2008ǯÅÙ
Âè1²ó
- Æü»þ¡§ 4·î15Æü(²Ð)¡¤13:00 - 14:00
- ¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
- ¹Ö»Õ¡§¾¾ÅĹÀ »á¡Ê¹ÅçÂç³ØÂç³Ø±¡Íý³Ø¸¦µæ²Ê¿ô³ØÀ칶¡Ë
- ÂêÌÜ¡§ One-step Markov Theorem on exchange classes
- Tea Time: 14:00 -
- Í׻ݡ§
-
The exchange move on closed braids was discovered by Markov, proved unnecesssary by Weinberg, and re-discovered by Birman and Menasco. The number of exchange classes, conjugacy classes in B_n modulo exchange moves, is finite for every link type and for every n. In this talk, we construct finite pairs of explicit link diagrams that show how two exchange classes are related if they correspond to one link type. As an application, we find a new link invariant, the algebraic crossing number of a minimal braid, giving an affirmative answer to a question posed by Jones.
Âè2²ó
- Æü»þ¡§ 4·î22Æü(²Ð)¡¤13:00 - 14:00
- ¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
- ¹Ö»Õ¡§ÀÄÌÚµ®»Ë »á¡Ê¶áµ¦Âç³ØÍý¹©³ØÉôÍý³Ø²Ê¡Ë
- ÂêÌÜ¡§Stokes´ö²¿ÆþÌç
- Tea Time: 14:00 -
- Í׻ݡ§
-
Â礤ʥѥé¥á¡¼¥¿¤ò»ý¤ÄÈùʬÊýÄø¼°¤Î²ò¤ÎÂç°èŪÀ¼Á¤ò´°Á´WKB²òÀϤμêË¡¤òÍѤ¤¤Æ¸¦µæ¤¹¤ëºÝ¡¢Stokes¶ÊÀþ¤È¸Æ¤Ð¤ì¤ë¶ÊÀþ¤¬½ÅÍפÊÌò³ä¤ò²Ì¤¿¤¹¡£Stokes¶ÊÀþ¤Î´ö²¿³ØŪÀ¼Á¤¬ÈùʬÊýÄø¼°¤ÎÂç°è²òÀϤȷë¤Ó¤Ä¤¯¡£2³¬Fuchs·¿Àþ·¿¾ïÈùʬÊýÄø¼°¤Î¾ì¹ç¤òÃæ¿´¤Ë¡¢¤³¤ì¤é¤Ë¤Ä¤¤¤Æ³µÀ⤹¤ë¡£
Âè3²ó
- Æü»þ¡§ 5·î20Æü(²Ð)¡¤13:00 - 14:00
- ¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
- ¹Ö»Õ¡§¾±»Ê¸ù »á¡ÊÃÞÇÈÂç³Ø Âç³Ø±¡¥·¥¹¥Æ¥à¾ðÊ󹩳ظ¦µæ²Ê¡Ë
- ÂêÌÜ¡§¥Ü¥é¥Æ¥£¥ê¥Æ¥£¤Î¥Î¥ó¥Ñ¥é¥á¥È¥ê¥Ã¥¯¿äÄê¤Ë¤Ä¤¤¤Æ
- Tea Time: 14:00 -
- Í׻ݡ§
-
¶âÍ»»þ·ÏÎó¤ÎʬÀϤǤϡ¢¥Ü¥é¥Æ¥£¥ê¥Æ¥£(ʬ»¶¤Þ¤¿¤Ïɸ½àÊк¹)¤Î¿äÄ꤬½ÅÍפǤ¢¤ë¡£¼ÂºÝ¡¢¥Ü¥é¥Æ¥£¥ê¥Æ¥£¤ÏÉԳμÂÀ¤òɽ¤¹¼ÜÅ٤Ȥ·¤Æ¡¢¶âÍ»¼Â̳¤Ç¤â¤·¤Ð¤·¤ÐÍѤ¤¤é¤ì¤Æ¤¤¤ë¡£¤·¤«¤·¡¢Î㤨¤Ð¡¢¥Ç¡¼¥¿¤Ëɸ½àŪ¤Ê»þ·ÏÎó¥â¥Ç¥ë¤òÅö¤Æ¤Ï¤á¤Æ¡¢¤½¤Î»Äº¹¥×¥í¥Ã¥È¤ò¸«¤Æ¤ß¤ë¤È¡¢¥Ü¥é¥Æ¥£¥ê¥Æ¥£¤¬Â礤¤Éôʬ¤ä¾®¤µ¤¤Éôʬ¤¬»¶ºß¤·¡¢»þ´Ö¤È¶¦¤ËÊÑÆ°¤·¤Æ¤¤¤ëÍͻҤ¬±®¤ï¤ì¤ë¡£¤³¤¦¤·¤¿¥Ü¥é¥Æ¥£¥ê¥Æ¥£¤Î»þ´ÖÊÑÆ°¤ò¥â¥Ç¥ë²½¤¹¤ëÍÍ¡¹¤Ê»î¤ß¤¬¤¢¤ë¤¬¡¢º£²ó¤Ï¡¢¥Ü¥é¥Æ¥£¥ê¥Æ¥£¤Î´Ø¿ô·Á¤òͽ¤áÆÃÄꤹ¤ë¤³¤È¤Ê¤¯¡¢¥Ç¡¼¥¿¤«¤é¤½¤ì¤ò¿äÄꤹ¤ëÊýË¡¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ë¡£
Âè4²ó
- Æü»þ¡§ 5·î27Æü(²Ð)¡¤13:00 - 14:00
- ¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
- ¹Ö»Õ¡§º´Æ£¼þͧ »á¡Ê̾¸Å²°Âç³Ø¡¡Âç³Ø±¡Â¿¸µ¿ôÍý²Ê³Ø¸¦µæ²Ê ¡Ë
- ÂêÌÜ¡§p¿Ê¿ôÂξå¤Î¿ÍÍÂΤÎ0¥µ¥¤¥¯¥ë¤Î͸ÂÀ¤Ë¤Ä¤¤¤Æ
- Tea Time: 14:00 -
- Í׻ݡ§
-
¥³¥ó¥Ñ¥¯¥È¥ê¡¼¥Þ¥óÌ̤ΰø»ÒÎà·²¤Ï·ÐÏ©ÀÑʬ¤Ë¤è¤Ã¤Æ¥ä¥³¥Ó¿ÍÍÂÎ
¤È¸Æ¤Ð¤ì¤ë¥¢¡¼¥Ù¥ë¿ÍÍÂΤÈƱ·¿¤Ë¤Ê¤ë¡£¤³¤ì¤¬¸ÅŵŪ¤Ê¥¢¡¼¥Ù¥ë
¤ÎÄêÍý¤Ç¤¢¤ë¤¬¡¢Ê£ÁÇ¿ôÂξå¤ÎÂå¿ô¶ÊÌ̤Î0¥µ¥¤¥¯¥ë¤Î¥Á¥ã¥¦
·²¤ÇÎà»÷¤òé¤ë¤È¾õ¶·¤Ï¤â¤Ã¤ÈÊ£»¨¤Ë¤Ê¤ë¤³¤È¤¬1970ǯÂå¤Ë
¥Þ¥ó¥Õ¥©¡¼¥É¤Ë¤è¤Ã¤ÆÌÀ¤é¤«¤Ë¤µ¤ì¤¿¡£¤³¤Î¹Ö±é¤Ç¤Ï¤³¤ì¤é¤Î»ö¼Â
¤Î³µÀâ¤Ë»Ï¤Þ¤Ã¤Æ¡¢p¿Ê¿ôÂξå¤ÎÂå¿ô¿ÍÍÂΤǤÎÎà»÷¤Ë´Ø¤¹¤ë
ºÇ¶á¤Î¿ÊŸ¤Ë¤Ä¤¤¤Æ¾Ò²ð¤¹¤ë¡£
Âè5²ó
- Æü»þ¡§ 6·î3Æü(²Ð)¡¤13:00 - 14:00
- ¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
- ¹Ö»Õ¡§Ser Peow Tan »á¡ÊNational University of Singapore ¡Ë
- ÂêÌÜ¡§On the SL(2,C) character variety of the one-holed torus
- Tea Time: 14:00 -
- Í׻ݡ§
-
The SL(2,C) character variety of the one-holed torus has rich connections with various branches of mathematics including hyperbolic geometry, Teichm\"uller theory, low dimensional topology, dynamical systems and mathematical physics. We will talk about some of the analytic, geometric/topological and dynamical aspects of this subject, and survey some of the recent results obtained by various authors including Bowditch; Akiyoshi, Miyachi and Sakuma; McShane; Goldman; and work of the speaker with Wong and Zhang; and Sakuma and Yamashita.
Âè6²ó
- Æü»þ¡§ 6·î24Æü(²Ð)¡¤13:00 - 14:00
- ¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
- ¹Ö»Õ¡§ÀÐÀî¾»¼£ »á¡ÊÅìËÌÂç³Ø¡Ë
- ÂêÌÜ¡§Â¿ÍÍÂΤΥª¡¼¥×¥ó¥Ö¥Ã¥¯Ê¬²ò¤ÈÀÜ¿¨¹½Â¤¤Ë¤Ä¤¤¤Æ
- Tea Time: 14:00 -
- Í׻ݡ§
-
£³¼¡¸µÂ¿ÍÍÂΤΥª¡¼¥×¥ó¥Ö¥Ã¥¯Ê¬²ò¤ÈξΩ¤¹¤ëÀÜ¿¨¹½Â¤¤È¤¤¤¦³µÇ°¤Ï
W.P.Thurston ¤È H.Winkelnkemper ¤Ë¤è¤êƳÆþ¤µ¤ì¡¢Y.Eliashberg ¤ä E.Giroux
¤é¤Î¸¦µæ¤ò·Ð¤Æ¡¢¥ª¡¼¥×¥ó¥Ö¥Ã¥¯Ê¬²ò¤Î¸¦µæ¤Ë¤ª¤±¤ë°ì¤Ä¤ÎÆ»¶ñ¤È¤·¤ÆÄêÃ夷¤¿¡£
Ê£ÁÇ¿¹à¼°¼ÌÁü¤ÎÆðÛÅÀ¤Î¥ê¥ó¥¯¤Ë¤Ï¼«Á³¤ÊÀÜ¿¨¹½Â¤¤¬Äê¤Þ¤ë¡£¤Þ¤¿¡¢Ê¿Ì̶ÊÀþ
ÆðÛÅÀ¤Î¾ì¹ç¤Ë¤Ï¡¢¤½¤Î¥ß¥ë¥Ê¡¼Â«¤Ï £³¼¡¸µµåÌ̾å¤Î tight ¤ÊÀÜ¿¨¹½Â¤¤ÈξΩ
¤¹¤ë¤³¤È¤¬ÃΤé¤ì¤Æ¤¤¤ë¡£¹Ö±é¤Ç¤Ï¡¢ÆðÛÅÀ¤Î¥È¥Ý¥í¥¸¡¼¤ò¸¦µæ¤·¤Æ¤¤¤ëΩ¾ì¤È
¤·¤ÆÀÜ¿¨¹½Â¤¤Ë¶½Ì£»ý¤ÄÆ°µ¡¤È¡¢¥ª¡¼¥×¥ó¥Ö¥Ã¥¯Ê¬²ò¤ÈÀÜ¿¨¹½Â¤¤Ë´Ø¤¹¤ëºÇ¶á¤Î
¸¦µæ¤Ë¤Ä¤¤¤Æ³µÀ⤷¤¿¤¤¡£
Âè7²ó
- Æü»þ¡§ 7·î29Æü(²Ð)¡¤13:00 - 14:00
- ¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
- ¹Ö»Õ¡§Xiuxiong Chen »á¡Ê¥¦¥£¥¹¥³¥ó¥·¥óÂç³Ø¡Ë
- ÂêÌÜ¡§On the space of Kaehler metrics
- Tea Time: 14:00 -
- Í׻ݡ§
-
On the infinite dimensional space of Kaehler metrics, Mabuchi, Semmes
and Donaldson introduce a Weil-Peterson type metric. Under this metric,
this space becomes an infinite dimensional symmetric space of
non-compact type with semi-negative curvature. Donaldson made several
important conjectures concerning the geometric structure of this space;
and the resolution of these conjectures of Donaldson has important
consequences on Kaehler geometry. For instance, the well known problem
of uniqueness of "best metric" in each Kaehler class is settled in
recent years through this and related program. In this lecture, I will
give an expository account of this program as well as some recent
updates on Kaehler geometry.
Âè8²ó
- Æü»þ¡§ 9·î2Æü(²Ð)¡¤13:00 - 14:00
- ¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
- ¹Ö»Õ¡§Eberhard Knobloch »á¡Ê¥Ù¥ë¥ê¥ó¹©²ÊÂç³Ø¡Ë
- ÂêÌÜ¡§Leibniz's theory of elimination and determinants
- Tea Time: 14:00 -
- Í׻ݡ§
-
From 1678 forward Gottfried Wilhelm Leibniz (1646-1716) occupied
himself with 'a new type of notation' (novum designationis genus)
which would prove to have great benefit in the analytical and
combinatorial art. Apart from two hidden references made by him in
1700 and 1710 Leibniz never published anything about his related
researches. Nobody could guess that, in reality, Leibniz laid the
foundation of the theory of determinants in Europe between 1678 and
1713. The 68 most important, Latin written studies regarding
elimination and determinant theory were published in 1972, 1974, and
1980, respectively. Since then, historians of science came to realize,
at least to some extent, what Leibniz had achieved in this field.
His interest in the solution of systems of inhomogeneous, linear
equations was essentially motivated by his conviction that the
solution of the quintic equation could be reduced to the solution of
such systems. To that end he invented a suitable index notation,
coined the term 'resultant', invented a symbol for this resultant,
formulated basic general theorems about resultants, and deduced
important results in elimination theory. In January 1684, Leibniz
found the completely correct so-called 'Cramer's rule' for solving
systems of linear equations. He anticipated important results that
were re-discovered by J. J. Sylvester, L. Euler, and E. B«±zout only
decades later.
Âè9²ó
- Æü»þ¡§ 10·î14Æü(²Ð)¡¤13:00 - 14:00
- ¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
- ¹Ö»Õ¡§Sungbok Hong »á¡ÊKorea University¡Ë
- ÂêÌÜ¡§Smale conjecture for elliptic 3-manifolds
- Tea Time: 14:00 -
- Í׻ݡ§
-
Smale proved that for the standard 2-sphere $S^2$, the inclusion of
the isometry group
$O(3)$ into the diffeomorphism group $Diff(S^2)$ is a homotopy
equivalence.
He conjectured that the analogous result holds true for the 3-sphere.
The conjecture was proved by Hatcher.
Gabai proved Smale conjecture also holds for closed hyperbolic 3-
manifolds.
We will discuss about Smale conjecture for elliptic 3-manifolds.
Âè10²ó
- Æü»þ¡§ 10·î28Æü(²Ð)¡¤13:00 - 14:00
- ¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
- ¹Ö»Õ¡§·§Ã«Î´ »á¡ÊµþÅÔÂç³Ø¡Ë
- ÂêÌÜ¡§Sierpinski carpet¾å¤Î¥Ö¥é¥¦¥ó±¿Æ°¤Î°ì°ÕÀ¤Ë¤Ä¤¤¤Æ
- Tea Time: 14:00 -
- Í׻ݡ§
-
Ê£»¨¤Ê·Ï¤Î¾å¤ÇÇ®¤¬¤É¤Î¤è¤¦¤ËÅÁ¤ï¤ë¤«¡¢¤È¤¤¤¦ÌäÂê¤ò²òÌÀ¤¹¤ë¤¿¤á¡¢£¸£°Ç¯Âå
°Ê¹ß¡¢Ê£»¨¤Ê·Ï¤Îŵ·¿Îã¤Ç¤¢¤ë¥Õ¥é¥¯¥¿¥ë¾å¤Ë¼«Á³¤Ê³È»¶²áÄø¡Ê´·Îã¤Ë½¾¤¤¤³¤ì
¤ò¥Ö¥é¥¦¥ó±¿Æ°¤È¸Æ¤Ö¡Ë¤ò¹½À®¤·¡¢¤½¤ÎÀ¼Á¤òÄ´¤Ù¤ë¸¦µæ¤¬¿Ê¤ó¤Ç¤¤¿¡£¥Õ¥é¥¯
¥¿¥ë¿Þ·Á¾å¤Î³È»¶²áÄø¤Ï¡¢¥Õ¥é¥¯¥¿¥ë¤ò¶á»÷¤¹¤ë¥°¥é¥Õ¤ä¿ÍÍÂΤξå¤Ë¼«Á³¤Ëºî
¤é¤ì¤ë¥é¥ó¥À¥à¥¦¥©¡¼¥¯¤ä¥Ö¥é¥¦¥ó±¿Æ°¤Î¥¹¥±¡¼¥ë¶Ë¸Â¤È¤·¤Æ¹½À®¤µ¤ì¤ë¤¬¡¢¤³
¤Î¥¹¥±¡¼¥ë¶Ë¸Â¤¬°ì°Õ¤ËÄê¤Þ¤ëÊݾڤϲ¿¤â¤Ê¤¤¡£Åµ·¿Åª¤Ê¥Õ¥é¥¯¥¿¥ë¤Î°ì¤Ä¤Ç¤¢
¤ëSierpinski carpet¤Ë¤Ä¤¤¤Æ¡¢¤³¤Î°ì°ÕÀ¤ÎÌäÂê¡ÊÊ̤θÀ¤¤Êý¤ò¤¹¤ì¤Ð¥Ö¥é¥¦
¥ó±¿Æ°¤ÎÆÃħ¤Å¤±¤ÎÌäÂê¡Ë¤Ï¡¢Ä¹¤¤´ÖÅö³ºÊ¬Ìî¤Î´ðËÜŪ¤Ê̤²ò·èÌäÂê¤Ç¤¢¤Ã¤¿¡£
Ëֱܹé¤Ç¤Ï¡¢¤³¤ÎÌäÂê¤ò¹ÎÄêŪ¤Ë²ò·è¤·¤¿¡¢¹Ö±é¼Ô¤È¶¦Æ±¸¦µæ¼Ô¤ÎºÇ¶á¤Î·ë²Ì¤Ë
¤Ä¤¤¤ÆÊó¹ð¤¹¤ë¡£ÌäÂê¤ÎÇطʤä²ò·è¤òº¤Æñ¤Ë¤·¤Æ¤¤¿Íýͳ¤Ê¤É¤â¾Ò²ð¤·¡¢Á´ÂÎÁü
¤¬Ê¬¤«¤ë¤è¤¦¤Ë¹©Éפ·¤¿¤¤¡£¡¡
Âè11²ó
- Æü»þ¡§ 11·î11Æü(²Ð)¡¤13:00 - 14:00
- ¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
- ¹Ö»Õ¡§¾®ÅçÄêµÈ »á¡ÊÅìµþ¹©¶ÈÂç³Ø¡Ë
- ÂêÌÜ¡§3¼¡¸µÂ¿ÍÍÂÎ¤Î¥È¥Ý¥í¥¸¡¼¤È´ö²¿¡¡¡¼¥Ý¥¢¥ó¥«¥ìͽÁۤȴö²¿²½Í½Áۤβò·è¡¼
- Tea Time: 14:00 -
- Í׻ݡ§
-
G. Perelman ¤Ë¤è¤ë¥Ý¥¢¥ó¥«¥ìͽÁÛ¤ª¤è¤Ó
´ö²¿²½Í½Áۤβò·è¤Î³µÍפò¾Ò²ð¤¹¤ë¡¥
Âè12²ó
- Æü»þ¡§ 11·î25Æü(²Ð)¡¤13:00 - 14:00
- ¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
- ¹Ö»Õ¡§»³ÅÄ͵»Ë»á¡Ê²¬»³Âç³Ø¡Ë
- ÂêÌÜ¡§¥·¥å¡¼¥¢È¡¿ô¤È¤È¤â¤Ë»ÍȾÀ¤µª
- Tea Time: 14:00 -
- Í׻ݡ§
-
¹ÅçÂç³Ø¤ÎÂç³Ø±¡À¸¤Ç¤¢¤Ã¤¿º¢¤Ë¡¤º´Æ£´´É×ÀèÀ¸¤ÎKPÍýÏÀ¤Î¹ÖµÁ¤òÄ°¤¡¤¥¿¥¦È¡
¿ô¤È¤·¤Æ¤Î¡Ö¥·¥å¡¼¥¢È¡¿ô¡×¤Ë¿¨¤ì¤Æ¤«¤é£²£µÇ¯°Ê¾å¤¬²á¤®¤¿¡¥¤½¤·¤Æ»ä¤âǯ¤ò
¤È¤Ã¤¿¡¥¥ô¥£¥é¥½¥íÂå¿ô¤ÎÆðۥ٥¯¥È¥ë¡¤¥¢¥Õ¥£¥ó¥ê¡¼´Ä¤Î¥¦¥¨¥¤¥È¥Ù¥¯¥È¥ë
Åù¡¹¡¤¥·¥å¡¼¥¢È¡¿ô¤ÏÍÍ¡¹¤Ê¾ìÌ̤˴é¤ò¤Î¤¾¤«¤»¤ë¡¥ÃÌÏòñ¤Ç¤Ï»ä¤¬¼ÂºÝ¤Ë¿¨¤Ã
¤¿¥·¥å¡¼¥¢È¡¿ô¤Ë¤Ä¤¤¤Æ¡¤¸Ä¡¹¤Î»×¤¤½Ð¤È¤È¤â¤Ë¸ì¤ê¤¿¤¤¡¥Æä˺Ƕá¤Î»Å»ö¤Ç¤¢
¤ë¡Ö¿¹à¼°´Ä¤Îº®¹ç´ðÄì¡×¤Ë¤Ä¤¤¤Æ¾Ü¤·¤¯Ï佤¦¡¥¤½¤·¤Æ¸½ºß¤Ï¥·¥å¡¼¥¢È¡¿ô¤Î
¥â¥¸¥å¥é¡¼ÈǤ˶½Ì£¤ò»ý¤Ã¤Æ¤¤¤ë¡¥¤Þ¤ÀÍýÏÀ¤Ë¤Ê¤Ã¤Æ¤¤¤Ê¤¤½é´üÃʳ¬¤Î¼Â¸³·ë²Ì
¤Ë¤Ä¤¤¤Æ¤â¤ªÏä·¤·¤¿¤¤¤È»×¤Ã¤Æ¤¤¤ë¡¥µ¤·Ú¤ËÄ°¤¤¤Æ¤¤¤¿¤À¤¤¿¤¤¡¥
Âè13²ó
- Æü»þ¡§ 12·î9Æü(²Ð)¡¤13:00 - 14:00
- ¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
- ¹Ö»Õ¡§Æ£²ÈÀãϯ»á¡Êʼ¸Ë¸©Î©Âç³Ø¡Ë¡¡
- ÂêÌÜ¡§¥Ð¥ê¥¢¥È¥Ã¥×¤Ç¤ÎWKB²ò¤ÎÀܳ¤È½à¸Åŵ»¶ÍðÌäÂê¤Ø¤Î±þÍÑ
- Tea Time: 14:00 -
- Í׻ݡ§
-
¥·¥å¥ì¥Ç¥£¥ó¥¬¡¼ÊýÄø¼° $$ -h^2\Delta u+V(x)u=zu $$ ¤ò¹Í¤¨¤ë¡£¤³¤ÎÊýÄø¼°
¤Ï $p(x,\xi)=|\xi|^2+V(x)$ ¤ò¥Ï¥ß¥ë¥È¥Ë¥¢¥ó¡ÊÁ´¥¨¥Í¥ë¥®¡¼¡Ë¤È¤¹¤ë¸ÅŵÎÏ
³Ø·Ï¤ÈÂбþ¤·¤Æ¤¤¤ë¡£$h$ ¡Ê¥×¥é¥ó¥¯Äê¿ô¡Ë¤ò¾®¤µ¤ÊÁ²¶á¡Ê½à¸Åŵ¡Ë¥Ñ¥é¥á¡¼¥¿
¤È¤ß¤Ê¤·¤Æ 0 ¤Ë¶á¤Å¤±¤¿¤È¤¤Î¥·¥å¥ì¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤Î²ò¤ÎÁ²¶áŪ¿¶¤ëÉñ¤¤
¤ò¡¢¸ÅŵÎϳطϤδö²¿³ØŪÎ̤Çɽ¸½¤¹¤ë¤Î¤¬½à¸Åŵ²òÀϤǤ¢¤ë¡£$h$ ¤Ë´Ø¤¹¤ëÁ²
¶á²ò¤ò WKB ²ò¤È¤¤¤¦¡£WKB ²ò¤ÏÁ²¶á²ò¤Ç¤¢¤ë¤¬¸Î¤Ë¸ÅŵÎϳطϤΥ³¡¼¥¹¥Æ¥£¥Ã
¥¯¤äÉÔÆ°ÅÀ¤ÇÆðÛÀ¤òÀ¸¤º¤ë¡£¤³¤³¤Ç¤ÏÆäˡ¢¥Ý¥Æ¥ó¥·¥ã¥ë¤Î¶ËÂçÅÀ¡ÊÁжʷ¿ÉÔ
Æ°ÅÀ¡Ë¤Î¶á˵¤Ç¤É¤Î¤è¤¦¤ËWKB²ò¤òÀܳ¤¹¤ë¤«¤ò³µÀ⤷¡¢¤½¤Î»¶ÍðÌäÂê¤Ø¤Î±þÍÑ
¤ò½Ò¤Ù¤ë¡£
Âè14²ó
- Æü»þ¡§ 1·î13Æü(²Ð)¡¤13:00 - 14:00
- ¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
- ¹Ö»Õ¡§À¹ÅÄ·òɧ »á¡Ê¹ÅçÂç³Ø¡Ë
- ÂêÌÜ¡§Ï¢Ê¬¿ôÊÑ´¹¤Î°ìÈ̲½¤È¤½¤ÎÎϳطϥ¼¡¼¥¿´Ø¿ô
- Tea Time: 14:00 -
- Í׻ݡ§
-
¡¡¤ª¤è¤½£¸Ç¯¤Û¤ÉÁ°¤ÎÃÌÏòñ¤Ç Renormalized Rauzy inductions and Teichm\"uller closed geodesis¤È¤¤¤¦ÂêÌܤÇÏäò¤µ¤»¤Æ¤¤¤¿¤À¤¤Þ¤·¤¿¡¥º£²ó¤ÎÏäÎÆâÍƤΤ«¤Ê¤ê¤ÎÉôʬ¤Ï¤½¤Î¤È¤¤Î¤â¤Î¤È½Å¤Ê¤Ã¤Æ¤¤¤Þ¤¹¡¥
¡¡£±¼¡¸µÊÑ´¹ $T_{G}: (0,1]\to (0,1]$ $T_{G}x = \frac{1}{x}-\left[\frac{1}{x}\right]$ ¤Ï¡¤¿ô $x\in(0,1)$ ¤ÎϢʬ¿ôŸ³«¤Î¥¢¥ë¥´¥ê¥º¥à¤òÍ¿¤¨¤Æ¤ª¤êϢʬ¿ôÊÑ´¹(¥¬¥¦¥¹ÊÑ´¹)¤È¤è¤Ð¤ì¤Æ¤¤¤Þ¤¹¡¥°ìÊý¡¤£±¼¡Ê¬¿ôÊÑ´¹¤Î·² $PSL(2, \Bbb{R})/\{ -I, I \}$ ¤Ï¥Ý¥¢¥ó¥«¥ì·×Î̤˴ؤ¹¤ëÅùĹÊÑ´¹·²¤È¤·¤ÆÊ£ÁǾåȾʿÌÌ $\Bbb{H}=\{ z\in \Bbb{C} : \text{Im }z >0 \}$ ¤ËºîÍѤ·¡¤¤½¤ÎÉôʬ·²¤Ç¤¢¤ë¥â¥¸¥å¥é¡¼·² $\Gamma_1 = PSL(2, \Bbb{Z})$ ¤ÎºîÍѤˤè¤ë¾¦¶õ´Ö $M_1 = \Bbb{H}/ \Gamma_1$ ¤Ï¥â¥¸¥å¥é¡¼¶ÊÌ̤ȸƤФì¤Æ¤¤¤Þ¤¹¡¥¥â¥¸¥å¥é¡¼¶ÊÌ̤ϡ¤Ê¬´ôÅÀ¤ò¤â¤Ä¤³¤È¤òµö¤·¤¿°ÕÌ£¤Ç¥ê¡¼¥Þ¥óÌ̤ˤʤäƤ¤¤Þ¤¹¡¥Ï¢Ê¬¿ôÊÑ´¹¤Î£²²ó¹çÀ® $T_{G}^{2}$ ¤Î¼þ´üµ°Æ» $PO(T_{G}^{2})$¡¤¥â¥¸¥å¥é¡¼¶ÊÌ̾å¤Î¬ÃÏή¤ÎÊĵ°Æ» $CG(M_{1})$¡¤¥â¥¸¥å¥é¡¼·²¤Î¸¶»ÏŪÁжʸµ¤Î¶¦ÌòÎà $HC(\Gamma_{1})$ ¤Î´Ö¤Ë¤Ï¡¤¼«Á³¤Ê 1:1 Âбþ¤¬¤¢¤ê¡¤$\Gamma_{1}$ ¤Î¥»¥ë¥Ð¡¼¥°¥¼¡¼¥¿´Ø¿ô¤ò£±¼¡¸µÎÏ³Ø·Ï $T_{G}^{2}$ ¤Ë´Ø¤¹¤ëžÁ÷ºîÍÑÁDz¤Î¥Õ¥ì¥Ã¥É¥Û¥ë¥à¹ÔÎ󼰤Ȥ·¤Æ½ñ¤É½¤ï¤¹¤³¤È¤¬¤Ç¤¤Þ¤¹¡¥¤³¤Î»ö¼Â¤Î°ìÈ̲½¤È¤·¤Æ¤Ï¼¡¤Î£²¤Ä¤ÎÊý¸þ¤¬¹Í¤¨¤é¤ì¤Þ¤¹¡¥
¡¡Â裱¤Î°ìÈ̲½¤Ï¡¤¤¹¤Ù¤Æ¤Î²òÀÏŪ͸¤ÊÁжÊŪ¥ê¡¼¥Þ¥óÌ̤¬¾åȾÊÄÌ̤òÂ裱¼ï¥Õ¥Ã¥¯¥¹·² $\Gamma < PSL(2, \Bbb{R})/\{-I , I \}$ ¤ÎºîÍѤdzä¤ë¤³¤È¤ÇÆÀ¤é¤ì¤ë¤³¤È¤ËÃíÌܤ·¤Æ¡¤$M_1$ ¤ò°ìÈ̤βòÀÏŪ͸¤ʥ꡼¥Þ¥óÌ̤ˤ¹¤ë¤È¤¤¤¦¤â¤Î¤Ç¡¤Â裲¤Î°ìÈ̲½¤Ï¡¤$M_1$ ¤òñ¤Ë¥ê¡¼¥Þ¥óÌ̤Ȥ·¤Æ¸«¤ë¤Î¤Ç¤Ï¤Ê¤¯¼ï¿÷ $1$ ¤ÎÊĥ꡼¥Þ¥óÌ̤Υ⥸¥å¥é¥¤¶õ´Ö¤È¤·¤ÆÊá¤é¤¨¡¤¼ï¿ô£²°Ê¾å¤Î¥â¥¸¥å¥é¥¤¶õ´Ö¤ò°·¤ª¤¦¤È¤¤¤¦¤â¤Î¤Ç¤¹¡¥
¡¡ÃÌÏòñ¤Ç¤Ï¡¤Â裱¤Î°ìÈ̲½¤Ë¤ª¤¤¤Æ¤Ï¤¢¤ë¼ï¤Î¥Þ¥ë¥³¥Õ¼ÌÁü¤¬Ï¢Ê¬¿ôÊÑ´¹¤ÎÌò³ä¤ò²Ì¤¿¤¹ÊÑ´¹¤Ç¤¢¤ë¤³¤È¤«¤é»Ï¤á¡¤Â裲¤Î°ìÈ̲½¤Îº¤Æñ¤µ¤Ë¤Ä¤¤¤Æ¤âºÇ¶á¤ÎÏÃÂê¤â´Þ¤á¾Ò²ð¤·¤Æ¤ß¤è¤¦¤È»×¤¤¤Þ¤¹¡¥
2007ǯÅÙ°ÊÁ°
Date: 2008.4.4
ÃÌÏòñ°Ñ°÷Ĺ¡¡ÅçÅÄ, ºî´Ö, µÈÌî, ¼ÆÅÄ, ¹â¶¶
Âç³Ø±¡Íý³Ø¸¦µæ²Ê¿ô³ØÀ칶