respect to t. We write

t/2 t
w(x, 1)) < (L +J >J|F(t—s)| £ (@ v)(s)|ds = Wy + Wh.

t/2
Direct calculation gives

t/2

Wy < JO 1E (2 = )l () ][0 Cs) [l 1

t/2

< cf<"+1>/2J (1+9)""""2ds < cr D2,
0

t

WQSCJ

1

E = 9)llilluC)l]o o)l ds

t
< cJ (t=s) (14 5)" Vs < c(1 + 1) P2,
/2

This proves (6.6) with x =n+1 for w. We next write

il < | (j/ v JII/) [F = 7,1 5)| (6 ® )y, 5)ldves

=W+ W,

to obtain

t

ws < j j (£ = 5) e =y 2+ [p) 7+ 9) " dyds
0 J{y—x|<|x|/2

)73/272;1 1/2

< (1 + || < 312 < e+ ) < e+ [xl)

t

W4SCJ

j e — N )2+ 5) P dyds
0 J|y—x[>]x|/2

< e J (14 [y 2dy < clx| ™",
[ y=x|>|x|/2
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This proves (6.6) for w with kx =0. We can now apply the fixed-point argu-
ment as in [9] to find a strong solution u of (IE) satisfying (6.6) when Cy + C;
in (6.1) is sufficiently small.

Let a strong solution u satisfy (6.6). Take x =1 and then x =n+1 in
(6.6), to obtain

()l < e sl < (1 +9) "0,
where |- ||, is the quasinorm of the weak L'-space L). Thus, for
1 <g< oo,
(6.7) lu(s)lly < ellus)lly Euls) 57 < el 45",

Now, (6.2) implies |le“al|; < ¢||VE||,[|y||a(y)|dy = ct™'/>. So (6.7) with
q =2 gives

t
lu(D)lly < et + CJ (1= 5)"" 2 [lus)ll3ds
0

t
<c V24 CJ (t—5)""P(1 457" ds < eV,
0
On the other hand,

t t
lu(n)l, < lall, +cJ (t—s5)""2(1+5) """ 2ds < |al, +cJ (1—s) V212 gs=C.
0 0

~1/2

Therefore, |lu(f)]]; < c(1 4 1) This, together with (6.6) for x =0, yields

jm“w%m%ﬁ@wM“wmmﬂwmmwsm+nﬂ?

From this and (6.7) with ¢ =2, it follows via Hoélder’s inequality that

, . e 5 m/(n+1) 5 1—m/(n+1)
[ uly ) dy < (| 117 uly, )| dy |u(y,s)|"dy

< C(l + S)—l—(n—m)/Z
form=0,...,n+ 1. This is just what we needed in [4] for deducing Theorem
1.1 (ii).
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