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ABSTRACT. We shall prove the following splitting theorem for rank two vector bundles
E on the n-dimensional projective space P” (n > 4) in positive characteristic. Let P be
a 4- or 5-dimensional projective linear subspace of P" and E = E|P the restriction of E
to P. Then E splits into line bundles if and only if the first cohomology of the sheaf of
endomorphisms of E vanishes.

0. Introduction

Let E be a rank two vector bundle on the n-dimensional projective space
P} (n>4) defined over an algebraically closed field k.

In [4], H. Sumihiro showed the following theorem in the case of char
k=0.

THEOREM 0.1. Let P be a 4- or S-dimensional projective linear subspace of
P! and E = E|P the restriction of E to P. Then E splits into line bundles if and
only if H'(P,énd(E)) = 0.

The aim of this article is to prove that this theorem holds also true in char
k =p >0. The proof is almost the same as the one for char k = 0, namely, it
is obtained by studying some geometric structures of the Hilbert scheme of P}
at determinantal subvarieties. In char k = p > 0, however, since we cannot use
the Kodaira vanishing theorem and the Le-Potier vanishing theorem (cf. [1],
[3]), we have to observe some vanishings of cohomologies appearing in [4]
carefully.

1. Preliminaries
We first recall the definition and some properties of determinantal varieties

associated to rank two bundles (cf. [4]).
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1.1. Definition of determinantal varieties. Let E be a rank two vector bundle
on P; defined over an algebraically closed field k& with arbitrary characteris-
tic, m: P(E) — P} the projective bundle associated to E over P}, Lg the
tautological line bundle on P(E) and let G = Grass(H°(E),m+ 1) be the
Grassmann variety which parametrizes (m + 1)-dimensional linear subspaces
of H°(P},E), where n=2m (resp. n=2m+1). We assume that E is
very ample, i.e., Lg is a very ample line bundle. Then we can take s=
{81582,y Smi1y € G (si€ H(P,E)) satisfying the following condition

) Yy=DiNDyN---ND,4; is a smooth closed subscheme of P(E)
(%) of pure codimension m + 1,
2) W(Sl) N W(SZ) n---nN W(Sm+l) = @a

where D; is the tautological divisor on P(E) defined by s; and W (s;) is the zero
locus of s; in P! (1 <i<m+1).

Let X, =n(Y;). Then we can show that X; is a closed subscheme of P}
which is isomorphic to Y, through = with the following defining equations:

Si/\SjZO (1Sl£]§m+1)

DEFINITION 1.1. We call the closed subscheme X, of P} the determinantal
variety associated to E defined by s e G.

Though X, depends on the choice of s € G, we call a closed subvariety X a
determinantal variety associated to E.
As for determinantal varieties, we obtain the following.

THEOREM 1.1.  Let the notaion be as above.

1) U = {s € G|s satisfies the condition (x)} is a Zariski open subset of G.

2) There exists a closed subscheme = of P;! x U such that the second
projection q:5 <P} x U— U is faithfully flat and X, = q'(s) for
any s € U. Thus smooth determinantal varieties associated to E form a
smooth family over an open subset of G.

When n =4 or 5, let Iy be the defining ideal of a determinantal subvariety
X in P". Then Iy has the following resolution by vector bundles.

LEMMA 1.2. In the above notation, there exists an exact sequence

3
0— E*(—c1) — (—D@pu(—cl) — Iy — 0,
where ¢y is the first Chern number of E and E* is the dual bundle of E.

Proor. Let s = {s1,52,53} be a set of global sections of E which defines
the determinantal subvariety X. Then we can define homomorphisms
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3 2
a:@POpr3e; Anej—sins;e/\ E (l<i<j<3),

3
B:E sff(s3)er nex—fs2)er Aes+f(s1)er nese @ Opr,

3
where {¢; A ¢;} is a basis of (P Upr. Then it suffices to verify locally on P”
that the following sequence is exact:

3
0—E L @Dop 2 Iy ® 0(c1) — 0.
O

1.2. Tangent bundles and normal bundles of determinantal varieties. In the
following subsections, we consider the case n =4 or 5, ie., m=2.

Let E be a very ample rank two bundle on P} and X a determinantal
variety associated to E which is isomorphic through n to the complete in-
tersection Y in P(E) of the tautological divisors {D;|i=1,2,3}.

Let H be the restriction of a hyperplane of P" to X and D the restriction
of a tautological divisor of P(E) to X through the isomorphism 7.

Then we have the following commutative diagram of exact sequences:

0 0

Tpiypr|Y —— Ox(2D—cH)

0 — Ty — TP(E)‘Y — NY/P(E) E— O
0 — Ty — Tpr| X —_ Ny pr — 0,
0 0

where o is the injection induced by the snake lemma. Since Ny p) =~
3
@ 0x (D), we obtain the following.

PROPOSITION 1.3.  There exists an exact sequence

3
0— @X(ZD— ClH) — @@X(D) — NX/P” — 0.
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1.3. Hilbert Schemes. Let J#ilb be the Hilbert scheme of P". Let¢: Uss+—
X; € #ilb be the morphism induced by Theorem 1.1. Let Aut(E) be the
automorphism group of E. Then Aut(E) is a reduced connected linear
algebraic group of dimension dim H°(&nd(E)).

For every element g € Aut(E) and s = {s1,8,53 € G, we define

g-s=<g(s1),9(52),9(s3)>,

where ¢(s;) is the composite of s; with g. Then it defines an action of Aut(E)
on G and we have

g-si Ag-sp=det(g)s; A s (1<i<j<3),

where det : Aut(E) > g — det(g) € k* = k\{0} is the determinant character.
Hence X, = X;. Therefore Aut(E) acts on U and ¢ is an orbit morphism,
i.e.,, ¢ is constant on any orbit O(s) = {g-s|g € Aut(E)}.

Then we have the following.

LeMMA 1.4, The stabilizer Stab(s) of s € U coincides with the multiplicative
group k*.

As a trivial corollary of the above lemma, we observe that every orbit
has the same dimension dim Aut(E)/k*, i.e., dim O(s) = dim H’(6nd(E)) — 1
(s€ U). Hence the action of Aut(E) on U is closed, i.e., every orbit is closed
in U.

2. Proof of the theorem

2.1. Since it is well-known that E splits into line bundles if and only if
E = E|P splits into line bundles, where P is a 4- or 5-dimensional linear
subspaces of P", we may assume that E is a rank two vector bundle on P" (n
being either 4 or 5) (cf. [2]). In addition after multiplying £ by a suitable
ample line bundle, we may assume that F is a very ample vector bundle
enjoying H'(E ® Kp») =0 (1 <i <4), where Kp~ is the canonical line bundle
of P”.
By Proposition 1.3, we have the following exact sequence

0 — HY(O(2D — 1)) — @ H(0x (D)) — H'(Ny o)

3
— H'(0x(2D — c1H)) — @ H'(0x(D)).
Now we recall Y = DN D,ND;. Consider the canonical exact sequence

(*)l 0— @p(E)(D—ClH) — @p(5>(2D— ClH) — @Dl(2D— C]H) — 07



A splitting theorem in positive characteristic 55
from which we obtain the following exact sequence:
0 — H(Opgy(D — c1H)) — H(Op(g)(2D — ¢1H)) — H*(Op, (2D — ¢ H))
— H'(Op(g)(D — ¢1H)) — H'(Opg)(2D — c1H)) — H'(0p,(2D — ¢ H))
— H*(Op)(D — 1 H)).

Since H(Oppy(D — ¢1H)) = H'(E*) (0 <i <4) and we can show that H°(E*)
=0 and H(E*)=H"'(E® Kp») =0 (i =1,2) by our assumption, it turns
out that Hl((QP<E)(2D - ClH)) ~ I‘Il.((QDl (2D — C’]H)) (l = 0, 1)

In addition considering the following exact sequences similarly

0— @DI(D—ClH) — @DI(ZD — C]H) — @DIQDZ(ZD— C]H) — 07
0— @P(E)(_CIH) — @p(E)(D —cH)— O0p/(D—cH)— 0,

0 — @D]mpz(D— ClH) — @D]mpz(zD— ClH) — (Qy(ZD— ClH) — O,
(*); 00— Op(—c1H) — Op,(D—c1H) — Up,np,(D—c1H) — 0,
0 — Opy)(—D — c1H) — Op(g)(—c1H) — Op,(—c1H) — 0,

we  obtain  isomorphisms  H(Up,(2D — ¢1H)) ~ H(Op,np,(2D — ¢1H))
and Hi(Op,np,(2D — c|H)) ~ H(Oy(2D — ¢;H)) (i=0,1) because
H'(Opg) (=D —c1H)) =0 (0<i<4). Summing up the above, we con-
clude that H'(Ox(2D — ¢;H)) ~ H(Opg) (2D — ¢\H)) ~ H'(P", S*(E)(—c1))
(i=0,1).

On the other hand, since there exists an exact sequence

0 — Upr — End(E) — S*(E)(—c;) — 0,

we have a canonical isomorphism H!'(S*(E)(—c;)) ~ H'(é6nd(E)) and
dim H°(S*(E)(—c1)) = dim H°(énd(E)) — 1.
Moreover we easily see that dim H°(Ox(D)) = dim H(E) — 3.
Summarizing the above, we get the following proposition.

PROPOSITION 2.1.  With the above assumption, if H'(énd(E)) =0, then
dim H°(Ny p») = 3(dim H°(E) — 3) — dim H°(énd(E)) + 1.

REMARK 2.1. When char k=0, we get H'(E*)~H"'(E® Kpy) =0
for 0 <i<n-—2 by the Le-Potier vanishing theorem. So we do not need the
assumption H'(E ® Kp») =0 1 <i <4 in Proposition 2.1. Also the proof itself
becomes slightly simpler because we can use the vanishing theorems.
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2.2. Let #ilb° be an irreducible component of #ilb containing the closure
W of o(U) in AHilb and Ty, sy, the Zariski tangent space of #ilb at
X;. Then it is known that T,y ~ H°(Ny,p+). So we have the following
proposition.

PrOPOSITION 2.2. Under the same assumptions in Proposition 2.1, if
H'(é6nd(E)) =0 then

1) Ailb° coincides with ¢(U).

2)  Hilb® is smooth at the determinantal subvarieties associated to E.

Proor. It is sufficient to prove that dim ¢(U) = dim H°(Ny, p») for any
determinantal surface X;. Using the exact sequence in Proposition 1.3, we see
that ¢~ !(p(s)) (se U) consists of finitely many orbits. Hence

dim ¢(U) = dim U — dim O(s)
= dim Grass(H°(E),3) — dim H°(6nd(E)) + 1

= 3(dim H°(E) — 3) — dim H°(6nd(E)) + 1.
So our assertion follows by Proposition 2.1. O

2.3. Let PGL(n+ 1,k) be the automorphism group of P" and let T, : P" >
x +— ox € P" be the transformation of P” defined by ¢ € PGL(n+ 1,k).

Suppose that H!(énd(E)) = 0. Then it follows from Proposition 2.2 that
op(U) = p(U) for every element o € PGL(n+ 1,k). Since ¢(U) is a con-
structible set, there exist two elements s,ze U satisfying X,-(,) = X;, where
Xs(s) is the determinantal subvariey associated to T;(E) defined by o*(s) =
{Tk(s1), Ti(s2), Ti(s3)). Consider the resolutions of the defining ideal sheaves
Iy, of X, and Iy, & of X, () respectively (cf. Lemma 1.2):

t

3
0O— Ef — C—B@P” — Iy ®0(c;)) — 0

o |-

3
0 — T;(E*) — @(ﬁpn — IXG*(S) ® O(c;) — 0.

3 3
Then it is observed that there exists an isomorphism y : @ Up» — P OUp» such

that Y makes the diagram in (x*) commutative and so we see that T (E) is
isomorphic to E, i.e., E is a homogeneous vector bundle. Since every homo-
geneous bundle on P” of rank r < n is a direct sum of line bundles even if
char k =p >0 (cf. [2]), we can complete the proof of Theorem O0.1.
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