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Limiting behavior of attractors for systems on thin domains
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AsstracT. For a bounded Lipschitz domain @ < R *V et Q,, 0 <e, be a family of
domains squeezed in y e RY direction. On @, we consider a system of reaction-
diffusion equations. We show that under certain natural conditions on the nonlinearity
the generated semi-flows have global attractors which in a certain sense have limits, as
el 0.

1. Introduction

Reaction-diffusion equations play an important role in a wide field of
applications, as for example population ecology, neurobiology, chemical reac-
tions, combustions, etc. For an understanding of the dynamical behavior of
these equations, equilibrium solutions—or in a wider sense attractors—are
especially important. The attractors depend on the shape of the underlying
domain Q. Of particular interest is squeezing Q in one direction, getting so
called thin domains. In the limit £ collapses to a lower dimensional set,
giving rise to a singular perturbation problem.

We shall show from a dynamical viewpoint that attractors (and semi-flows)
of a system of reaction-diffusion equations on thin domains have a limit.

To be more precise let @ = RM™ be a fixed smooth domain and write
(x,y), xeRM, yeR", for a generic point in Q. Squeeze Q in y-direction,
ie. for ¢ >0 let 7,: R¥™ - RM™N (x ) (x,ep) and set

Q, = {(x,y) eRM xRV : (x,%y) eQ} = T,(Q).

On Q. consider the system of reaction-diffusion equations

d1AU]
i=| i | +feny), i>0(n ) e (1.1)
ddAUd
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0,,V =0, t>0,(x,y) €0, (1.2)

where d eN, d,...,dgeR., V =(v1,...,04), v, is the outer normal to 0Q,
and f: RM*Y x RY — RY satisfies some growth conditions to make the corre-
sponding Nemitsky operator locally Lipschitz. We shall later impose more
conditions on f to guarantee the existence of attractors .7, and allow f to
also depend linearly on the derivative D, V.

It is well known that equations (1.1), (1.2) define a (local) semi-flow
7.. The question arises as to what happens to these semi-flows as ¢ | 0. And,
if the semi-flows 7, have global attractors .«Z,, how do they behave in the limit?

For scalar equation, i.e. if d = 1, this problem was first considered by Hale
and Raugel in [7] for the case of Q being the ordinate set of a smooth function
g, ie. if o < RM is a domain and

Q={(x,y) eRY" xR:xew,0<y<gx)}

They prove that there exists a semi-flow 7y and that, in some sense, the family
of attractors (.#/,),., is upper-semi-continuous at ¢ = 0.

M. Prizzi and K. P. Rybakowski generalized this result in [9] to general
Lipschitz domains Q < RM™" which e.g. may have holes or multiple branches.
The corresponding limit equation is an abstract parabolic equation defined on
a subspace H/!(Q) of H'(Q). For a wide class of domains 2 = R? (so called
nicely decomposable domains) they described the limit problem explicitly. It
is a system of second order differential equations on a graph, coupled by a
compatibility condition and a Kirchoff type balance condition. They also
proved—under certain natural conditions on the nonlinearity f—for a general
Lipschitz domain in R *" the existence of the limit semi-flow 7, in a strong
sense, and the upper-semi-continuity of the family of attractors (7). In
the second paper [10] they show these attractors to be contained in inertial
manifolds of finite dimension.

In general, for N, M > 1, there does not seem to be an explicit description
of the limit problem. In [5] together with M. Prizzi we show how the limit
can be characterized for some special domains, where M =2, N = 1.

Q. Fang in [6] investigated tubular thin domains and a system of two
reaction-diffusion-equations. He shows under the assumption of a positively
invariant region the convergence of initial manifolds, and the relation between
equilibrium solutions of (1.1), (1.2) and their limit.

In this article we generalize the results of [9] to the system (1.1) of re-
action-diffusion equations on a general bounded Lipschitz domain—which
includes domains with holes and multiple branches—allowing f also to depend
linearly on the derivative D,V .

More specifically, we show the existence of a limit semi-flow 7y in a
strong sense, following closely the ideas of [9]. We also show the upper-semi-
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continuity of the family of attractors (Z,),.,.; at ¢ =0, under certain natural
conditions on f (see conditions H1), H2), H3) below). This is the main result
of this work. Although the result is similar to that of [9]—our conditions
HI1) and H2) correspond to their conditions on f, and H3) is the additional
condition needed for systems—the method is different. If d = 1, i.e. if there is
only one equation, then there is a canonical Lyapunov function which can be
used to prove the existence of global attractors. For systems, this is no longer
true. We use a pseudo Lyapunov function to prove that the flows 7, are
global and have global attractors. Moreover, our dissipativity condition (see
condition H2)) is more general than a d-dimensional version of the inequality

lim sup & < -¢, for some & >0
o0 S
which is used in [9]. The reason is that with our more general condition H2)
we can allow an (x, y)-dependence of the nonlinearity f. If f depends neither
on (x,y) nor on the derivative D,V a sublinear growth of f is also allowed.
Before we can state precisely our main result, we need some notations.
Let d,M,N eN be fixed numbers and @ « RY xRY be a bounded,
non empty, Lipschitz domain. We shall write (x,y) e 2, xe RM yeR" for
points in Q.
Let Q. denote the squeezed domain

Q, = {(x, y)eRM x RV : (x,%y) eQ} = T,(Q),

where T, : RY x RY — RM x RV T,(x,y) := (x,ep).

Here, as in the whole article, unless stated otherwise, ¢ denotes a number
in the interval ]0,1].

We are interested in the behavior of the system of reaction-diffusion
equations on , given by (1.1), (1.2) as ¢ | 0.

Making a transformation onto the fixed domain Q, (1.1), (1.2) become
via U(x,y) = V(x,ey) = VoT.(x,y)

d (S 2 (x,p) + S5 2 (x, )
Ul(xa y) = +f(xa8y7 U(x»y))
da (214:41 @ijud(X, ) +}ZZ,Z1 @fyud(x’ J/))

TAU(xp) +f(x,ep, Ux,p), 1> 0,(x,y) €@ (1.3)
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0,,U(x,y) =0, t>0,(x,y) e, (1.4)

where d; >0, i=1,...,d, T :=diag(dy, ..., ds) e R

M 5 1 N 5
Do i= Zl:axj +£_221:ayf’
J= J=

1
Ve = Vx,g—zvy N

and v = (v,,v,) e RY x RY is the outer normal to 0Q at (x,y) € 0Q.

When we apply A, 0J; (or similar operators) to a vector U, we always
do so component-wise.

Note that Ue (L2(Q)? (resp. (H'(@))9) iff Ve (L*(Q,)? (resp.
(H'(2,))%).

Also, (1.3), (1.4) define a flow =, iff (1.1), (1.2) define a corresponding
flow 7,. 7, has an attractor iff 7, has one. So it is sufficient to investigate
equations (1.3), (1.4).

We shall allow the nonlinearity to depend linearly on the x-derivatives of
U. More precisely, we treat the following generalization of equation (1.3)

M

U, = TAgU—&-ZBj(x,ey)a,U—i—f(x,sy, U), >0, (1.5)
=1

where B/(x,y):RY xRN — R are given continuous maps, and [ €

C'(RM x RN x RY RY).

We shall write (1.5) as an abstract equation. In order to do so, we need
some notation.

For convenience we shall write L? instead of L?(2). If the underlying
set is not 2 we shall always mention it explicitly. Other functional spaces are
treated likewise. Let (.,.);2, |.|;2, (-,.)y1, || denote the usual scalar prod-
ucts and norms on the Hilbert spaces L2 and H', respectively. On (L2)“ and
(H l)d we define the usual scalar products and norms which will also be
denoted by (.,.).2, 2, (-5 )pts |-lg-

The operator A, has a limit as ¢ | 0, if A,u remains bounded, that is if
Oyu=0 for all j=1,...,N. This leads one to define

H':={ueH' :0,u=0, Vj=1,... N}

and L? as the closure of H! in L?. Both H! and L? are infinite dimensional
Hilbert-spaces with the usual scalar products (.,.),: and (.,.);. (see [9]).
Define the bilinear forms
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d

a,: (H) < (H)" =R, a(U,V) =ZdiJ V,uiV,v; dxdy,
— Q

i=1

d
ap: (H)* x (H)? = R, ap(U,V) = Zd,»J Vi Vv dxdy,
=1 J8

where V, stands for the partially weighted gradient operator

- (5)
e - %Vy .

They generate selfadjoint operators with compact resolvents
A;:D(4) = (H) — (L)Y, Ay: Do) = (H)) — (L))",

A, and A, are sectorial.
We write equation (1.5) and boundary condition (1.4) as an abstract
equation

U =—A,U+ B,U +f,(U) = —-A4,U + F,(U), >0, (1.6)
where for ¢€[0,1] we define B,, /. F,: (H")? — (L*)“ by
M
Z (x,e9)0;U(x, y), (1.7)
FU)(x,p) =1 (x,89, U(x, 1)), (1.8)
F,(U) := B,U +£.(U). (1.9)

In the limit, equation (1.6) becomes
U =—-AU+ Fy(U), t>0. (1.10)

On f we impose the usual growth conditions, a dissipativity condition, and a
technical condition needed in the case of systems (see H1), H2), H3) below).
The dissipativity condition is a generalization of the more usual U - f(U) <
C — p|U|’. The latter can be interpreted geometrically as f pointing inwards
on large enough circles. We generalize this concept, and assume f to point
inwards on the curves G = const, where G is a given map. These conditions
guarantee the existence of global semi-flows 7, which have global attractors
o (0<e<]1).

We shall often write Uyz,t and Upmot for n.(z, Up) and my(t, Uy), respec-
tively.

The semi flows 7, converge in a strong sense to the limit semi-flow 7 (see
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Theorem 2.2). Here strong means with respect to |.|,, an equivalent norm on
(H") defined by

d
1
U2 = UL+ d; JQ (|\7xu,-|2 +5 |Vyu,-|2> dxdy.
i=1

Our main result is the upper-semi-continuity of the attractors .oZ:

TueorReM 1.1. Let Q c RM xRN be bounded, Lipschitz, and f e
C'(RM x RN x RY,RY) satisfy conditions H1), H2), H3) below. Define the
operators B, f.,F, as in (1.7), (1.8), and (1.9), respectively, where we assume
BO|(HA1)” : (Hsl)d - (L.yz)d-

Let A, 0 <e <1, be as before, and n,, 0 <& <1 be the semi-flow gen-
erated by (1.6) and (1.10), respectively.

Then equation (1.6) and initial condition U(0) = Uy e (H")? define via
Upmyt := U(t) a global semi-flow m, on (HY)? for 0 <& < 1.

Similarly, equation (1.10) and initial condition U(0) = Uy € (Hsl)d define
via Upnot := U(t) a global semi-flow my on (Hsl)d.

For all 0 < & < 1, the semi-flows m, have global attractors </, which attract
bounded sets of (H")* for &> 0, and (Hsl)d Jor e=0. . is compact and
connected in (H") and (Hsl)d, respectively.  Moreover, <o/, is the w-limit set
with respect to T,

Ay =o({UeH"):|U|,<6}) = {UeH":|U|, <5},
for >0, and
Ay =o({UeHN Uy <6}) e {UeHN: |U,p <67}

for ¢=0. Here o is as in Theorem 4.1, o7 = (min(l,dl,...,dd))fl/zéf.
The family of attractors <f; is upper-semi-continuous at ¢ = 0 with respect
to the family of norms |.|,, ie.

lim sup inf |U— V| =0.
2l0 [eo, Vet '

Theorem 1.1 will be proven in §4.
The conditions we impose on f are as follows.
Let Co>0 be a constant, such that Qc {(x,y)eRM xR":

|(x, »)| < Ca}.
HI)

1Duf (x, », U)l < Gr(1+|UI™),  V¥|(x, )| < Co, UeR’,
1D f (e p, D) < G(L+ UM, V(x, )| < Co, U eRY,
where py, Cy >0, and if M+ N >2, then py <2/(M + N —2).
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H2) For all ¢€0,1]
VuG(xa Y, U) 'f.(xa8y7 U) < Cf _;u0|U|pl7 V|(X, y)l < C.Q7 Ue Rd7

where yy >0, Cr >0, and p; > 2.

Additionally, p; >2(po+1), if f depends explicitly on (x,y), and

p1=2(pa+ 1), py as in C2) below, if G depends on (x, ) or if B, # 0.
H3)

d
Z éiau/ﬁ(xv Y, U)fl < Cf|é|2a V|(X7 )’)| < C.Q7 U7 é € Rd>
i,l=1

where Cy > 0.

Here the map G has to satisfy some conditions: it has to have a minimal
growth, which allows to compare it with |U|?, there are some growth con-
ditions to ensure the existence of certain Nemitsky operators, and there is a
technical condition somewhat like H3). The precise conditions we impose on
Ge C*(RM x RY x RY,R.) are as follows.

Cl)
G(x,»,U0)- U2 =zw,  V|(x,)] < Co,|U| 2 C,

where Cr >0, vy > 0.

C2)

I1D.D.G(x, y, U)|| < Cr(1+|U|™),  V|(x,5)| < Co,UeR,
1Dy DuG(x, v, U)|| < Cr(1+ U™, ¥|(x, »)| < Co, U e RY,

where p,, C;>=0. If M+ N>2, then additionally p;<
2/(M + N —2).

C3)

d
> digioy, , Glx, y, U)éE > —Crle)’, V|(x, )| < Co, U, E€RY,
i,l=1

where Cr > 0, and d; are the entries of the diagonal matrix T of equation
(1.3).
We want to make some comments on the conditions on f and G.

REMARK 1.1. 1) By C2) and H1), V,,G is of order |U\p2+l, and [ of order
|U|”°+1. Taking this into account in H2), we get p; <2+ po+ p>, and thus
some restrictions on p,. We have the following four cases, depending on whether
or not each of the following statements holds:
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1) f explicitly depends on (x,y).

ii) G explicitly depends on (x,y) or B, # 0.

If'1) and ii) are true, then necessarily py = po, and thus p1 = 2(po + 1).

If 1) is true but 1i) false, then py > po, and thus 2(po+1) <p; <

po+p2+2.

If 1) is false and 1i) true, then p, < po, and thus 2(p»+1) <p; <

DPo+pr+2.

If both 1) and ii) are false, then the only restriction on p; is po + p2 > 0.
2) If we choose G(U)=|U|*/2, then G satisfies conditions C1), C2),

C3). Because of the remark above, in this case f = f(U) has to be

independent of (x,y), and H2) becomes H2'):

H2)

Uf(U)SCf—ﬂ0|U|p], V|(X,y)‘SC_Q,UERd,

where p1 > 2, uy >0, Cr > 0.

We use the more general G than |U|*/2, because this allows an (x, y)

dependence on f, and also a sublinear growth of f, if B, =0.

All our conclusions hold if f =f(U) satisfies H2') instead of H2).
3) Condition H1) makes the Nemitsky operator jf locally Lipschitz

(0 <e <), and H2), H3) assure the boundedness of all trajectories of

the nonlinear flow m,, which leads to the existence of a global attractor.

Similar conditions can be found e.g. in [2].

The rest of this article is organized as follows.

In section 2 we prove the convergence of the linear and nonlinear semi-
groups, respectively. In Section 3 we derive some general conditions on the
nonlinearity which suffice for the existence of attractors of the corresponding
semi-groups. They also imply the upper-semi-continuity of these attractors.
In the last section we prove our main result. That is, we treat the important
example that the nonlinearity is the Nemitsky operator of a map, and give
sufficient conditions on this map so that the conditions of section 3 are satisfied.

2. Convergence of the semi-groups

In this section we investigate the abstract equation
U=-4U+F(U), t>0 (2.1)

as ¢ | 0 (e.g. equation (1.6), but here we do not suppose F, to be a Nemitsky
operator).

We closely follow the ideas of [9].

First note that the bilinear forms
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a0, H' x H' — R, o (u,v) = J V.uV,v dxdy,
Q

% : H' x H' — R, oo (1, v) = J ViuVyiv dxdy,
Q
generate selfadjoint operators with compact resolvents

ﬂ,s : D(ﬁa) < Hl - Lza ﬂO : D(ﬂO) < Hyl - L??

respectively, and we have U = (uy,...,uqs) € D(4;) (U € D(A4p)) iff u; € D(p,)

(u; € D(py)) for all i=1,...,d. For the respective case we have
d]ﬂxul dlﬂoul
A.U = : ) AyU = g . (2.2)
daf;ua daPoua

Let A;, /l](-), U7, Uj0 denote the eigenvalues and eigenvectors of A, and Ay,
where—unless stated otherwise—the eigenvalues are ordered increasingly, and
(Uf);=1> (UP),~, are orthonormal systems (ONS) of (L?)“ and (L2)“, respec-
tively.

We assume that there exists a set S < (
F,(U): S — (L*" is Lipschitz, i.e. there is an L
such that

H"Y such that the operator
> 0 (independent of ¢ € [0, 1]),

|E(U) = F, (V)| <LIU=V];;, YU, VeS.
For a limiting semi-flow to exist, assume additionally
By(sn(H)") = (L2),
and
E(U) = Fy(U)|: =0, ¢, (23)

for all Ue (H!)? (e.g. if f satisfies H1), H2), H3) in §1).

It is well known that under above conditions on F,, (2.1) together with
the initial value U(0) = Uj € S defines local semi flows 7z, on S.

Moreover,

U =—-AU+Fy(U), >0

together with the initial value U(0) = Uy € SN (Hsl)d defines a local semi-flow
mo on SN (HNY.

We claim that the semi-flows 7z, converge in a strong sense to the semi-
flow myp. The proofs are as in [9] with only minor changes. Alternatively, one
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can use the fact that 4, and A4y can be expressed by its one-dimensional-
counterparts 5, and f,, respectively.
More in detail, one proves first the convergence of the eigenvalues ng and

eigenvectors Uy of A, to their counterparts /lj(-) and Ujo of Ay:

10 . e 1 e .

A7 =lim A7 = sup 4; =1,2,...

j 810 j é>¥)) / ) ] ) b )
and for any sequence ¢, | 0, there is a subsequence, called (¢,) again, such that
for all j>1 there is an (L2)‘-complete ONS (U)) with

i>15
|l/']§;1 - Uv]|an —0 (I’l - OO)

Having established the convergence of eigenvalues and eigenvectors, one proves
the convergence of the linear semi-groups e~/ to e~o:

Tueorem 2.1, Let (&), be a sequence of positive numbers tending to 0,
B>0, (U)o, = (L), Uye (LD, and U, — Uy in ||}
Then

sup |e ' U, —e ™' Up|, — 0, n— .

te[f, 0]
With the convergence of the linear semi-groups, one proves the convergence
of the nonlinear semi-flows 7, to mp:

THEOREM 2.2.  Let (&), be a sequence of positive numbers tending to 0,
0<p<oo, UeSc(H), and Uye SN(HN, where U, — Uy in |.|,-.

Assume U,m, t, Uymot are defined for all n>1 and 0 <t < p.

Then for all t,€]0,p], t, €[0,p] with t, — to, we have

|U,,7Zgnl‘n - U07Z010|£n — 0, n — o0.

We comment on the conditions in the last theorem.

The assumption in Theorem 2.2 that Uymyt exists for 0 < ¢ < f is unnec-
essary, if F,: S = (H")? — (L?)“, and (H!)? = S. Therefore, in this case, the
theorem is true under the remaining conditions.

We shall briefly outline why this assumption is not necessary.

Upnpt exists for 0 <t<J, a 0 >0. Assume J < f to be maximal. By
Theorem 2.2 (as stated above, with =) one can without loss of gen-
erality assume |U, — Us|, — 0, U, e D(4,,), Uoe D(Ag). It is possible to
show sup(|Uym,,f|, :0<t<f,n>1)<o. By Theorem 2.2 this implies
sup(|Upmpt| : 0 < t < J) < oo too, and by Theorem 3.3.4 [8] Uynot is extendable.

As a second remark we note that Corollary 5.2 in [9] is also true for
systems, i.e. a sequence of uniformly bounded solutions of n,, &, | 0, has a
subsequence converging in |.|, to a solution of 7.
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3. Semi continuity of attractors

In this section we shall show that if the nonlinearity F, in equation (2.1)
satisfy some natural conditions (see Al) to A4) below), then the resulting semi-
flows 7, have global attractors o7, (0 <& < 1), and the (a priori local) semi-
flow 7y is a global one. Also we prove the family of attractors .oZ, to be
upper-semi-continuous at & = 0.

Note that in this section we do not suppose F, to be a Nemitsky operator.

Let U(¢) and 7, denote respectively the solution and the resulting (local)
semi-flow generated by the equation (2.1) with the initial condition U(0) = U,
Upe (HY, if0<e<1, Ue(H, if e=0. Here F,: (H") — (L*)? is a
nonlinear function.

We impose the following conditions on the nonlinearity Fj:

Al) F, is (locally) Lipschitz, i.e. for every 6 > 0 there is an L = L(0) (inde-
pendent of &), such that for all 0 <e <1

E(U) = BV <LIU = Vi, YUV e (HY|Uli, [V <0.
A2) For 0 < ¢ <1 the semi-flows 7, exist for all times ¢ > 0. For every 6 > 0
there is a C = C(9) > 0 (independent of &), such that
[Upmatl, = U], <€, VUye (H"), Uy, <.

A3) The semi-flows 7, 0 <& <1, have absorbing sets which are bounded
uniformly with respect to |.|,, i.e. there are a Jy > 0, and for every J > 0
a T=T(@©)>0, both 6 and T being independent of &, such that

\Upmet|, < 9p,  VYUse (H) |Up|, <d,1=T. (3.1)
A4)
F‘0|(H\_l)" : (Hsl)d - (Lf)da
and F, approaches F, pointwise, i.e.

lim |F,(U) = Fo(U)]2 =0, VU e (H)".

Note that we do not suppose that the semi-flow 7y exists for all ¢ > 0.
We only assume that the semi-flows 7, (0 < ¢) are global.

Note also that if A1) holds, then £, maps bounded sets (of (H')? if 0 < ¢,
of (H)? if & = 0) into bounded sets (of (L2)“ if 0 < ¢, and of (L2)¢ if & =0,
respectively).

Roughly speaking, conditions Al) to A4) will be used in the following way.

Conditions Al), A2), A3) are sufficient for the semi-flows z,, 0 < ¢, to have
global attractors .<Z,. These attractors are bounded uniformly in |.|,. By A2)
we can change F, outside a certain ball in (H')?, so that with A1) the resulting
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nonlinearity is globally Lipschitz, and with A4) we can apply the results of
§2. That is to say, the semi-flows 7, converge to the limit semi-flow 7. Thus
7o exists for all ¢ > 0, and the absorbing sets of A3) extend to an absorbing set
for my. Again using that by Al) F, maps bounded sets into bounded sets,
there is a global attractor .oy for =y too. Since the attractors o7, 0 <& <1,
are uniformly bounded, and the semi-flows 7, converge to my, the family of
attractors can be shown to be upper-semi-continuous at ¢ = 0.

We start by proving the existence of attractors for the semi-flows 7., 0 < ¢.

Turorem 3.1. Let F, satisfy Al), A2), A3). Then m, has a global
attractor of, which attracts bounded sets of (H 1)‘l. of, is compact and con-
nected in (H")!. Moreover, <7, is an w-limit set

s =o({Ue ") :|U|,<d}) = {Ue (") :|U|, <5}.
Here o7 is as in A3).

Proor. The proof is a simple adaptation of the proof of Theorem 3.3.6
(8], followed by Theorem 1.1, chapter 1 of [12].
By A3)

By = {Ue(H") :|U|, <5}

attracts bounded sets of (H')".
We claim that for any 6 >0, | ., Bin,t = (H')? is in a compact set.
Write equation (2.1) as follows:

Uy =—(A,+id)U + (F,(U) + U) = —A4,U + F,(U).

Since A, has compact resolvent, if X* (0 <o) denotes the fractional power
space of 4, (or equivalently of 4,), with norm ||U||, = |4*U]|,., the embedding
X < (H") =X is compact for L < f< 1.

So we only have to show that for all 4 > 0, and fixed %< p <1, the set
{Bim.t:t>1} is bounded in X7,

Let Upe (H")Y, |Up|, <8. By A2) |Upmyt|, < C(6), for all 1> 0, by Al)
F,—and thus F, too—maps bounded sets of (H 1)‘1 into bounded sets of
(L?)“, thus there is a constant Cj, such that |F(Uyn,t)|,>» < C), for all 1> 0.

Since Re a(4,) > %, we get for 1> 1

t

1U(@)lls < lle™ Uoll s + JO le™ I F,(U(s)) |l pels

<G <t”e<1/2>’5 +C <1Lﬁ +2(eV? - g<1/2>r)) > :

where C; is a constant independent of Uy and z. This proves the claim.
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Note for later use that for the proof of the claim we only needed A, to
have compact resolvent, |[U()]|;/, to be bounded uniformly on bounded sets
of X2, and F, to map bounded sets of X!/ into bounded sets of X.

With the claim, by Theorem 1.1, chapter 1 of [12], the w—limit set of
Bi < (H 14 with respect to m,,

4y = w,(BY),

is a global, compact, connected attractor of bounded sets.

Now we prove the counterpart of Theorem 3.1 for the limiting semi-flow
mp. Note that we have not supposed 7y to exist for all z, nor the existence of
an absorbing set.

THEOREM 3.2. Let F, satisfy Al) to A4). Denote by Fy the restriction of
Fy to (H))".
Then the equation

U =—-AU+F(U), >0, (3.2)

with initial condition U(0) = Uy € (H})", defines via Uymot := U(1) a global
semi-flow my on (H!)".

7y has a global attractor o/y which attracts bounded sets of (Hyl)d. Ay is
compact and connected in (Hsl)d. Moreover, < is the w-limit set with respect
to m

Ay =o{Ue (H):|Uly <6}) = {U e (H)": |U|;p <},
where 5}' = (min(l,dl,...,dd))_l/zéf, or as in A3).

Proor. By Al) and A4) F, satisfies (on bounded sets) all the conditions
we posed in §2, so (3.2) defines a (a priori local) semi-flow 7y on (Hsl)d.

Assume the solution of (3.2) with initial value Uj e (Hsl)d exists for 0 <
t < T1(Uy).

Denote by V,(t) = Upm.t the solution of equation (2.1) with initial value
Upe (HH, 0<e<1.

By A2) there is a constant C, independent of ¢, Uy and ¢, but depending
on |Up|y1, such that

V()] < C, VO<t<Ti(Up),0<e<1.
We apply Theorem 2.2. Then for all 0 < 7 < T1(Up)
|U(t0)| ;1 < (min(1,d,,...,dy)) "*C, (3.3)
ie. if Ti(Upy) < oo, then U(z) remains bounded in (H!)?, as 11 T1(Up).

s

By Al) F, maps bounded sets into bounded sets, and by Theorem 3.3.4
(8], T1(Uy) = oo follows. Hence 7y is a global semi-flow.
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Note also that for every 0 >0 there is a C = C(J) >0, such that
|Uomot|;n < C, for all |Up|n <0, t = 0. This allows us to use the results of
§2, although F, (0 <& < 1) may not be globally Lipschitz.

Now take any sequence ¢, | 0. Let J; be as in A3). Then for all
0>0 there is a T(0) >0, such that for all n>1, er(Hsl)d, |V, <
(max(1,dy,...,ds))""% |Upl,n <6 implies |V, (z)], <Jy, and thus applying
Theorem 2.2 we get

\U®0)| 0 < (min(1,dy, ..., da) "o, =6, 1= T().

&n

This means, setting for ¢ > 0
B) :={Ue (H)": U, <6},

that B0 absorbs bounded sets of (H!)’.

Slnce Ay has compact resolvent, Wlth (3.3) and Al) we can use the same
argument as in the proof of Theorem 3.1 to show that | t>18§not is in a
compact set for any 6 > 0. Thus, again as in the proof of Theorem 3.1, the
w-limit set of the semi-flow 7y,

Ay = a)(Bg/),

is a global, compact, connected attractor of bounded sets.
We are now able to prove the main result of this section.

THEOREM 3.3. Let F, satisfy Al) to A4), and </, 0 <& <1, be the global
attractors of the semi-flows w, of equations (2.1) and (3.2), respectively.
Then the family </, is upper-semi-continuous at ¢ =0 with respect to the
Sfamily of norms |.|,, i.e
lim sup 1nf |U—-V]|, =0.
el0 yeo, Ve
Proor. In the following we write |.|,, m,, </, for ||, , =, <Z,, respec-
tively.
Set

S:={Ue(H"):3 sequence ¢, | 0,.4,5V, — U in (H")"}.

By Theorem 3.1, such a sequence {V;} is bounded, |V;|, <J;, and there is
a subsequence converging weakly in (H')? to an element in (H!) ie.
S < (H)Y.

We claim that S is np-invariant.

To prove this, let £{ >0 and U € S.

There are sequences ¢, | 0, and U, € </, such that U, — U in (H 1)d’.

Thus U, — U in L%. Since .7, is m-invariant, there is a ¥V, € .<Z,, such that
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Virati = U,.

By Theorem 3.1, |V}|, <Jy, and there is a subsequence, called (V}) again,
which converges weakly in (H')?, and strongly in (L2), to an element V € S.

By Theorem 3.2, Vryt exists for all ¢ > 0, and with Theorem 2.2, for all
I <it<un,

| Vamtut — Vrot|, — 0, n— oo. (3.4)

Choosing ¢ = t;, we get U = Vrpt;. Choosing t = %tl, we see Vol e S, and

2
(v e syt
U = (Vﬂ'o 2)7[02 ES7Z'02.

That is, S < Sm)%‘, and S is negatively invariant with respect to .
Analogously

|Unnnt1 - UT[Otlln - 0; n— oo,

implying Ungt; € S. Thus Smot; = S, i.e. S is positively invariant too. This
proves the claim.

S is not only myp-invariant, but S < .o7. Indeed, if Ue S, o/, >V, — U in
(H")Y, then with Theorem 3.1 and s as in Theorem 3.2

|U|j;1 < liminf |V,|,; < liminf(min(1,dy, ..., dg)) | V,l, < 6.
n— oo n—oo P
Using the characterization of .o/, of Theorem 3.2, the invariance of S implies

S c JZ{().
Now we are able to prove the conclusion of Theorem 3.3.

Assume it to be false. Then there are a sequence (e,),., of positive
numbers tending to 0, 6 > 0, and U, € .o, such that for all U, e <%,

Uy, — U, > 6. (3.5)

As before, by Theorem 3.1, |U,|, <Jr, and taking a subsequence we can
without loss of generality assume that

U,— UeHY in H"Y.

But then U € S.

Arguing as in the proof of the claim above, for a given #; > 0, letting
V, € o, be such that V,z,t; = U,, and taking V € S < .o/, as a weak limit (of
a subsequence) of V,, by equation (3.4) we see

|Un—Vﬂ0[1|n—>0, n— oo.

By the comments above, Vmyt; € S < o/, which contradicts (3.5).



404 Thomas ELSKEN

4. Special cases

In this section we shall treat the special case in which the function F, of the
last section is the Nemitsky operator of a (nonlinear) map f plus a linear map
of the x-derivatives of U. We shall show that if the nonlinearity f satisfies
some natural conditions (i.e. H1), H2), H3)), then the Nemitsky operator F,
satisfies conditions Al) to A4) in §3. Thus we can apply the general results
of that section, and the semi-flows generated by equation (1.6), i.e. by

U =—-A,U+BU+f(U)=—-4,U + E,(U),  1>0. (4.1)

will be global, and have attractors ./, which are upper-semi-continuous at
e=0.
We make the same assumptions as in §1, i.e. we suppose

b d d
Bol g1y - (H)" — (L))",

and G and f to satisfy conditions C1), C2), C3) and H1), H2), H3), respec-
tively. Note that B, : (H))? — (L?)? is bounded uniformly in ¢ (0 <& < 1).

We want to apply the results of §3. For this we have to prove F, to
satisfy Al) to A4). These proofs are rather technical and long, so let us first

state the results and present the proofs afterwards.

Lemma 4.1, Let fe CYRM x RY x RY RY) satisfy H1). Let F, be as
defined in (1.9) and assume B’O|(H,l)” (HNHY — (LY.

Then F, satisfies conditions Al) and A4) in §3, for 0 <e<1.

THEOREM 4.1. Let G and f satisfy conditions C1), C2), C3), and H1), H2),
H3), respectively. Define the operators B,, f., F, as in (1.7), (1.8), and (1.9),
respectively.  Then the solution U(t) to equation (4.1) with initial value U(0) =
Uy e (Hl)d is uniquely defined and exists for all t > 0.

Moreover, there is an Jdr >0 such that for every 0 <o there is a T =
T(0) >0, both 6y and T independent of e, and

|U(Z>|s<5f, V|U0|6<5,IZT.
Also,
U2 < 1+ U270,  YUpe (HY)1=0.

Theorem 1.1, the main result of this article, is now a simple corollary, using
Lemma 4.1, Theorem 4.1, and the results of §3.

We have to prove Lemma 4.1 and Theorem 4.1. The easy part is Lemma
4.1. To prove it, we proceed through three lemmas stating some facts about
Nemitsky operators.
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LemMa 4.2. Let ge C'(RM x RY x RY,R), and assume sup(|Vy(x, y,s)| :
(x,y) e Q,seRY) < M, eR.

IF U= (uy,...,ug) e (H), then gU(x,y) = g(x, y, U(x, y)) € H', and the
derivatives of § are computed according to the usual chain rule.

Lemma 4.2 can be proven by slightly modifying the proof of Proposition
IX.5 in [3]. Note that Q is bounded, so the condition G(0) =0 in [3] is not
needed here.

As in Theorem 5.3 of [9] we have

Lemma 4.3. If ge C'(RM xRYR), Ue (Hsl)d, and

gU(x,y) ==g(x,U(x, y)) e L?,
then U e L2.

It is a standard procedure to prove f; to be well defined and locally
Lipschitz. Using H1), the Sobolev-Imbedding-Theorem, and Lemma 4.3, we
find

Lemma 44. Let feC'(RM xRY x R RY) satisfy HI). Then the
Nemitsky operator f, : (H\)" — (L)Y, defined in (1.8) is well defined and locally
Lipschitz.  More precisely, for ¢€[0,1), U,V e (H", U1, [V <6, we
have

£(U) = (M) < CAL+6™)|U = Vi, (4.2)

where C >0 is a constant, independent of U,V 0 and e.
If Ue (HN, then

1£(U) = fo(U)|2 < eC(1L+ UL, (4.3)
The restriction of fy to (Hsl)d satisfies

Sol iy (HD = (L), (4.4)

Lemma 4.1 is now an easy consequence of Lemma 4.4, the continuity of B/,
and the boundedness of B,.

We proceed to the proof of Theorem 4.1. Again we use a number of
lemmas: Lemma 4.5 gives an approximation in L® of an eigenvector of f,,
which is used in Lemma 4.6 to provide an approximation V e (Loo)d of an
U e D(A,), which in turn is needed in Lemma 4.10. Lemma 4.7 states an
estimate needed in Lemma 4.8, which collects several useful facts about G, or
rather about the Nemitsky operators G and \Z,\G Each of the Lemmas 4.9,
4.10 and 4.11 provides an upper bound for part of an expression which arises
in the proof of Theorem 4.1.
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LemMA 4.5. Let ue H' be an eigenvector of B,, and & > 0.
Then there is a ve D(f,)NL*, such that

|u_U|H‘ <(57 |ﬂe(u_v)|L2 <9.

ProOF. Let u be an eigenvector of f,, and 4 the corresponding eigen-
value. Without loss of generality, assume u to be normalized in L2.

If 2 =0, then without loss of generality u = constant, and v = u satisfies
the conclusion.

For the rest of the proof assume 2 > 0.

Let (uj-)jZl be an L2-ONS of eigenvectors of f3,, with corresponding
eigenvalues (4;);»; (see [9]). Without loss of generality, assume 4; =0,
uy = |Q‘_l/2, /12 = i, and Uy = u.

Let 6, > 0, and |v\f = |U|iz + 0, (v, )2, for all ve H'.

There is a & € C°(RM™) with |5 — ul,; <) (see e.g. [1], Lemma A 5.8),
and a ve D(f,)NL*®, such that

(B, +id)o = (1 + 1)8.

Hence
Jol72 < ol < (4 D)5l 2ol 2 < (A4 DG+ Jul ) lol 2,
Ju— vl < |u—of} = (B, + id) (u = v),u = v) .2
< (A+ Dl — 0] 2 (Jul 12 + o] 2)
< (A+ Dol + (A+ DO + |ulg1)),
and

u—v|F < Coy,
for a suitable constant C. So
ol — )2 = |2+ D) — ) — u+ vl2 < (2 + 1))+ VEVE,
which proves the lemma.

LEMMA 4.6. Let U e D(A,) and ¢ > 0.
Then there exists a V € D(A,) N (L®)", such that

U—-V|, <5, |4,(U—-V)|,. <6. (4.5)

Proor. Since U = (ui,...,uq) € D(A,) iff uyeD(p,) for j=1,...,d,
Lemma 4.6 easily follows from Lemma 4.5.

A simple estimate proves the following lemma.



Attractors on thin domains 407

Lemma 4.7. Let p>1, ue L?, and C > 0.
If [ulf, >2C?|Q|, then

1
J lu(x, y)|Pdxdy > 3 |ul?,.
{0y €2ux, ) 2 C}

LemMa 4.8. Let Ge C2(RM x RY x RY,R.) satisfy C1), C2). Define

the Nemitsky operators G and V/ub through

G(U)(x,») = G(x,y, U(x, ),
0, G(x, y, U(x, y))

—

V.G(U)(x, y) = :
0u, G(x, y,U(x,y))

Then the following hold:
i) V,.G:(H") = (LY is locally Lipschitz. In particular, if U,V e (H")",

U1, |V <90, then
|Vu/\G(U) *ﬁu?;(V)\Lz < C(146")|U = Vg,

where C is a constant, independent of U, V, 0, and p, is as in C2).
i) G: (Hl)d — L', and there is a constant C >0, such that

IG(U)|, < C(1+ U, VU e (H"Y),

where p, is as in C2).
i) There are constants C, C > 0, such that
Ul > €= (G| = ClU, YU e (')

d . . .
is continuous, and differ-

iv) If I is an open interval, I3t~ U(t) e (H")
entiable with respect to |.|;., the derivative being U,(t) € L?, then

I = TGUW0), Ul Vel

Proor. By C2), i) follows directly from Lemma 4.4 applied to

D,G(x,y,U).
Note for later use that one has H' < L>7*1 p, as in C2).

A simple estimation using C2) and the Sobolev-Imbedding-Theorem proves

ii).
Let Ue (H")Y, then with C1)
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G(U)|, = voj \U|2dxdy.
{(x,)eQ:|U(x,y)|=Cr}

Now Lemma 4.7 shows iii).
iv) is the only claim not being that simple to prove. Since

/1111,1(1) ‘G(U(Z—’_h”L]; _ ‘G(U(Z)|L1 o (VM/\G(U(I))aiU(t)>LZ

10, GG, 32855 ) = 8,6, U0 (5, ) |0 )| ).

where &,(x, y) is between U(f)(x, y) and U(¢t+ h)(x, y), we only have to show
|au/G(xa yafh(xv y)) - aujG(x7 Vs U(l)(x, y))|L2 - 07 h— 0. (46)

So fix je{l,...,d}, and let h, — 0.
t+— U(¢) is continuous in |.|;», hence without loss of generality, we can
assume for a.a. (x,y)

U(t+hn)(x7y)*> U(Z)(X,y), n— 0.
Thus for a.a. (x,y)
E1:= 10, G(x, y,&,(x, ) — 04,G(x, », U()(x,»))| = 0,  n— o0
On the other hand
(ED* < (1(D0)*Gx, 1, (x, )| - €5, (x, ») = U0)(x, p)])?,
for a #,(x, y) between U(#)(x, y) and &, (x,y). Applying C2) it follows that
(E1)* < 2CF(1+ |U(0)(x, 2)I7 + |U(t + ha) (x, )
AU+ ) (x, y) = U@ (x, ). (4.7)

If p» =0, then the right-hand side goes to 0, as a function in L', hence by
the General-Lebesgue-Convergence-Theorem (see e.g. [1], A1.23)

J,Q |aHjG(x7 Y, fhn (X, y)) - au/-G(xv Y, U([)(X, y))|2dXdy - Oa n— 0. (48)
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If p» >0, we apply the Holder-inequality for p = p;—:l >1 to get

[, 106 DPP0G ) 2) = U0 )Py
1/p
< (j U, y)zm’dxdy)

s X (p=1)/p
([ 1ot myws) = v P asay)

Since 2pp; = 2[%1 =2(pa+1) and H' = L*7>*D (see proof of i)), the conti-
nuity in |.|; of £+ U(¢) implies that the right-hand side of the formula above
tends to 0. Thus the L'-norm of the right-hand side of (4.7) tends to 0 too.
We can again apply the General-Lebesgue-Convergence-Theorem to get (4.8)
also in the case p, > 0.

(4.8) immediately yields (4.6), and iv) has been proven.

The next three lemmas provide some estimates we shall need in the proof
of Theorem 4.1. In all these lemmas we suppose f and G to satisty H1), H2),
H3) and Cl1), C2), C3), respectively.

Lemma 4.9. For every Ue D(A,) and C4 >0 there exists a constant
C > 0, independent of ¢ and U, such that

(B,U, T7'4,U),, < C|U|,2|4,U|;> + C4|4,U|%. (4.9)

PrOOF. Let C; > ||B,| be independent of &, and set
o = (U, UjE)LZ’ dm ::min(l,dl,...,dd), C2 =

Choose jy € N such that for x > /1]{),
C2
0< C—/zlx2 —xd,' —d!
2
then for j > jo, because )j increases as ¢ decreases,
e 2
1+ 4 - (&
dw ~ C3

(47,
and thus
Jo

1/2
C &
J=1
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where the constant C; is independent of ¢ and U. We get
(B.U, T'4,U) > < (CyC3|U|p2 + Cy|A.U|;2)|A.U| -

LemMaA 4.10.  Let pg be as in condition H1), py as in C2), and U € D(A,).
Then there exists a constant C > 0, independent of ¢ and U, such that

~(VuG(U), 4,U) . + (VuG(U), B,U) 1. + (£,(U), T™' 4,U) .,

< C(1+|U2+Ul|UPL). (4.10)

L2(p+1)

Here p is as follows.

If f=f(U) is independent of (x,y), then p = p, is independent of py.

If G = G(U) is independent of (x, y) and B, = 0, then p = pq is independent
of pa.

If both conditions above are satisfied, then the last term on the right-hand
side in (4.10) disappears. If neither of these conditions is satisfied, then p =

rnax(po, pZ)

Proor. We shall first show the following inequalities

(L(U), T7'4,U), < C(1+|UL +|ULUPSL ), (4.11)
~(VuG(U), 4,U) 2 < C(L+ UL} + U | UL, (4.12)
(VuG(U), B,U)» < C(1+|U|7 +|ULIUPSL). (4.13)

For ¢ < g2, C > 0, using the Holder-inequality,
U, < Gil|UI, < G+ CUIE,, (4.14)

where Cj,C, >0 depend only on ¢, ¢, C and @, so (4.11), (4.12), (4.13)
imply (4.10), if the last terms in (4.11), (4.12), (4.13) disappear for f inde-
pendent of (x,y), G independent of (x,y), and B, = 0, respectively.

Note that by H1) and C2) we have in all cases L>P*D) < H!,

By Lemmas 4.4 and 4.6 there is a sequence U, € D(4;)N(L*)?, such
that

U= Ulyy (U= U2 1f(U0) = f(U)] 2,
|Un — U|L2([)0+1) — 07 n — 0. (415)

Hence it is sufficient to prove (4.11) under the assumption U € D(4,) N (L*).
In this case £(U)e (H")Y by Lemma 4.2.
Using H1) and H3)
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(f,(U), T 4,U)

d

>

i=1

>

i=1

|, v s, )y
M |

J lZawu Oy, fi(x, ey, )—i—gzay/.u,-@y/ﬁ(x,sy, U)
—1 j=1

d N
1 .
+ 151 ( E 0y, fi(x, ey, U)0xuy +g—2 21 0y, ui0y, fi(x, Y, U)ay/,w)]dxdy
- Jj=

1/2
G <|U|g(j (1+ |U|2<"°+”)dxdy> + |U|§>7
Q

where the constant Cj is independent of ¢ and U. If f is independent of
(x,y), then (£(U), T'4,U),» < C|U|2. (4.11) follows immediately.
Now write as

~(VuG(U), 4,U) 2 = (~TV,G(U), T 4,U) .,

and use exactly the same argument for —TV/,,E(U) as for £(U): Lemma 4.8
1) proves Vu/\G—and hence T VM/\G too—to be Lipschitz. Thanks to Lemma 4.6
we get the sequence corresponding to (4.15), by C2) and C3) —TVM/E satisfies
H1) (with p, instead of py) and H3). This proves (4.12).

Note again, that if G is independent of (x, y), then —(V G(U),4:.U);, <
C|U|2. )

Now let C4 > ||B,|| be independent of ¢. Then using C2)

(VuG(U), B,U) 2 < 4Cs| Ui (VG (0) |2 + Cr (Ul + | UIYL)
which implies (4.13).
The following lemma is an easy consequence of H2).

LemMma 4.11.  There is a constant C > 0, independent of ¢, such that for all
UeD(A,)

—

(VuG(U), £,(U)) 2 < C = | UL, (4.16)
where py is as in H2).

ProoF oF THEOREM 4.1. Define

G(e, Up;t) := |G(U(1))] +%a£(U(l), T-'U(1)),

where G is as in Lemma 4.8, and T = diag(d,,...,ds) as before.
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We shall prove % to be differentiable with respect to ¢, and
0:9(e, Up;t) < —1 if G(e,Up;t) is big enough. For |U(#)|, big enough,
9 (¢, Up; t) can be bounded from below and above by expressions in |U(7)],.
The conclusions of Theorem 4.1 then follow directly from the behavior of
G (e, Up; t).

In this proof all constants Cj, Cy,... will be independent of ¢, & Uj.

Lemma 4.1 ensures that equation (4.1) has a unique solution U(¢) €
D(4,) = (H")Y, for 0 <1< Ty = T\(Up) (see e.g. [8], Theorem 3.3.3).

Set

= oy(t) == (U(2), Uf) 2, dy = max(dy, ..., dg).
By Theorem 3.5.2 [8], ]0,T\[>¢— %U(t) is continuous in |.|;.. Since ¢+
f.(U(?)) is continuous, t — A4,U(¢) is continuous in |.|;» too. But since

U= L+ AU, U <23 (14 (), Uf)z2 = 20U + |4:UlL),

j=1 j=1

t+— U(t) is continuous in |.|, and |.|41 too.
We have A, 7' =T7'4,, so that for 0 <1< T}

L a7 0 = i [ (a0, 7 LEDZU0)
=2 <£ U(t), T‘IASU(I))LZ

We can apply Lemma 4.8 iv) to get for U e (Hl)d and >0

916, Ui ) = ~(BaG(U(0), AU (), + (FG(U(0), B.U)

+ (VuGU0), f(U0)) 12 — (A.U(1), T 4,U(1)) 12
+(BU0), T 4,U(0) 12 + (f(U), T AU(0)) 1. (4.17)

Applying Lemmas 4.9, 4.10, and 4.11 to bound each term in (4.17) above, we
get
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0
5,90 Uoi0) < 1+ U+ [U(0)]12]4:U (1) 12)

L2(p+1)

1
+ CIUOLIVOTL, =57 AU = wl U0 (@.18)

where p is as follows:

If f=f(U), G=G(U) are independent of (x,y), and B, =0, then
C, =0, if only f =f(U), then p =p,, if G=G(U) and B, =0, then p = p,,
and finally if f depends on (x,y), and G depends on (x,y) or B, # 0, then

p = max(po, p2).
Note that C, =0 or p; >2(p+1) holds by assumption. Then, as in

(4.14), there is a C3 > 0, such that

, 1
SHYOIRIZG] —5HlUO]zn < G(1+ u?). (4.19)

Also, for any given C > 0 there exist constants C,C > 0, such that

. 1
U+ U] 24U (1) 2 < CIU@| 72 + U] +§C|A8U(f)liz

~ e 1 . _
= Z (C+ 1 +/1j JrzC(lj)z) O(jz < C|U(l)|iz + C|A3U(l)|iz (420)

i=1

<C+C(f)’

Inserting (4.19) and (4.20), with appropriately chosen C, and using (4.14),
(4.18) becomes

0 1
96 Unt) < L+ U = 3l U U0 < Cs = UG

(4.21)

Now we need a bound on 4. For later use we shall do it in both directions.
By Lemma 4.8 ii) and iii), there exist constants Cs, C7, Cs > 0, such that
for all Ue (H")?

1
C7|Uv|£2 < C7|U|i2 +505(U, TﬁlU)

A 1
< |G(U)|L1 +§a8(U7 T71 U), |U|L2 > C(), (422)
. 1
GVl +5a(U, TU) < Ga(1 + [UI), (4.23)

Thus there is a J; > 0, independent of ¢, Up, ¢, such that
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0
E{é(e, Up;t) < —1, if 4(e, Up; t) = 0. (4.24)

This inequality implies
G(e, Up; 1) < %(e, Up; 0) + 01, 0<t< Ty,
and if %(¢, Uy;0) = |G(Ug)|L1 +%a£(Uo, T-'Uy) <9, then
G (e, Up; 1) < 207, 700) <t< T,

where 7>(d) is independent of &, U.
By (4.22) and (4.23) these inequalities imply similar ones for |U(¢)|,. That

&

is, there exist a o >0 and a T = T'(6) > 0 for each J > 0, both independent
of &, such that

U <or(1 + |07,  YUpe H)0<1< Ty, 42s)
4.25
|U(1)|, <o, VIUo|, <0, T <t<Ti.

By (4.25) T} = 0. Indeed, by Lemma 4.1 F, maps bounded sets of (H')?
into bounded sets of (L2)¢, so by Theorem 3.3.4 [8], either T} = o, or there is
a sequence t, T T, such that |U(t,)|;1 — oo, which contradicts (4.25).
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