A splitting theorem for rank two vector bundles on projective spaces in positive characteristic

Hideyasu Sumihiro and Shigehiro Tagami (Received April 21, 2000)

ABSTRACT. We shall prove the following splitting theorem for rank two vector bundles E on the n-dimensional projective space \mathbf{P}^n $(n \ge 4)$ in positive characteristic. Let P be a 4- or 5-dimensional projective linear subspace of \mathbf{P}^n and $\bar{E} = E|P$ the restriction of E to P. Then E splits into line bundles if and only if the first cohomology of the sheaf of endomorphisms of \bar{E} vanishes.

0. Introduction

Let E be a rank two vector bundle on the *n*-dimensional projective space \mathbf{P}_k^n $(n \ge 4)$ defined over an algebraically closed field k.

In [4], H. Sumihiro showed the following theorem in the case of char k = 0.

THEOREM 0.1. Let P be a 4- or 5-dimensional projective linear subspace of \mathbf{P}_k^n and $\overline{E} = E|P$ the restriction of E to P. Then E splits into line bundles if and only if $H^1(P, \operatorname{End}(\overline{E})) = 0$.

The aim of this article is to prove that this theorem holds also true in char k = p > 0. The proof is almost the same as the one for char k = 0, namely, it is obtained by studying some geometric structures of the Hilbert scheme of \mathbf{P}_k^n at determinantal subvarieties. In char k = p > 0, however, since we cannot use the Kodaira vanishing theorem and the Le-Potier vanishing theorem (cf. [1], [3]), we have to observe some vanishings of cohomologies appearing in [4] carefully.

1. Preliminaries

We first recall the definition and some properties of determinantal varieties associated to rank two bundles (cf. [4]).

²⁰⁰⁰ Mathematics Subject Classification. 14C05, 14F05, 14F17.

Key words and phrases. Vector bundles, Hilbert Schemes, Vanishing Theorems.

- **1.1. Definition of determinantal varieties.** Let E be a rank two vector bundle on \mathbf{P}_k^n defined over an algebraically closed field k with arbitrary characteristic, $\pi: P(E) \to \mathbf{P}_k^n$ the projective bundle associated to E over \mathbf{P}_k^n , L_E the tautological line bundle on P(E) and let $G = \operatorname{Grass}(H^0(E), m+1)$ be the Grassmann variety which parametrizes (m+1)-dimensional linear subspaces of $H^0(\mathbf{P}_k^n, E)$, where n = 2m (resp. n = 2m+1). We assume that E is very ample, i.e., L_E is a very ample line bundle. Then we can take $s = \langle s_1, s_2, \ldots, s_{m+1} \rangle \in G$ $(s_i \in H^0(\mathbf{P}_k^n, E))$ satisfying the following condition
- 1) $Y_s = D_1 \cap D_2 \cap \cdots \cap D_{m+1}$ is a smooth closed subscheme of P(E) of pure codimension m+1,
 - 2) $W(s_1) \cap W(s_2) \cap \cdots \cap W(s_{m+1}) = \emptyset$,

where D_i is the tautological divisor on P(E) defined by s_i and $W(s_i)$ is the zero locus of s_i in \mathbf{P}_k^n $(1 \le i \le m+1)$.

Let $X_s = \pi(Y_s)$. Then we can show that X_s is a closed subscheme of \mathbf{P}_k^n which is isomorphic to Y_s through π with the following defining equations:

$$s_i \wedge s_i = 0$$
 $(1 \le i \le j \le m+1).$

DEFINITION 1.1. We call the closed subscheme X_s of \mathbf{P}_k^n the determinantal variety associated to E defined by $s \in G$.

Though X_s depends on the choice of $s \in G$, we call a closed subvariety X_s a determinantal variety associated to E.

As for determinantal varieties, we obtain the following.

THEOREM 1.1. Let the notaion be as above.

- 1) $U = \{s \in G | s \text{ satisfies the condition } (*) \}$ is a Zariski open subset of G.
- 2) There exists a closed subscheme Ξ of $\mathbf{P}_k^n \times U$ such that the second projection $q: \Xi \subset \mathbf{P}_k^n \times U \to U$ is faithfully flat and $X_s = q^{-1}(s)$ for any $s \in U$. Thus smooth determinantal varieties associated to E form a smooth family over an open subset of G.

When n = 4 or 5, let I_X be the defining ideal of a determinantal subvariety X in \mathbf{P}^n . Then I_X has the following resolution by vector bundles.

LEMMA 1.2. In the above notation, there exists an exact sequence

$$0 \to E^*(-c_1) \to \bigoplus^3 \mathscr{O}_{\mathbf{P}^n}(-c_1) \to I_X \to 0,$$

where c_1 is the first Chern number of E and E^* is the dual bundle of E.

PROOF. Let $s = \{s_1, s_2, s_3\}$ be a set of global sections of E which defines the determinantal subvariety X. Then we can define homomorphisms

$$\alpha: \bigoplus^{3} \mathcal{O}_{\mathbf{P}^{n}} \ni e_{i} \wedge e_{j} \mapsto s_{i} \wedge s_{j} \in \bigwedge^{2} E \qquad (1 \leq i < j \leq 3),$$

$$\beta: E^{*} \ni f \mapsto f(s_{3})e_{1} \wedge e_{2} - f(s_{2})e_{1} \wedge e_{3} + f(s_{1})e_{2} \wedge e_{3} \in \bigoplus^{3} \mathcal{O}_{\mathbf{P}^{n}},$$

where $\{e_i \wedge e_j\}$ is a basis of $\bigoplus^{3} \mathcal{O}_{\mathbf{P}^n}$. Then it suffices to verify locally on \mathbf{P}^n that the following sequence is exact:

$$0 o E^* \stackrel{eta}{ o} \bigoplus^3 \mathscr{O}_{\mathbf{P}^n} \stackrel{lpha}{ o} I_X \otimes \mathscr{O}(c_1) o 0.$$

1.2. Tangent bundles and normal bundles of determinantal varieties. In the following subsections, we consider the case n = 4 or 5, i.e., m = 2.

Let E be a very ample rank two bundle on \mathbf{P}_k^n and X a determinantal variety associated to E which is isomorphic through π to the complete intersection Y in P(E) of the tautological divisors $\{D_i | i = 1, 2, 3\}$.

Let H be the restriction of a hyperplane of \mathbf{P}^n to X and D the restriction of a tautological divisor of P(E) to X through the isomorphism π .

Then we have the following commutative diagram of exact sequences:

where α is the injection induced by the snake lemma. Since $N_{Y/P(E)} \simeq \bigoplus^3 \mathcal{O}_X(D)$, we obtain the following.

Proposition 1.3. There exists an exact sequence

$$0 \to \mathscr{O}_X(2D - c_1H) \to \overset{3}{\bigoplus} \mathscr{O}_X(D) \to N_{X/\mathbf{P}^n} \to 0.$$

1.3. Hilbert Schemes. Let $\mathcal{H}ilb$ be the Hilbert scheme of \mathbf{P}^n . Let $\varphi: U \ni s \mapsto X_s \in \mathcal{H}ilb$ be the morphism induced by Theorem 1.1. Let $\mathrm{Aut}(E)$ be the automorphism group of E. Then $\mathrm{Aut}(E)$ is a reduced connected linear algebraic group of dimension $\dim H^0(\mathcal{E}nd(E))$.

For every element $g \in Aut(E)$ and $s = \langle s_1, s_2, s_3 \rangle \in G$, we define

$$g \cdot s = \langle g(s_1), g(s_2), g(s_3) \rangle$$
,

where $g(s_i)$ is the composite of s_i with g. Then it defines an action of Aut(E) on G and we have

$$g \cdot s_i \wedge g \cdot s_i = \det(g)s_i \wedge s_i \qquad (1 \le i \le j \le 3),$$

where $\det : \operatorname{Aut}(E) \ni g \mapsto \det(g) \in k^* = k \setminus \{0\}$ is the determinant character. Hence $X_{g \cdot s} = X_s$. Therefore $\operatorname{Aut}(E)$ acts on U and φ is an orbit morphism, i.e., φ is constant on any orbit $O(s) = \{g \cdot s \mid g \in \operatorname{Aut}(E)\}$.

Then we have the following.

Lemma 1.4. The stabilizer Stab(s) of $s \in U$ coincides with the multiplicative group k^* .

As a trivial corollary of the above lemma, we observe that every orbit has the same dimension dim $\operatorname{Aut}(E)/k^*$, i.e., dim $O(s) = \dim H^0(\operatorname{\mathscr{E}\!nd}(E)) - 1$ $(s \in U)$. Hence the action of $\operatorname{Aut}(E)$ on U is closed, i.e., every orbit is closed in U.

2. Proof of the theorem

2.1. Since it is well-known that E splits into line bundles if and only if $\overline{E} = E|P$ splits into line bundles, where P is a 4- or 5-dimensional linear subspaces of \mathbf{P}^n , we may assume that E is a rank two vector bundle on \mathbf{P}^n (n being either 4 or 5) (cf. [2]). In addition after multiplying E by a suitable ample line bundle, we may assume that E is a very ample vector bundle enjoying $H^i(E \otimes K_{\mathbf{P}^n}) = 0$ ($1 \le i \le 4$), where $K_{\mathbf{P}^n}$ is the canonical line bundle of \mathbf{P}^n .

By Proposition 1.3, we have the following exact sequence

$$0 \to H^0(\mathscr{O}_X(2D - c_1H)) \to \bigoplus^3 H^0(\mathscr{O}_X(D)) \to H^0(N_{X/\mathbf{P}^n})$$
$$\to H^1(\mathscr{O}_X(2D - c_1H)) \to \bigoplus^3 H^1(\mathscr{O}_X(D)).$$

Now we recall $Y = D_1 \cap D_2 \cap D_3$. Consider the canonical exact sequence

$$(*)_1$$
 $0 \to \mathcal{O}_{P(E)}(D-c_1H) \to \mathcal{O}_{P(E)}(2D-c_1H) \to \mathcal{O}_{D_1}(2D-c_1H) \to 0,$

from which we obtain the following exact sequence:

$$0 \to H^0(\mathcal{O}_{P(E)}(D-c_1H)) \to H^0(\mathcal{O}_{P(E)}(2D-c_1H)) \to H^0(\mathcal{O}_{D_1}(2D-c_1H))$$
$$\to H^1(\mathcal{O}_{P(E)}(D-c_1H)) \to H^1(\mathcal{O}_{P(E)}(2D-c_1H)) \to H^1(\mathcal{O}_{D_1}(2D-c_1H))$$
$$\to H^2(\mathcal{O}_{P(E)}(D-c_1H)).$$

Since $H^i(\mathcal{O}_{P(E)}(D-c_1H)) = H^i(E^*)$ $(0 \le i \le 4)$ and we can show that $H^0(E^*) = 0$ and $H^i(E^*) = H^{n-i}(E \otimes K_{\mathbf{P}^n}) = 0$ (i = 1, 2) by our assumption, it turns out that $H^i(\mathcal{O}_{P(E)}(2D-c_1H)) \simeq H^i(\mathcal{O}_{D_1}(2D-c_1H))$ (i = 0, 1).

In addition considering the following exact sequences similarly

$$(*)_{2} \qquad 0 \to \mathcal{O}_{D_{1}}(D-c_{1}H) \to \mathcal{O}_{D_{1}}(2D-c_{1}H) \to \mathcal{O}_{D_{1}\cap D_{2}}(2D-c_{1}H) \to 0,$$

$$0 \to \mathcal{O}_{P(E)}(-c_{1}H) \to \mathcal{O}_{P(E)}(D-c_{1}H) \to \mathcal{O}_{D_{1}}(D-c_{1}H) \to 0,$$

$$0 \to \mathcal{O}_{D_{1}\cap D_{2}}(D-c_{1}H) \to \mathcal{O}_{D_{1}\cap D_{2}}(2D-c_{1}H) \to \mathcal{O}_{Y}(2D-c_{1}H) \to 0,$$

$$(*)_{3} \qquad 0 \to \mathcal{O}_{D_{1}}(-c_{1}H) \to \mathcal{O}_{D_{1}}(D-c_{1}H) \to \mathcal{O}_{D_{1}\cap D_{2}}(D-c_{1}H) \to 0,$$

$$0 \to \mathcal{O}_{P(E)}(-D-c_{1}H) \to \mathcal{O}_{P(E)}(-c_{1}H) \to \mathcal{O}_{D_{1}}(-c_{1}H) \to 0,$$

we obtain isomorphisms $H^i(\mathcal{O}_{D_1}(2D-c_1H)) \simeq H^i(\mathcal{O}_{D_1\cap D_2}(2D-c_1H))$ and $H^i(\mathcal{O}_{D_1\cap D_2}(2D-c_1H)) \simeq H^i(\mathcal{O}_Y(2D-c_1H))$ (i=0,1) because $H^i(\mathcal{O}_{P(E)}(-D-c_1H))=0$ $(0\leq i\leq 4)$. Summing up the above, we conclude that $H^i(\mathcal{O}_X(2D-c_1H))\simeq H^i(\mathcal{O}_{P(E)}(2D-c_1H))\simeq H^i(\mathbf{P}^n,S^2(E)(-c_1))$ (i=0,1).

On the other hand, since there exists an exact sequence

$$0 \to \mathcal{O}_{\mathbf{P}^n} \to \mathscr{E}nd(E) \to S^2(E)(-c_1) \to 0,$$

we have a canonical isomorphism $H^1(S^2(E)(-c_1)) \simeq H^1(\mathscr{E}nd(E))$ and $\dim H^0(S^2(E)(-c_1)) = \dim H^0(\mathscr{E}nd(E)) - 1$.

Moreover we easily see that dim $H^0(\mathcal{O}_X(D)) = \dim H^0(E) - 3$. Summarizing the above, we get the following proposition.

PROPOSITION 2.1. With the above assumption, if $H^1(\mathcal{E}nd(E)) = 0$, then

$$\dim H^0(N_{X/\mathbf{P}^n}) = 3(\dim H^0(E) - 3) - \dim H^0(\mathcal{E}nd(E)) + 1.$$

REMARK 2.1. When char k=0, we get $H^i(E^*) \simeq H^{n-i}(E \otimes K_{\mathbf{P}_k^n}) = 0$ for $0 \le i \le n-2$ by the Le-Potier vanishing theorem. So we do not need the assumption $H^i(E \otimes K_{\mathbf{P}^n}) = 0$ $1 \le i \le 4$ in Proposition 2.1. Also the proof itself becomes slightly simpler because we can use the vanishing theorems.

2.2. Let $\mathscr{H}ilb^0$ be an irreducible component of $\mathscr{H}ilb$ containing the closure $\overline{\varphi(U)}$ of $\varphi(U)$ in $\mathscr{H}ilb$ and $T_{X_s,\mathscr{H}ilb}$ the Zariski tangent space of $\mathscr{H}ilb$ at X_s . Then it is known that $T_{X_s,\mathscr{H}ilb} \simeq H^0(N_{X_s/\mathbf{P}^n})$. So we have the following proposition.

Proposition 2.2. Under the same assumptions in Proposition 2.1, if $H^1(\mathscr{E}nd(E))=0$ then

- 1) $\mathscr{H}ilb^0$ coincides with $\overline{\varphi(U)}$.
- 2) $\mathcal{H}ilb^0$ is smooth at the determinantal subvarieties associated to E.

PROOF. It is sufficient to prove that dim $\overline{\varphi(U)} = \dim H^0(N_{X_s/\mathbf{P}^n})$ for any determinantal surface X_s . Using the exact sequence in Proposition 1.3, we see that $\varphi^{-1}(\varphi(s))$ $(s \in U)$ consists of finitely many orbits. Hence

$$\dim \overline{\varphi(U)} = \dim U - \dim O(s)$$

$$= \dim \operatorname{Grass}(H^0(E), 3) - \dim H^0(\operatorname{End}(E)) + 1$$

$$= 3(\dim H^0(E) - 3) - \dim H^0(\operatorname{End}(E)) + 1.$$

So our assertion follows by Proposition 2.1.

2.3. Let PGL(n+1,k) be the automorphism group of \mathbf{P}^n and let $T_{\sigma}: \mathbf{P}^n \ni x \mapsto \sigma x \in \mathbf{P}^n$ be the transformation of \mathbf{P}^n defined by $\sigma \in PGL(n+1,k)$.

Suppose that $H^1(\mathscr{E}nd(E))=0$. Then it follows from Proposition 2.2 that $\sigma\overline{\varphi(U)}=\overline{\varphi(U)}$ for every element $\sigma\in \operatorname{PGL}(n+1,k)$. Since $\varphi(U)$ is a constructible set, there exist two elements $s,t\in U$ satisfying $X_{\sigma^*(s)}=X_t$, where $X_{\sigma^*(s)}$ is the determinantal subvariey associated to $T_\sigma^*(E)$ defined by $\sigma^*(s)=\langle T_\sigma^*(s_1),T_\sigma^*(s_2),T_\sigma^*(s_3)\rangle$. Consider the resolutions of the defining ideal sheaves I_{X_t} of X_t and $I_{X_{\sigma^*(s)}}$ of $X_{\sigma^*(s)}$ respectively (cf. Lemma 1.2):

Then it is observed that there exists an isomorphism $\psi: \bigoplus^3 \mathcal{O}_{\mathbf{P}^n} \to \bigoplus^3 \mathcal{O}_{\mathbf{P}^n}$ such that ψ makes the diagram in (**) commutative and so we see that $T^*_{\sigma}(E)$ is isomorphic to E, i.e., E is a homogeneous vector bundle. Since every homogeneous bundle on \mathbf{P}^n of rank r < n is a direct sum of line bundles even if char k = p > 0 (cf. [2]), we can complete the proof of Theorem 0.1.

References

- [1] J. Le-Potier, Annulation de la cohomologie à valeurs dans un fibré vectoriel holomorphe positif de rang quelconque, Math. Ann. 218 (1975), 35–53.
- [2] C. Okonek, M. Schneider and H. Spindler, Vector Bundles on Complex Projective Spaces, Progress in Math. 3, Birkhäuser (1980).
- [3] B. Shiffman and A. Sommese, Vanishing Theorem on Complex Manifolds, Progress in Math. 56, Birkhäuser (1985).
- [4] H. Sumihiro, Determinantal varieties associated to rank two vector bundles on projective spaces and splitting theorems, Hiroshima Math. J. 29 (1999), 371–434.

Department of Mathematics
Graduate School of Science
Hiroshima University
Higashi-Hiroshima 739-8526, Japan
H. Sumihiro: sumihiro@math.sci.hiroshima-u.ac.jp
S. Tagami: tagami@math.sci.hiroshima-u.ac.jp