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ABSTRACT. For a bounded Lipschitz domain WHRMþN let We, 0 < e, be a family of

domains squeezed in y A RN direction. On We we consider a system of reaction-

di¤usion equations. We show that under certain natural conditions on the nonlinearity

the generated semi-flows have global attractors which in a certain sense have limits, as

e # 0.

1. Introduction

Reaction-di¤usion equations play an important role in a wide field of

applications, as for example population ecology, neurobiology, chemical reac-

tions, combustions, etc. For an understanding of the dynamical behavior of

these equations, equilibrium solutions—or in a wider sense attractors—are

especially important. The attractors depend on the shape of the underlying

domain W. Of particular interest is squeezing W in one direction, getting so

called thin domains. In the limit W collapses to a lower dimensional set,

giving rise to a singular perturbation problem.

We shall show from a dynamical viewpoint that attractors (and semi-flows)

of a system of reaction-di¤usion equations on thin domains have a limit.

To be more precise let WHRMþN be a fixed smooth domain and write

ðx; yÞ, x A RM , y A RN , for a generic point in W. Squeeze W in y-direction,

i.e. for e > 0 let Te : R
MþN ! RMþN , ðx; yÞ 7! ðx; eyÞ and set

We :¼ ðx; yÞ A RM � RN : x;
1

e
y

� �
A W

� �
¼ TeðWÞ:

On We consider the system of reaction-di¤usion equations

Vt ¼

0BB@
d1sv1

..

.

ddsvd

1CCAþ f ðx; y;VÞ; t > 0; ðx; yÞ A We ð1:1Þ
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qneV ¼ 0; t > 0; ðx; yÞ A qWe; ð1:2Þ
where d A N, d1; . . . ; dd A R>, V ¼ ðv1; . . . ; vdÞ, ne is the outer normal to qWe

and f : RMþN � Rd ! Rd satisfies some growth conditions to make the corre-

sponding Nemitsky operator locally Lipschitz. We shall later impose more

conditions on f to guarantee the existence of attractors ~AAe, and allow f to

also depend linearly on the derivative DxV .

It is well known that equations (1.1), (1.2) define a (local) semi-flow

~ppe. The question arises as to what happens to these semi-flows as e # 0. And,

if the semi-flows ~ppe have global attractors ~AAe, how do they behave in the limit?

For scalar equation, i.e. if d ¼ 1, this problem was first considered by Hale

and Raugel in [7] for the case of W being the ordinate set of a smooth function

g, i.e. if oHRM is a domain and

W ¼ fðx; yÞ A RM � R : x A o; 0 < y < gðxÞg:
They prove that there exists a semi-flow ~pp0 and that, in some sense, the family

of attractors ð ~AAeÞeb0 is upper-semi-continuous at e ¼ 0.

M. Prizzi and K. P. Rybakowski generalized this result in [9] to general

Lipschitz domains WHRMþN , which e.g. may have holes or multiple branches.

The corresponding limit equation is an abstract parabolic equation defined on

a subspace H 1
s ðWÞ of H 1ðWÞ. For a wide class of domains WHR2 (so called

nicely decomposable domains) they described the limit problem explicitly. It

is a system of second order di¤erential equations on a graph, coupled by a

compatibility condition and a Kircho¤ type balance condition. They also

proved—under certain natural conditions on the nonlinearity f—for a general

Lipschitz domain in RMþN the existence of the limit semi-flow ~pp0 in a strong

sense, and the upper-semi-continuity of the family of attractors ð ~AAeÞ. In

the second paper [10] they show these attractors to be contained in inertial

manifolds of finite dimension.

In general, for N;M > 1, there does not seem to be an explicit description

of the limit problem. In [5] together with M. Prizzi we show how the limit

can be characterized for some special domains, where M ¼ 2, N ¼ 1.

Q. Fang in [6] investigated tubular thin domains and a system of two

reaction-di¤usion-equations. He shows under the assumption of a positively

invariant region the convergence of initial manifolds, and the relation between

equilibrium solutions of (1.1), (1.2) and their limit.

In this article we generalize the results of [9] to the system (1.1) of re-

action-di¤usion equations on a general bounded Lipschitz domain—which

includes domains with holes and multiple branches—allowing f also to depend

linearly on the derivative DxV .

More specifically, we show the existence of a limit semi-flow ~pp0 in a

strong sense, following closely the ideas of [9]. We also show the upper-semi-
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continuity of the family of attractors ð ~AAeÞ0aea1 at e ¼ 0, under certain natural

conditions on f (see conditions H1), H2), H3) below). This is the main result

of this work. Although the result is similar to that of [9]—our conditions

H1) and H2) correspond to their conditions on f , and H3) is the additional

condition needed for systems—the method is di¤erent. If d ¼ 1, i.e. if there is

only one equation, then there is a canonical Lyapunov function which can be

used to prove the existence of global attractors. For systems, this is no longer

true. We use a pseudo Lyapunov function to prove that the flows ~ppe are

global and have global attractors. Moreover, our dissipativity condition (see

condition H2)) is more general than a d-dimensional version of the inequality

lim sup
jsj!y

f ðsÞ
s

a�x; for some x > 0

which is used in [9]. The reason is that with our more general condition H2)

we can allow an ðx; yÞ-dependence of the nonlinearity f . If f depends neither

on ðx; yÞ nor on the derivative DxV , a sublinear growth of f is also allowed.

Before we can state precisely our main result, we need some notations.

Let d;M;N A N be fixed numbers and WHRM � RN be a bounded,

non empty, Lipschitz domain. We shall write ðx; yÞ A W, x A RM , y A RN for

points in W.

Let We denote the squeezed domain

We :¼ ðx; yÞ A RM � RN : x;
1

e
y

� �
A W

� �
¼ TeðWÞ;

where Te : R
M � RN ! RM � RN , Teðx; yÞ :¼ ðx; eyÞ.

Here, as in the whole article, unless stated otherwise, e denotes a number

in the interval �0; 1�.
We are interested in the behavior of the system of reaction-di¤usion

equations on We given by (1.1), (1.2) as e # 0.

Making a transformation onto the fixed domain W, (1.1), (1.2) become

via Uðx; yÞ :¼ Vðx; eyÞ ¼ V � Teðx; yÞ

Utðx; yÞ ¼

0BBBBBB@
d1
PM

j¼1 q
2
xj
u1ðx; yÞ þ 1

e2

PN
j¼1 q

2
yj
u1ðx; yÞ

� �
..
.

dd
PM

j¼1 q
2
xj
udðx; yÞ þ 1

e2

PN
j¼1 q

2
yj
udðx; yÞ

� �

1CCCCCCAþ f ðx; ey;Uðx; yÞÞ

¼ TseUðx; yÞ þ f ðx; ey;Uðx; yÞÞ; t > 0; ðx; yÞ A W ð1:3Þ
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qneUðx; yÞ ¼ 0; t > 0; ðx; yÞ A qW; ð1:4Þ

where di > 0, i ¼ 1; . . . ; d, T :¼ diagðd1; . . . ; ddÞ A Rd�d ,

se :¼
XM
j¼1

q2xj þ
1

e2

XN
j¼1

q2yj ;

ne ¼ nx;
1

e2
ny

� �
;

and n ¼ ðnx; nyÞ A RM � RN is the outer normal to qW at ðx; yÞ A qW.

When we apply se, qj (or similar operators) to a vector U , we always

do so component-wise.

Note that U A ðL2ðWÞÞd (resp. ðH 1ðWÞÞd ) i¤ V A ðL2ðWeÞÞd (resp.

ðH 1ðWeÞÞd ).
Also, (1.3), (1.4) define a flow pe i¤ (1.1), (1.2) define a corresponding

flow ~ppe. ~ppe has an attractor i¤ pe has one. So it is su‰cient to investigate

equations (1.3), (1.4).

We shall allow the nonlinearity to depend linearly on the x-derivatives of

U . More precisely, we treat the following generalization of equation (1.3)

Ut ¼ TseU þ
XM
j¼1

B jðx; eyÞqjU þ f ðx; ey;UÞ; t > 0; ð1:5Þ

where B jðx; yÞ : RM � RN ! Rd�d are given continuous maps, and f A
C 1ðRM � RN � Rd ;RdÞ.

We shall write (1.5) as an abstract equation. In order to do so, we need

some notation.

For convenience we shall write L2 instead of L2ðWÞ. If the underlying

set is not W we shall always mention it explicitly. Other functional spaces are

treated likewise. Let ð: ; :ÞL2 , j:jL2 , ð: ; :ÞH 1 , j:jH 1 denote the usual scalar prod-

ucts and norms on the Hilbert spaces L2 and H 1, respectively. On ðL2Þd and

ðH 1Þd we define the usual scalar products and norms which will also be

denoted by ð: ; :ÞL2 , j:jL2 , ð: ; :ÞH 1 , j:jH 1 .

The operator se has a limit as e # 0, if seu remains bounded, that is if

qyj u ¼ 0 for all j ¼ 1; . . . ;N. This leads one to define

H 1
s :¼ fu A H 1 : qyj u ¼ 0; Ej ¼ 1; . . . ;Ng:

and L2
s as the closure of H 1

s in L2. Both H 1
s and L2

s are infinite dimensional

Hilbert-spaces with the usual scalar products ð: ; :ÞH 1 and ð: ; :ÞL2 (see [9]).

Define the bilinear forms
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ae : ðH 1Þd � ðH 1Þd ! R; aeðU ;VÞ ¼
Xd
i¼1

di

ð
W

‘eui‘evi dxdy;

a0 : ðH 1
s Þ

d � ðH 1
s Þ

d ! R; a0ðU ;VÞ ¼
Xd
i¼1

di

ð
W

‘xui‘xvi dxdy;

where ‘e stands for the partially weighted gradient operator

‘e :¼
‘x
1
e
‘y

� �
:

They generate selfadjoint operators with compact resolvents

Ae : DðAeÞH ðH 1Þd ! ðL2Þd ; A0 : DðA0ÞH ðH 1
s Þ

d ! ðL2
s Þ

d :

Ae and A0 are sectorial.

We write equation (1.5) and boundary condition (1.4) as an abstract

equation

Ut ¼ �AeU þ B̂BeU þ f̂feðUÞ ¼ �AeU þ F̂FeðUÞ; t > 0; ð1:6Þ

where for e A ½0; 1� we define B̂Be; f̂fe; F̂Fe : ðH 1Þd ! ðL2Þd by

B̂BeUðx; yÞ :¼
XM
j¼1

B jðx; eyÞqjUðx; yÞ; ð1:7Þ

f̂feðUÞðx; yÞ :¼ f ðx; ey;Uðx; yÞÞ; ð1:8Þ

F̂FeðUÞ :¼ B̂BeU þ f̂feðUÞ: ð1:9Þ

In the limit, equation (1.6) becomes

Ut ¼ �A0U þ F̂F0ðUÞ; t > 0: ð1:10Þ

On f we impose the usual growth conditions, a dissipativity condition, and a

technical condition needed in the case of systems (see H1), H2), H3) below).

The dissipativity condition is a generalization of the more usual U � f ðUÞa
C � mjU jp. The latter can be interpreted geometrically as f pointing inwards

on large enough circles. We generalize this concept, and assume f to point

inwards on the curves G1 const, where G is a given map. These conditions

guarantee the existence of global semi-flows pe which have global attractors

Ae ð0a ea 1Þ.
We shall often write U0pet and U0p0t for peðt;U0Þ and p0ðt;U0Þ, respec-

tively.

The semi flows pe converge in a strong sense to the limit semi-flow p0 (see
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Theorem 2.2). Here strong means with respect to j:je, an equivalent norm on

ðH 1Þd defined by

jU j2e :¼ jU j2L2 þ
Xd
i¼1

di

ð
W

j‘xuij2 þ
1

e2
j‘yuij2

� �
dxdy:

Our main result is the upper-semi-continuity of the attractors Ae:

Theorem 1.1. Let WHRM � RN be bounded, Lipschitz, and f A
C 1ðRM � RN � Rd ;RdÞ satisfy conditions H1), H2), H3) below. Define the

operators B̂Be; f̂fe; F̂Fe as in (1.7), (1.8), and (1.9), respectively, where we assume

B̂B0jðH 1
s Þ

d : ðH 1
s Þ

d ! ðL2
s Þ

d .

Let Ae, 0a ea 1, be as before, and pe, 0a ea 1 be the semi-flow gen-

erated by (1.6) and (1.10), respectively.

Then equation (1.6) and initial condition Uð0Þ ¼ U0 A ðH 1Þd define via

U0pet :¼ UðtÞ a global semi-flow pe on ðH 1Þd for 0 < ea 1.

Similarly, equation (1.10) and initial condition Uð0Þ ¼ U0 A ðH 1
s Þ

d
define

via U0p0t :¼ UðtÞ a global semi-flow p0 on ðH 1
s Þ

d .

For all 0a ea 1, the semi-flows pe have global attractors Ae which attract

bounded sets of ðH 1Þd for e > 0, and ðH 1
s Þ

d
for e ¼ 0. Ae is compact and

connected in ðH 1Þd and ðH 1
s Þ

d
, respectively. Moreover, Ae is the o-limit set

with respect to pe

Ae ¼ oðfU A ðH 1Þd : jU je a df gÞH fU A ðH 1Þd : jU je a df g;

for e > 0, and

A0 ¼ oðfU A ðH 1
s Þ

d : jU jH 1 a ~ddf gÞH fU A ðH 1
s Þ

d : jU jH 1 a ~ddf g

for e ¼ 0. Here df is as in Theorem 4.1, ~ddf ¼ ðminð1; d1; . . . ; ddÞÞ�1=2df .

The family of attractors Ae is upper-semi-continuous at e ¼ 0 with respect

to the family of norms j:je, i.e.

lim
e#0

sup
U AAe

inf
V AA0

jU � V je ¼ 0:

Theorem 1.1 will be proven in § 4.

The conditions we impose on f are as follows.

Let CW > 0 be a constant, such that WH fðx; yÞ A RM � RN :

jðx; yÞj < CWg.
H1)

kDu f ðx; y;UÞkaCf ð1þ jU jp0Þ; Ejðx; yÞjaCW;U A Rd ;

kDðx;yÞ f ðx; y;UÞkaCf ð1þ jU jp0þ1Þ; Ejðx; yÞjaCW;U A Rd ;

where p0, Cf b 0, and if M þN > 2, then p0 < 2=ðM þN � 2Þ.
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H2) For all e A ½0; 1�

‘uGðx; y;UÞ � f ðx; ey;UÞaCf � m0jU jp1 ; Ejðx; yÞjaCW;U A Rd ;

where m0 > 0, Cf b 0, and p1 > 2.

Additionally, p1 b 2ðp0 þ 1Þ, if f depends explicitly on ðx; yÞ, and

p1 b 2ðp2 þ 1Þ, p2 as in C2) below, if G depends on ðx; yÞ or if B̂Be 6¼ 0.

H3)

Xd
i; l¼1

xiqul fiðx; y;UÞxl aCf jxj2; Ejðx; yÞjaCW;U ; x A Rd ;

where Cf b 0.

Here the map G has to satisfy some conditions: it has to have a minimal

growth, which allows to compare it with jU j2, there are some growth con-

ditions to ensure the existence of certain Nemitsky operators, and there is a

technical condition somewhat like H3). The precise conditions we impose on

G A C2ðRM � RN � Rd ;RbÞ are as follows.

C1)

Gðx; y;UÞ � jU j�2
b n0; Ejðx; yÞjaCW; jU jbCf ;

where Cf b 0, n0 > 0.

C2)

kDuDuGðx; y;UÞkaCf ð1þ jU jp2Þ; Ejðx; yÞjaCW;U A Rd ;

kDðx;yÞDuGðx; y;UÞkaCf ð1þ jU jp2þ1Þ; Ejðx; yÞjaCW;U A Rd ;

where p2, Cf b 0. If M þN > 2, then additionally p2 <

2=ðM þN � 2Þ.
C3)

Xd
i; l¼1

dixiq
2
ul ;ui

Gðx; y;UÞxl b�Cf jxj2; Ejðx; yÞjaCW;U ; x A Rd ;

where Cf b 0, and di are the entries of the diagonal matrix T of equation

(1.3).

We want to make some comments on the conditions on f and G.

Remark 1.1. 1) By C2) and H1), ‘uG is of order jU jp2þ1
, and f of order

jU jp0þ1. Taking this into account in H2), we get p1 a 2þ p0 þ p2, and thus

some restrictions on p2. We have the following four cases, depending on whether

or not each of the following statements holds:
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i ) f explicitly depends on ðx; yÞ.
ii) G explicitly depends on ðx; yÞ or B̂Be 0 0.

If i) and ii) are true, then necessarily p2 ¼ p0, and thus p1 ¼ 2ðp0 þ 1Þ.
If i) is true but ii) false, then p2 b p0, and thus 2ðp0 þ 1Þa p1 a

p0 þ p2 þ 2.

If i) is false and ii) true, then p2 a p0, and thus 2ðp2 þ 1Þa p1 a

p0 þ p2 þ 2.

If both i) and ii) are false, then the only restriction on p2 is p0 þ p2 > 0.

2) If we choose GðUÞ ¼ jU j2=2, then G satisfies conditions C1), C2),

C3). Because of the remark above, in this case f ¼ f ðUÞ has to be

independent of ðx; yÞ, and H2) becomes H2 0):

H2 0)

U � f ðUÞaCf � m0jU jp1 ; Ejðx; yÞjaCW;U A Rd ;

where p1 > 2, m0 > 0, Cf b 0.

We use the more general G than jU j2=2, because this allows an ðx; yÞ
dependence on f , and also a sublinear growth of f , if B̂Be ¼ 0.

All our conclusions hold if f ¼ f ðUÞ satisfies H2 0) instead of H2Þ.
3) Condition H1) makes the Nemitsky operator f̂fe locally Lipschitz

(0a ea 1), and H2), H3) assure the boundedness of all trajectories of

the nonlinear flow pe, which leads to the existence of a global attractor.

Similar conditions can be found e.g. in [2].

The rest of this article is organized as follows.

In section 2 we prove the convergence of the linear and nonlinear semi-

groups, respectively. In Section 3 we derive some general conditions on the

nonlinearity which su‰ce for the existence of attractors of the corresponding

semi-groups. They also imply the upper-semi-continuity of these attractors.

In the last section we prove our main result. That is, we treat the important

example that the nonlinearity is the Nemitsky operator of a map, and give

su‰cient conditions on this map so that the conditions of section 3 are satisfied.

2. Convergence of the semi-groups

In this section we investigate the abstract equation

Ut ¼ �AeU þ F̂FeðUÞ; t > 0 ð2:1Þ

as e # 0 (e.g. equation (1.6), but here we do not suppose F̂Fe to be a Nemitsky

operator).

We closely follow the ideas of [9].

First note that the bilinear forms
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ae : H
1 �H 1 ! R; aeðu; vÞ ¼

ð
W

‘eu‘ev dxdy;

a0 : H
1
s �H 1

s ! R; a0ðu; vÞ ¼
ð
W

‘xu‘xv dxdy;

generate selfadjoint operators with compact resolvents

be : DðbeÞHH 1 ! L2; b0 : Dðb0ÞHH 1
s ! L2

s ;

respectively, and we have U ¼ ðu1; . . . ; udÞ A DðAeÞ ðU A DðA0ÞÞ i¤ ui A DðbeÞ
ðui A Dðb0ÞÞ for all i ¼ 1; . . . ; d. For the respective case we have

AeU ¼

0BB@
d1beu1

..

.

ddbeud

1CCA; A0U ¼

0BB@
d1b0u1

..

.

ddb0ud

1CCA: ð2:2Þ

Let le
j , l0j , U e

j , U 0
j denote the eigenvalues and eigenvectors of Ae and A0,

where—unless stated otherwise—the eigenvalues are ordered increasingly, and

ðU e
j Þjb1, ðU 0

j Þjb1 are orthonormal systems (ONS) of ðL2Þd and ðL2
s Þ

d , respec-

tively.

We assume that there exists a set SH ðH 1Þd such that the operator

F̂FeðUÞ : S ! ðL2Þd is Lipschitz, i.e. there is an Lb 0 (independent of e A ½0; 1�),
such that

jF̂FeðUÞ � F̂FeðVÞjL2 aLjU � V jH 1 ; EU ;V A S:

For a limiting semi-flow to exist, assume additionally

F̂F0ðS V ðH 1
s Þ

dÞH ðL2
s Þ

d ;

and

jF̂FeðUÞ � F̂F0ðUÞjL2 ! 0; e # 0; ð2:3Þ

for all U A ðH 1
s Þ

d (e.g. if f satisfies H1), H2), H3) in § 1).

It is well known that under above conditions on F̂Fe, (2.1) together with

the initial value Uð0Þ ¼ U0 A S defines local semi flows pe on S.

Moreover,

Ut ¼ �A0U þ F̂F0ðUÞ; t > 0

together with the initial value Uð0Þ ¼ U0 A S V ðH 1
s Þ

d defines a local semi-flow

p0 on S V ðH 1
s Þ

d .

We claim that the semi-flows pe converge in a strong sense to the semi-

flow p0. The proofs are as in [9] with only minor changes. Alternatively, one
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can use the fact that Ae and A0 can be expressed by its one-dimensional-

counterparts be and b0, respectively.

More in detail, one proves first the convergence of the eigenvalues le
j and

eigenvectors U e
j of Ae to their counterparts l0j and U 0

j of A0:

l0j ¼ lim
e#0

le
j ¼ sup

e>0
le
j ; j ¼ 1; 2; . . . ;

and for any sequence en # 0, there is a subsequence, called ðenÞ again, such that

for all jb 1 there is an ðL2
s Þ

d -complete ONS ðUjÞjb1, with

jU en
j �Ujjen ! 0 ðn ! yÞ:

Having established the convergence of eigenvalues and eigenvectors, one proves

the convergence of the linear semi-groups e�tAe to e�tA0 :

Theorem 2.1. Let ðenÞnb1 be a sequence of positive numbers tending to 0,

b > 0, ðUnÞnb1 H ðL2Þd , U0 A ðL2
s Þ

d
, and Un ! U0 in j:jL2 .

Then

sup
t A ½b;y½

je�Aen tUn � e�A0tU0jen ! 0; n ! y:

With the convergence of the linear semi-groups, one proves the convergence

of the nonlinear semi-flows pe to p0:

Theorem 2.2. Let ðenÞnb1 be a sequence of positive numbers tending to 0,

0 < b < y, Un A SH ðH 1Þd , and U0 A S V ðH 1
s Þ

d
, where Un ! U0 in j:jL2 .

Assume Unpen t, U0p0t are defined for all nb 1 and 0a ta b.

Then for all t0 A �0; b�, tn A ½0; b� with tn ! t0, we have

jUnpen tn �U0p0t0jen ! 0; n ! y:

We comment on the conditions in the last theorem.

The assumption in Theorem 2.2 that U0p0t exists for 0a ta b is unnec-

essary, if F̂Fe : SH ðH 1Þd ! ðL2Þd , and ðH 1
s Þ

d HS. Therefore, in this case, the

theorem is true under the remaining conditions.

We shall briefly outline why this assumption is not necessary.

U0p0t exists for 0a t < d, a d > 0. Assume da b to be maximal. By

Theorem 2.2 (as stated above, with b ¼ d) one can without loss of gen-

erality assume jUn �U0jen ! 0, Un A DðAenÞ, U0 A DðA0Þ. It is possible to

show supðjUnpen tjen : 0a ta b; nb 1Þ < y. By Theorem 2.2 this implies

supðjU0p0tj : 0a ta dÞ < y too, and by Theorem 3.3.4 [8] U0p0t is extendable.

As a second remark we note that Corollary 5.2 in [9] is also true for

systems, i.e. a sequence of uniformly bounded solutions of pen , en # 0, has a

subsequence converging in j:je to a solution of p0.
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3. Semi continuity of attractors

In this section we shall show that if the nonlinearity F̂Fe in equation (2.1)

satisfy some natural conditions (see A1) to A4) below), then the resulting semi-

flows pe have global attractors Ae ð0a ea 1Þ, and the (a priori local) semi-

flow p0 is a global one. Also we prove the family of attractors Ae to be

upper-semi-continuous at e ¼ 0.

Note that in this section we do not suppose F̂Fe to be a Nemitsky operator.

Let UðtÞ and pe denote respectively the solution and the resulting (local)

semi-flow generated by the equation (2.1) with the initial condition Uð0Þ ¼ U0,

U0 A ðH 1Þd , if 0 < ea 1, U0 A ðH 1
s Þ

d , if e ¼ 0. Here F̂Fe : ðH 1Þd ! ðL2Þd is a

nonlinear function.

We impose the following conditions on the nonlinearity F̂Fe:

A1) F̂Fe is (locally) Lipschitz, i.e. for every d > 0 there is an L ¼ LðdÞ (inde-

pendent of e), such that for all 0a ea 1

jF̂FeðUÞ � F̂FeðVÞjL2 aLjU � V jH 1 ; EU ;V A ðH 1Þd ; jU jH 1 ; jV jH 1 a d:

A2) For 0 < ea 1 the semi-flows pe exist for all times tb 0. For every d > 0

there is a C ¼ CðdÞ > 0 (independent of e), such that

jU0petje ¼ jUðtÞje aC; EU0 A ðH 1Þd ; jU0je a d:

A3) The semi-flows pe, 0 < ea 1, have absorbing sets which are bounded

uniformly with respect to j:je, i.e. there are a df > 0, and for every d > 0

a T ¼ TðdÞ > 0, both df and T being independent of e, such that

jU0petje < df ; EU0 A ðH 1Þd ; jU0je a d; tbT : ð3:1Þ

A4)

F̂F0jðH 1
s Þ

d : ðH 1
s Þ

d ! ðL2
s Þ

d ;

and F̂Fe approaches F̂F0 pointwise, i.e.

lim
e#0

jF̂FeðUÞ � F̂F0ðUÞjL2 ¼ 0; EU A ðH 1
s Þ

d :

Note that we do not suppose that the semi-flow p0 exists for all tb 0.

We only assume that the semi-flows pe ð0 < eÞ are global.

Note also that if A1) holds, then F̂Fe maps bounded sets (of ðH 1Þd if 0 < e,

of ðH 1
s Þ

d if e ¼ 0) into bounded sets (of ðL2Þd if 0 < e, and of ðL2
s Þ

d if e ¼ 0,

respectively).

Roughly speaking, conditions A1) to A4) will be used in the following way.

Conditions A1), A2), A3) are su‰cient for the semi-flows pe, 0 < e, to have

global attractors Ae. These attractors are bounded uniformly in j:je. By A2)

we can change F̂Fe outside a certain ball in ðH 1Þd , so that with A1) the resulting
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nonlinearity is globally Lipschitz, and with A4) we can apply the results of

§ 2. That is to say, the semi-flows pe converge to the limit semi-flow p0. Thus

p0 exists for all tb 0, and the absorbing sets of A3) extend to an absorbing set

for p0. Again using that by A1) F̂Fe maps bounded sets into bounded sets,

there is a global attractor A0 for p0 too. Since the attractors Ae, 0 < ea 1,

are uniformly bounded, and the semi-flows pe converge to p0, the family of

attractors can be shown to be upper-semi-continuous at e ¼ 0.

We start by proving the existence of attractors for the semi-flows pe, 0 < e.

Theorem 3.1. Let F̂Fe satisfy A1), A2), A3). Then pe has a global

attractor Ae which attracts bounded sets of ðH 1Þd . Ae is compact and con-

nected in ðH 1Þd . Moreover, Ae is an o-limit set

Ae ¼ oðfU A ðH 1Þd : jU je a df gÞH fU A ðH 1Þd : jU je a df g:

Here df is as in A3).

Proof. The proof is a simple adaptation of the proof of Theorem 3.3.6

[8], followed by Theorem 1.1, chapter 1 of [12].

By A3)

Be
df
:¼ fU A ðH 1Þd : jU je a df g

attracts bounded sets of ðH 1Þd .
We claim that for any d > 0, 6

t>1
B e
dpetH ðH 1Þd is in a compact set.

Write equation (2.1) as follows:

Ut ¼ �ðAe þ idÞU þ ðF̂FeðUÞ þUÞ ¼ � ~AAeU þ ~FFeðUÞ:

Since Ae has compact resolvent, if X a ð0a aÞ denotes the fractional power

space of Ae (or equivalently of ~AAe), with norm kUka ¼ j ~AAa
eU jL2 , the embedding

X b H ðH 1Þd ¼ X 1=2 is compact for 1
2
< b < 1.

So we only have to show that for all d > 0, and fixed 1
2
< b < 1, the set

fB e
dpet : t > 1g is bounded in X b.

Let U0 A ðH 1Þd , jU0je a d. By A2) jU0petje aCðdÞ, for all tb 0, by A1)

F̂Fe—and thus ~FFe too—maps bounded sets of ðH 1Þd into bounded sets of

ðL2Þd , thus there is a constant C1, such that j ~FFðU0petÞjL2 aC1, for all tb 0.

Since Re sð ~AAeÞ > 1
2
, we get for tb 1

kUðtÞkb a ke� ~AAetU0kb þ
ð t
0

ke� ~AAeðt�sÞ ~FFeðUðsÞÞkbds

aC2 t�be�ð1=2Þtdþ C1
1

1� b
þ 2ðe�1=2 � e�ð1=2ÞtÞ

� �� �
;

where C2 is a constant independent of U0 and t. This proves the claim.
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Note for later use that for the proof of the claim we only needed Ae to

have compact resolvent, kUðtÞk1=2 to be bounded uniformly on bounded sets

of X 1=2, and F̂Fe to map bounded sets of X 1=2 into bounded sets of X .

With the claim, by Theorem 1.1, chapter 1 of [12], the o�limit set of

B e
df
H ðH 1Þd with respect to pe,

Ae :¼ oeðBe
df
Þ;

is a global, compact, connected attractor of bounded sets.

Now we prove the counterpart of Theorem 3.1 for the limiting semi-flow

p0. Note that we have not supposed p0 to exist for all t, nor the existence of

an absorbing set.

Theorem 3.2. Let F̂Fe satisfy A1) to A4). Denote by F̂Fs the restriction of

F̂F0 to ðH 1
s Þ

d .

Then the equation

Ut ¼ �A0U þ F̂FsðUÞ; t > 0; ð3:2Þ

with initial condition Uð0Þ ¼ U0 A ðH 1
s Þ

d
, defines via U0p0t :¼ UðtÞ a global

semi-flow p0 on ðH 1
s Þ

d .

p0 has a global attractor A0 which attracts bounded sets of ðH 1
s Þ

d . A0 is

compact and connected in ðH 1
s Þ

d . Moreover, A0 is the o-limit set with respect

to p0

A0 ¼ oðfU A ðH 1
s Þ

d : jU jH 1 a ~ddf gÞH fU A ðH 1
s Þ

d : jU jH 1 a ~ddf g;

where ~ddf ¼ ðminð1; d1; . . . ; ddÞÞ�1=2
df , df as in A3).

Proof. By A1) and A4) F̂Fs satisfies (on bounded sets) all the conditions

we posed in § 2, so (3.2) defines a (a priori local) semi-flow p0 on ðH 1
s Þ

d .

Assume the solution of (3.2) with initial value U0 A ðH 1
s Þ

d exists for 0a

t < T1ðU0Þ.
Denote by VeðtÞ ¼ U0pet the solution of equation (2.1) with initial value

U0 A ðH 1
s Þ

d , 0 < ea 1.

By A2) there is a constant C, independent of e, U0 and t, but depending

on jU0jH 1 , such that

jVeðtÞje aC; E0a t < T1ðU0Þ; 0 < ea 1:

We apply Theorem 2.2. Then for all 0 < t0 < T1ðU0Þ

jUðt0ÞjH 1 a ðminð1; d1; . . . ; ddÞÞ�1=2
C; ð3:3Þ

i.e. if T1ðU0Þ < y, then UðtÞ remains bounded in ðH 1
s Þ

d , as t " T1ðU0Þ.
By A1) F̂Fs maps bounded sets into bounded sets, and by Theorem 3.3.4

[8], T1ðU0Þ ¼ y follows. Hence p0 is a global semi-flow.
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Note also that for every d > 0 there is a C ¼ CðdÞ > 0, such that

jU0p0tjH 1 < C, for all jU0jH 1 a d, tb 0. This allows us to use the results of

§ 2, although F̂Fe ð0a ea 1Þ may not be globally Lipschitz.

Now take any sequence en # 0. Let df be as in A3). Then for all

d > 0 there is a TðdÞ > 0, such that for all nb 1, U0 A ðH 1
s Þ

d , jU0jen a
ðmaxð1; d1; . . . ; ddÞÞ1=2, jU0jH 1 < d implies jVenðtÞjen < df , and thus applying

Theorem 2.2 we get

jUðtÞjH 1 a ðminð1; d1; . . . ; ddÞÞ�1=2
df ¼ ~ddf ; tbTðdÞ:

This means, setting for d > 0

B0
d :¼ fU A ðH 1

s Þ
d : jU jH 1 a dg;

that B0
~ddf

absorbs bounded sets of ðH 1
s Þ

d .

Since A0 has compact resolvent, with (3.3) and A1) we can use the same

argument as in the proof of Theorem 3.1 to show that 6
t>1

B0
d p0t is in a

compact set for any d > 0. Thus, again as in the proof of Theorem 3.1, the

o-limit set of the semi-flow p0,

A0 :¼ oðB0
~ddf
Þ;

is a global, compact, connected attractor of bounded sets.

We are now able to prove the main result of this section.

Theorem 3.3. Let F̂Fe satisfy A1) to A4), and Ae, 0a ea 1, be the global

attractors of the semi-flows pe of equations (2.1) and (3.2), respectively.

Then the family Ae is upper-semi-continuous at e ¼ 0 with respect to the

family of norms j:je, i.e.

lim
e#0

sup
U AAe

inf
V AA0

jU � V je ¼ 0:

Proof. In the following we write j:jn, pn, An for j:jen , pen , Aen , respec-

tively.

Set

S :¼ fU A ðH 1Þd : b sequence en # 0;An C Vn * U in ðH 1Þdg:

By Theorem 3.1, such a sequence fVng is bounded, jVnjn a df , and there is

a subsequence converging weakly in ðH 1Þd to an element in ðH 1
s Þ

d , i.e.

SH ðH 1
s Þ

d .

We claim that S is p0-invariant.

To prove this, let t1 > 0 and U A S.

There are sequences en # 0, and Un A An such that Un * U in ðH 1Þd .
Thus Un ! U in L2. Since Ae is pe-invariant, there is a Vn A An, such that
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Vnpnt1 ¼ Un:

By Theorem 3.1, jVnjn a df , and there is a subsequence, called ðVnÞ again,

which converges weakly in ðH 1Þd , and strongly in ðL2Þd , to an element V A S.

By Theorem 3.2, Vp0t exists for all tb 0, and with Theorem 2.2, for all
1
2
t1 a ta t1,

jVnpnt� Vp0tjn ! 0; n ! y: ð3:4Þ

Choosing t ¼ t1, we get U ¼ Vp0t1. Choosing t ¼ 1
2
t1, we see Vp0

t1
2
A S, and

U ¼ Vp0
t1

2

� �
p0

t1

2
A Sp0

t1

2
:

That is, SHSp0
t1
2
, and S is negatively invariant with respect to p0.

Analogously

jUnpnt1 �Up0t1jn ! 0; n ! y;

implying Up0t1 A S. Thus Sp0t1 HS, i.e. S is positively invariant too. This

proves the claim.

S is not only p0-invariant, but SHA0. Indeed, if U A S, An C Vn * U in

ðH 1Þd , then with Theorem 3.1 and ~ddf as in Theorem 3.2

jU jH 1 a lim inf
n!y

jVnjH 1 a lim inf
n!y

ðminð1; d1; . . . ; ddÞÞ�1=2jVnjn a ~ddf :

Using the characterization of A0 of Theorem 3.2, the invariance of S implies

SHA0.

Now we are able to prove the conclusion of Theorem 3.3.

Assume it to be false. Then there are a sequence ðenÞnb1 of positive

numbers tending to 0, d > 0, and Un A An such that for all U0 A A0,

jUn �U0jn > d: ð3:5Þ

As before, by Theorem 3.1, jUnjn a df , and taking a subsequence we can

without loss of generality assume that

Un * U A ðH 1Þd in ðH 1Þd :

But then U A S.

Arguing as in the proof of the claim above, for a given t1 > 0, letting

Vn A An be such that Vnpnt1 ¼ Un, and taking V A SHA0 as a weak limit (of

a subsequence) of Vn, by equation (3.4) we see

jUn � Vp0t1jn ! 0; n ! y:

By the comments above, Vp0t1 A SHA0, which contradicts (3.5).
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4. Special cases

In this section we shall treat the special case in which the function F̂Fe of the

last section is the Nemitsky operator of a (nonlinear) map f plus a linear map

of the x-derivatives of U . We shall show that if the nonlinearity f satisfies

some natural conditions (i.e. H1), H2), H3)), then the Nemitsky operator F̂Fe

satisfies conditions A1) to A4) in § 3. Thus we can apply the general results

of that section, and the semi-flows generated by equation (1.6), i.e. by

Ut ¼ �AeU þ B̂BeU þ f̂feðUÞ ¼ �AeU þ F̂FeðUÞ; t > 0: ð4:1Þ

will be global, and have attractors Ae which are upper-semi-continuous at

e ¼ 0.

We make the same assumptions as in § 1, i.e. we suppose

B̂B0jðH 1
s Þ

d : ðH 1
s Þ

d ! ðL2
s Þ

d ;

and G and f to satisfy conditions C1), C2), C3) and H1), H2), H3), respec-

tively. Note that B̂Be : ðH 1Þd ! ðL2Þd is bounded uniformly in e, (0a ea 1).

We want to apply the results of § 3. For this we have to prove F̂Fe to

satisfy A1) to A4). These proofs are rather technical and long, so let us first

state the results and present the proofs afterwards.

Lemma 4.1. Let f A C1ðRM � RN � Rd ;RdÞ satisfy H1). Let F̂Fe be as

defined in (1.9) and assume B̂B0jðH 1
s Þ

d : ðH 1
s Þ

d ! ðL2
s Þ

d .

Then F̂Fe satisfies conditions A1) and A4) in § 3, for 0a ea 1.

Theorem 4.1. Let G and f satisfy conditions C1), C2), C3), and H1), H2),

H3), respectively. Define the operators B̂Be, f̂fe, F̂Fe as in (1.7), (1.8), and (1.9),

respectively. Then the solution UðtÞ to equation (4.1) with initial value Uð0Þ ¼
U0 A ðH 1Þd is uniquely defined and exists for all tb 0.

Moreover, there is an df > 0 such that for every 0 < d there is a T ¼
TðdÞ > 0, both df and T independent of e, and

jUðtÞje < df ; EjU0je < d; tbT :

Also,

jUðtÞj2e a ð1þ jU0j2þp2
e Þdf ; EU0 A ðH 1Þd ; tb 0:

Theorem 1.1, the main result of this article, is now a simple corollary, using

Lemma 4.1, Theorem 4.1, and the results of § 3.

We have to prove Lemma 4.1 and Theorem 4.1. The easy part is Lemma

4.1. To prove it, we proceed through three lemmas stating some facts about

Nemitsky operators.
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Lemma 4.2. Let g A C1ðRM � RN � Rd ;RÞ, and assume supðj‘gðx; y; sÞj :
ðx; yÞ A W; s A RdÞ < Mg A R.

If U ¼ ðu1; . . . ; udÞ A ðH 1Þd , then ĝgUðx; yÞ :¼ gðx; y;Uðx; yÞÞ A H 1, and the

derivatives of ĝg are computed according to the usual chain rule.

Lemma 4.2 can be proven by slightly modifying the proof of Proposition

IX.5 in [3]. Note that W is bounded, so the condition Gð0Þ ¼ 0 in [3] is not

needed here.

As in Theorem 5.3 of [9] we have

Lemma 4.3. If g A C 1ðRM � Rd ;RÞ, U A ðH 1
s Þ

d
, and

ĝgUðx; yÞ :¼ gðx;Uðx; yÞÞ A L2;

then ĝgU A L2
s .

It is a standard procedure to prove f̂fe to be well defined and locally

Lipschitz. Using H1), the Sobolev-Imbedding-Theorem, and Lemma 4.3, we

find

Lemma 4.4. Let f A C 1ðRM � RN � Rd ;RdÞ satisfy H1). Then the

Nemitsky operator f̂fe : ðH 1Þd ! ðL2Þd , defined in (1.8) is well defined and locally

Lipschitz. More precisely, for e A ½0; 1�, U ;V A ðH 1Þd , jU jH 1 ; jV jH 1 a d, we

have

j f̂feðUÞ � f̂feðVÞjL2 aCð1þ dp0ÞjU � V jH 1 ; ð4:2Þ

where C > 0 is a constant, independent of U ;V ; d and e.

If U A ðH 1
s Þ

d
, then

j f̂feðUÞ � f̂f0ðUÞjL2 a eCð1þ jU jp0þ1
H 1 Þ: ð4:3Þ

The restriction of f̂f0 to ðH 1
s Þ

d
satisfies

f̂f0jðH 1
s Þ

d : ðH 1
s Þ

d ! ðL2
s Þ

d : ð4:4Þ

Lemma 4.1 is now an easy consequence of Lemma 4.4, the continuity of B j,

and the boundedness of B̂Be.

We proceed to the proof of Theorem 4.1. Again we use a number of

lemmas: Lemma 4.5 gives an approximation in Ly of an eigenvector of be,

which is used in Lemma 4.6 to provide an approximation V A ðLyÞd of an

U A DðAeÞ, which in turn is needed in Lemma 4.10. Lemma 4.7 states an

estimate needed in Lemma 4.8, which collects several useful facts about G, or

rather about the Nemitsky operators ĜG and d‘uG‘uG. Each of the Lemmas 4.9,

4.10 and 4.11 provides an upper bound for part of an expression which arises

in the proof of Theorem 4.1.
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Lemma 4.5. Let u A H 1 be an eigenvector of be, and d > 0.

Then there is a v A DðbeÞVLy, such that

ju� vjH 1 < d; jbeðu� vÞjL2 < d:

Proof. Let u be an eigenvector of be, and l the corresponding eigen-

value. Without loss of generality, assume u to be normalized in L2.

If l ¼ 0, then without loss of generality u1 constant, and v ¼ u satisfies

the conclusion.

For the rest of the proof assume l > 0.

Let ðujÞjb1 be an L2-ONS of eigenvectors of be, with corresponding

eigenvalues ðljÞjb1 (see [9]). Without loss of generality, assume l1 ¼ 0,

u1 ¼ jWj�1=2, l2 ¼ l, and u2 ¼ u.

Let d1 > 0, and jvj2e :¼ jvj2L2 þ aeðv; vÞL2 , for all v A H 1.

There is a ~vv A Cy
0 ðRMþNÞ with j~vv� ujH 1 < d1 (see e.g. [1], Lemma A 5.8),

and a v A DðbeÞVLy, such that

ðbe þ idÞv ¼ ðlþ 1Þ~vv:

Hence

jvj2L2 a jvj2e a ðlþ 1Þj~vvjL2 jvjL2 a ðlþ 1Þðd1 þ jujH 1ÞjvjL2 ;

ju� vj2H 1 a ju� vj2e ¼ ððbe þ idÞðu� vÞ; u� vÞL2

a ðlþ 1Þju� ~vvjL2ðjujL2 þ jvjL2Þ

a ðlþ 1Þd1ð1þ ðlþ 1Þðd1 þ jujH 1ÞÞ;

and

ju� vj2H 1 aCd1;

for a suitable constant C. So

jbeðu� vÞjL2 ¼ jðlþ 1Þðu� ~vvÞ � uþ vjL2 a ðlþ 1Þd1 þ
ffiffiffiffi
C

p ffiffiffiffiffi
d1

p
;

which proves the lemma.

Lemma 4.6. Let U A DðAeÞ and d > 0.

Then there exists a V A DðAeÞV ðLyÞd , such that

jU � V je a d; jAeðU � VÞjL2 a d: ð4:5Þ

Proof. Since U ¼ ðu1; . . . ; udÞ A DðAeÞ i¤ uj A DðbeÞ for j ¼ 1; . . . ; d,

Lemma 4.6 easily follows from Lemma 4.5.

A simple estimate proves the following lemma.
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Lemma 4.7. Let pb 1, u A Lp, and C > 0.

If jujpLp b 2CpjWj, thenð
fðx;yÞ AW:juðx;yÞjbCg

juðx; yÞjpdxdyb 1

2
jujpLp :

Lemma 4.8. Let G A C 2ðRM � RN � Rd ;RbÞ satisfy C1), C2). Define

the Nemitsky operators ĜG and d‘uG‘uG through

ĜGðUÞðx; yÞ ¼ Gðx; y;Uðx; yÞÞ;

d‘uG‘uGðUÞðx; yÞ ¼

0BB@
qu1Gðx; y;Uðx; yÞÞ

..

.

qudGðx; y;Uðx; yÞÞ

1CCA:

Then the following hold:

i ) d‘uG‘uG : ðH 1Þd ! ðL2Þd is locally Lipschitz. In particular, if U ;V A ðH 1Þd ,
jU jH 1 ; jV jH 1 a d, then

jd‘uG‘uGðUÞ � d‘uG‘uGðVÞjL2 aCð1þ dp2ÞjU � V jH 1 ;

where C is a constant, independent of U , V , d, and p2 is as in C2).

ii ) ĜG : ðH 1Þd ! L1, and there is a constant C > 0, such that

jĜGðUÞjL1 aCð1þ jU jp2þ2
H 1 Þ; EU A ðH 1Þd ;

where p2 is as in C2).

iii) There are constants C, ~CC > 0, such that

jU jL2 bC ) jĜGðUÞjL1 b ~CCjU j2L2 ; EU A ðH 1Þd :

iv) If I is an open interval, I C t 7! UðtÞ A ðH 1Þd is continuous, and di¤er-

entiable with respect to j:jL2 , the derivative being UtðtÞ A L2, then

q

qt
jĜGðUðtÞÞjL1 ¼ ðd‘uG‘uGðUðtÞÞ;UtðtÞÞL2 ; Et A I :

Proof. By C2), i) follows directly from Lemma 4.4 applied to

DuGðx; y;UÞ.
Note for later use that one has H 1 HL2ðp2þ1Þ, p2 as in C2).

A simple estimation using C2) and the Sobolev-Imbedding-Theorem proves

ii).

Let U A ðH 1Þd , then with C1)
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jĜGðUÞjL1 b n0

ð
fðx;yÞ AW:jUðx;yÞjbCf g

jU j2dxdy:

Now Lemma 4.7 shows iii).

iv) is the only claim not being that simple to prove. Since

lim
h!0

jĜGðUðtþ hÞjL1 � jĜGðUðtÞjL1

h
� d‘uG‘uGðUðtÞÞ; q

qt
UðtÞ

� �
L2

�����
�����

a
Xd
j¼1

lim
h!0

ð
W

�
jqujGðx; y; xhðx; yÞÞj

� ujðtþ hÞðx; yÞ � ujðtÞðx; yÞ
h

� q

qt
ujðtÞðx; yÞ

���� ����
þ jqujGðx; y; xhðx; yÞÞ � qujGðx; y;UðtÞðx; yÞÞj q

qt
ujðtÞðx; yÞ

���� �����dxdy;
where xhðx; yÞ is between UðtÞðx; yÞ and Uðtþ hÞðx; yÞ, we only have to show

jqujGðx; y; xhðx; yÞÞ � qujGðx; y;UðtÞðx; yÞÞjL2 ! 0; h ! 0: ð4:6Þ

So fix j A f1; . . . ; dg, and let hn ! 0.

t 7! UðtÞ is continuous in j:jL2 , hence without loss of generality, we can

assume for a.a. ðx; yÞ

Uðtþ hnÞðx; yÞ ! UðtÞðx; yÞ; n ! y:

Thus for a.a. ðx; yÞ

E1 :¼ jqujGðx; y; xhnðx; yÞÞ � qujGðx; y;UðtÞðx; yÞÞj ! 0; n ! y:

On the other hand

ðE1Þ2 a ðkðDuÞ2Gðx; y; hnðx; yÞÞk � jxhnðx; yÞ �UðtÞðx; yÞjÞ2;

for a hnðx; yÞ between UðtÞðx; yÞ and xhnðx; yÞ. Applying C2) it follows that

ðE1Þ2 a 2C 2
f ð1þ jUðtÞðx; yÞj2p2 þ jUðtþ hnÞðx; yÞj2p2Þ

� jUðtþ hnÞðx; yÞ �UðtÞðx; yÞj2: ð4:7Þ

If p2 ¼ 0, then the right-hand side goes to 0, as a function in L1, hence by

the General-Lebesgue-Convergence-Theorem (see e.g. [1], A1.23)ð
W

jqujGðx; y; xhnðx; yÞÞ � qujGðx; y;UðtÞðx; yÞÞj2dxdy ! 0; n ! y: ð4:8Þ

Thomas Elsken408



If p2 > 0, we apply the Hölder-inequality for p ¼ p2þ1

p2
> 1 to getð

W

jUðtÞðx; yÞj2p2 jUðtþ hnÞðx; yÞ �UðtÞðx; yÞj2dxdy

a

ð
W

jUðtÞðx; yÞj2p2pdxdy
� �1=p

�
ð
W

jUðtþ hnÞðx; yÞ �UðtÞðx; yÞj2ð p=ðp�1ÞÞ
dxdy

� �ðp�1Þ=p
:

Since 2pp2 ¼ 2
p

p�1
¼ 2ðp2 þ 1Þ and H 1 HL2ðp2þ1Þ (see proof of i)), the conti-

nuity in j:jH 1 of t 7! UðtÞ implies that the right-hand side of the formula above

tends to 0. Thus the L1-norm of the right-hand side of (4.7) tends to 0 too.

We can again apply the General-Lebesgue-Convergence-Theorem to get (4.8)

also in the case p2 > 0.

(4.8) immediately yields (4.6), and iv) has been proven.

The next three lemmas provide some estimates we shall need in the proof

of Theorem 4.1. In all these lemmas we suppose f and G to satisfy H1), H2),

H3) and C1), C2), C3), respectively.

Lemma 4.9. For every U A DðAeÞ and CA > 0 there exists a constant

C > 0, independent of e and U, such that

ðB̂BeU ;T�1AeUÞL2 aCjU jL2 jAeU jL2 þ CAjAeU j2L2 : ð4:9Þ

Proof. Let C1 b kB̂Bek be independent of e, and set

aj :¼ ðU ;U e
j ÞL2 ; dm :¼ minð1; d1; . . . ; ddÞ; C2 :¼

C1

dm
:

Choose j0 A N such that for xb l1j0 ,

0a
C 2

A

C2
2

x2 � xd�1
m � d�1

m ;

then for jb j0, because le
j increases as e decreases,

1þ le
j

dm
a

C 2
A

C2
2

ðle
j Þ

2;

and thus

jU jH 1 �
CA

C2
jAeU jL2 a

Xj0
j¼1

d�1
m ð1þ le

j Þa2j

 !1=2
aC3jU jL2 ;
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where the constant C3 is independent of e and U . We get

ðB̂BeU ;T�1AeUÞL2 a ðC2C3jU jL2 þ CAjAeU jL2ÞjAeU jL2 :

Lemma 4.10. Let p0 be as in condition H1), p2 as in C2), and U A DðAeÞ.
Then there exists a constant C > 0, independent of e and U, such that

�ðd‘uG‘uGðUÞ;AeUÞL2 þ ðd‘uG‘uGðUÞ; B̂BeUÞL2 þ ð f̂feðUÞ;T�1AeUÞL2

aCð1þ jU j2e þ jU jejU jpþ1

L2ð pþ1Þ Þ: ð4:10Þ

Here p is as follows.

If f ¼ f ðUÞ is independent of ðx; yÞ, then p ¼ p2 is independent of p0.

If G ¼ GðUÞ is independent of ðx; yÞ and B̂Be ¼ 0, then p ¼ p0 is independent

of p2.

If both conditions above are satisfied, then the last term on the right-hand

side in (4.10) disappears. If neither of these conditions is satisfied, then p ¼
maxðp0; p2Þ.

Proof. We shall first show the following inequalities

ð f̂feðUÞ;T�1AeUÞL2 aCð1þ jU j2e þ jU jejU jp0þ1

L2ð p0þ1Þ Þ; ð4:11Þ

�ðd‘uG‘uGðUÞ;AeUÞL2 aCð1þ jU j2e þ jU jejU jp2þ1

L2ð p2þ1Þ Þ; ð4:12Þ

ðd‘uG‘uGðUÞ; B̂BeUÞL2 aCð1þ jU j2e þ jU jejU jp2þ1

L2ð p2þ1Þ Þ: ð4:13Þ

For q1 < q2;C > 0, using the Hölder-inequality,

jU jq1Lq1 aC1jU jq1Lq2 aC2 þ CjU jq2Lq2 ; ð4:14Þ

where C1;C2 b 0 depend only on q1, q2, C and W, so (4.11), (4.12), (4.13)

imply (4.10), if the last terms in (4.11), (4.12), (4.13) disappear for f inde-

pendent of ðx; yÞ, G independent of ðx; yÞ, and B̂Be ¼ 0, respectively.

Note that by H1) and C2) we have in all cases L2ð pþ1Þ HH 1.

By Lemmas 4.4 and 4.6 there is a sequence Un A DðAeÞV ðLyÞd , such

that

jUn �U je; jAeðUn �UÞjL2 ; j f̂feðUnÞ � f̂feðUÞjL2 ;

jUn �U jL2ð p0þ1Þ ! 0; n ! y: ð4:15Þ

Hence it is su‰cient to prove (4.11) under the assumption U A DðAeÞV ðLyÞd .
In this case f̂feðUÞ A ðH 1Þd by Lemma 4.2.

Using H1) and H3)
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ð f̂feðUÞ;T�1AeUÞL2

¼
Xd
i¼1

ð
W

‘eui‘e f̂fe; iðUðx; yÞÞdxdy

¼
Xd
i¼1

ð
W

"XM
j¼1

qxj uiqxj fiðx; ey;UÞ þ 1

e

XN
j¼1

qyj uiqyj fiðx; ey;UÞ

þ
Xd
l¼1

XM
j¼1

qxj uiqul fiðx; ey;UÞqxj ul þ
1

e2

XN
j¼1

qyj uiqul fiðx; ey;UÞqyj ul

 !#
dxdy

aC3 jU je
ð
W

ð1þ jU j2ð p0þ1ÞÞdxdy
� �1=2

þ jU j2e

 !
;

where the constant C3 is independent of e and U . If f is independent of

ðx; yÞ, then ð f̂feðUÞ;T�1AeUÞL2 aCjU j2e . (4.11) follows immediately.

Now write as

�ðd‘uG‘uGðUÞ;AeUÞL2 ¼ ð�Td‘uG‘uGðUÞ;T�1AeUÞL2 ;

and use exactly the same argument for �Td‘uG‘uGðUÞ as for f̂feðUÞ: Lemma 4.8

i) proves d‘uG‘uG—and hence Td‘uG‘uG too—to be Lipschitz. Thanks to Lemma 4.6

we get the sequence corresponding to (4.15), by C2) and C3) �Td‘uG‘uG satisfies

H1) (with p2 instead of p0) and H3). This proves (4.12).

Note again, that if G is independent of ðx; yÞ, then �ðd‘uG‘uGðUÞ;AeUÞL2 a

CjU j2e .
Now let C4 b kB̂Bek be independent of e. Then using C2)

ðd‘uG‘uGðUÞ; B̂BeUÞL2 a 4C4jU jH 1ðjd‘uG‘uGð0ÞjL2 þ Cf ðjU jL2 þ jU jp2þ1

L2ð p2þ1Þ ÞÞ

which implies (4.13).

The following lemma is an easy consequence of H2).

Lemma 4.11. There is a constant C > 0, independent of e, such that for all

U A DðAeÞ
ðd‘uG‘uGðUÞ; f̂feðUÞÞL2 aC � m0jU jp1Lp1 ; ð4:16Þ

where p1 is as in H2).

Proof of Theorem 4.1. Define

Gðe;U0; tÞ :¼ jĜGðUðtÞÞjL1 þ
1

2
aeðUðtÞ;T�1UðtÞÞ;

where ĜG is as in Lemma 4.8, and T ¼ diagðd1; . . . ; ddÞ as before.
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We shall prove G to be di¤erentiable with respect to t, and

qtGðe;U0; tÞa�1 if Gðe;U0; tÞ is big enough. For jUðtÞje big enough,

Gðe;U0; tÞ can be bounded from below and above by expressions in jUðtÞje.
The conclusions of Theorem 4.1 then follow directly from the behavior of

Gðe;U0; tÞ.
In this proof all constants C1;C2; . . . will be independent of t, e, U0.

Lemma 4.1 ensures that equation (4.1) has a unique solution UðtÞ A
DðAeÞH ðH 1Þd , for 0 < t < T1 ¼ T1ðU0Þ (see e.g. [8], Theorem 3.3.3).

Set

aj ¼ ajðtÞ :¼ ðUðtÞ;U e
j ÞL2 ; dM :¼ maxðd1; . . . ; ddÞ:

By Theorem 3.5.2 [8], �0;T1½ C t 7! q
qt
UðtÞ is continuous in j:jL2 . Since t 7!

f̂feðUðtÞÞ is continuous, t 7! AeUðtÞ is continuous in j:jL2 too. But since

jU j2e ¼
X
jb1

ð1þ le
j ÞðU ;U e

j Þ
2
L2 a 2

X
jb1

ð1þ ðle
j Þ

2ÞðU ;U e
j Þ

2
L2 ¼ 2ðjU j2L2 þ jAeU j2L2Þ;

t 7! UðtÞ is continuous in j:je and j:jH 1 too.

We have AeT
�1 ¼ T�1Ae, so that for 0 < t < T1

q

qt
aeðUðtÞ;T�1UðtÞÞ ¼ lim

h!0

	
AeUðtþ hÞ;T�1 Uðtþ hÞ �UðtÞ

h

� �
L2

þ AeUðtÞ;T�1 Uðtþ hÞ �UðtÞ
h

� �
L2




¼ 2 AeUðtÞ;T�1 q

qt
UðtÞ

� �
L2

¼ 2
q

qt
UðtÞ;T�1AeUðtÞ

� �
L2

:

We can apply Lemma 4.8 iv) to get for U0 A ðH 1Þd and t > 0

q

qt
Gðe;U0; tÞ ¼ �ðd‘uG‘uGðUðtÞÞ;AeUðtÞÞL2 þ ðd‘uG‘uGðUðtÞÞ; B̂BeUðtÞÞL2

þ ðd‘uG‘uGðUðtÞÞ; f̂feðUðtÞÞÞL2 � ðAeUðtÞ;T�1AeUðtÞÞL2

þ ððB̂BeUðtÞ;T�1AeUðtÞÞL2 þ ð f̂feðUðtÞÞ;T�1AeUðtÞÞL2 : ð4:17Þ

Applying Lemmas 4.9, 4.10, and 4.11 to bound each term in (4.17) above, we

get
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q

qt
Gðe;U0; tÞaC1ð1þ jUðtÞj2e þ jUðtÞjL2 jAeUðtÞjL2Þ

þ C2jUðtÞjejUðtÞjpþ1

L2ð pþ1Þ �
1

2dM
jAeUðtÞj2L2 � m0jUðtÞjp1Lp1 ; ð4:18Þ

where p is as follows:

If f ¼ f ðUÞ, G ¼ GðUÞ are independent of ðx; yÞ, and B̂Be ¼ 0, then

C2 ¼ 0, if only f ¼ f ðUÞ, then p ¼ p2, if G ¼ GðUÞ and B̂Be ¼ 0, then p ¼ p1,

and finally if f depends on ðx; yÞ, and G depends on ðx; yÞ or B̂Be 6¼ 0, then

p ¼ maxðp0; p2Þ.
Note that C2 ¼ 0 or p1 b 2ðpþ 1Þ holds by assumption. Then, as in

(4.14), there is a C3 > 0, such that

C2jUðtÞjejUðtÞjpþ1

L2ð pþ1Þ �
1

2
m0jUðtÞjp1Lp1 aC3ð1þ jUðtÞj2e Þ: ð4:19Þ

Also, for any given C > 0 there exist constants ~CC;C > 0, such that

jUðtÞj2e þ jUðtÞjL2 jAeUðtÞjL2 a ~CCjUðtÞj2L2 þ jUðtÞj2e þ
1

2
CjAeUðtÞj2L2

¼
X
jb1

~CC þ 1þ le
j þ

1

2
Cðle

j Þ
2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

aCþCðle
j Þ

2

a2j aCjUðtÞj2L2 þ CjAeUðtÞj2L2 : ð4:20Þ

Inserting (4.19) and (4.20), with appropriately chosen C, and using (4.14),

(4.18) becomes

q

qt
Gðe;U0; tÞaC4ð1þ jUðtÞj2L2Þ �

1

2
m0jUðtÞjp1Lp1 � jUðtÞj2e aC5 � jUðtÞj2e :

ð4:21Þ

Now we need a bound on G. For later use we shall do it in both directions.

By Lemma 4.8 ii) and iii), there exist constants C6;C7;C8 > 0, such that

for all U A ðH 1Þd

C7jU j2e aC7jU j2L2 þ
1

2
aeðU ;T�1UÞ

a jĜGðUÞjL1 þ
1

2
aeðU ;T�1UÞ; jU jL2 > C6; ð4:22Þ

jĜGðUÞjL1 þ
1

2
aeðU ;T�1UÞaC8ð1þ jU jp2þ2

e Þ: ð4:23Þ

Thus there is a d1 > 0, independent of e, U0, t, such that
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q

qt
Gðe;U0; tÞa�1; if Gðe;U0; tÞb d1: ð4:24Þ

This inequality implies

Gðe;U0; tÞaGðe;U0; 0Þ þ d1; 0a t < T1;

and if Gðe;U0; 0Þ ¼ jĜGðU0ÞjL1 þ 1
2
aeðU0;T

�1U0Þa d, then

Gðe;U0; tÞa 2d1; T2ðdÞa t < T1;

where T2ðdÞ is independent of e, U0.

By (4.22) and (4.23) these inequalities imply similar ones for jUðtÞje. That

is, there exist a df > 0 and a T ¼ TðdÞ > 0 for each d > 0, both independent

of e, such that

jUðtÞj2e a df ð1þ jU0jp2þ2
e Þ; EU0 A ðH 1Þd ; 0a t < T1;

jUðtÞje a df ; EjU0je < d;T < t < T1:
ð4:25Þ

By (4.25) T1 ¼ y. Indeed, by Lemma 4.1 F̂Fe maps bounded sets of ðH 1Þd
into bounded sets of ðL2Þd , so by Theorem 3.3.4 [8], either T1 ¼ y, or there is

a sequence tn " T1, such that jUðtnÞjH 1 ! y, which contradicts (4.25).
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