¡ü¡ü¡ü¡¡ÃÌÏòñ¡¡¡ü¡ü¡ü

2008ǯÅÙ

Âè1²ó

Æü»þ¡§ 4·î15Æü(²Ð)¡¤13:00 - 14:00
¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
¹Ö»Õ¡§¾¾ÅĹÀ »á¡Ê¹­ÅçÂç³ØÂç³Ø±¡Íý³Ø¸¦µæ²Ê¿ô³ØÀ칶¡Ë
ÂêÌÜ¡§ One-step Markov Theorem on exchange classes
Tea Time: 14:00 -
Í׻ݡ§
The exchange move on closed braids was discovered by Markov, proved unnecesssary by Weinberg, and re-discovered by Birman and Menasco. The number of exchange classes, conjugacy classes in B_n modulo exchange moves, is finite for every link type and for every n. In this talk, we construct finite pairs of explicit link diagrams that show how two exchange classes are related if they correspond to one link type. As an application, we find a new link invariant, the algebraic crossing number of a minimal braid, giving an affirmative answer to a question posed by Jones.

Âè2²ó

Æü»þ¡§ 4·î22Æü(²Ð)¡¤13:00 - 14:00
¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
¹Ö»Õ¡§ÀÄÌÚµ®»Ë »á¡Ê¶áµ¦Âç³ØÍý¹©³ØÉôÍý³Ø²Ê¡Ë
ÂêÌÜ¡§Stokes´ö²¿ÆþÌç
Tea Time: 14:00 -
Í׻ݡ§
Â礭¤Ê¥Ñ¥é¥á¡¼¥¿¤ò»ý¤ÄÈùʬÊýÄø¼°¤Î²ò¤ÎÂç°èŪÀ­¼Á¤ò´°Á´WKB²òÀϤμêË¡¤òÍѤ¤¤Æ¸¦µæ¤¹¤ëºÝ¡¢Stokes¶ÊÀþ¤È¸Æ¤Ð¤ì¤ë¶ÊÀþ¤¬½ÅÍפÊÌò³ä¤ò²Ì¤¿¤¹¡£Stokes¶ÊÀþ¤Î´ö²¿³ØŪÀ­¼Á¤¬ÈùʬÊýÄø¼°¤ÎÂç°è²òÀϤȷë¤Ó¤Ä¤¯¡£2³¬Fuchs·¿Àþ·¿¾ïÈùʬÊýÄø¼°¤Î¾ì¹ç¤òÃæ¿´¤Ë¡¢¤³¤ì¤é¤Ë¤Ä¤¤¤Æ³µÀ⤹¤ë¡£

Âè3²ó

Æü»þ¡§ 5·î20Æü(²Ð)¡¤13:00 - 14:00
¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
¹Ö»Õ¡§¾±»Ê¸ù »á¡ÊÃÞÇÈÂç³Ø Âç³Ø±¡¥·¥¹¥Æ¥à¾ðÊ󹩳ظ¦µæ²Ê¡Ë
ÂêÌÜ¡§¥Ü¥é¥Æ¥£¥ê¥Æ¥£¤Î¥Î¥ó¥Ñ¥é¥á¥È¥ê¥Ã¥¯¿äÄê¤Ë¤Ä¤¤¤Æ
Tea Time: 14:00 -
Í׻ݡ§
¶âÍ»»þ·ÏÎó¤ÎʬÀϤǤϡ¢¥Ü¥é¥Æ¥£¥ê¥Æ¥£(ʬ»¶¤Þ¤¿¤Ïɸ½àÊк¹)¤Î¿äÄ꤬½ÅÍפǤ¢¤ë¡£¼ÂºÝ¡¢¥Ü¥é¥Æ¥£¥ê¥Æ¥£¤ÏÉԳμÂÀ­¤òɽ¤¹¼ÜÅ٤Ȥ·¤Æ¡¢¶âÍ»¼Â̳¤Ç¤â¤·¤Ð¤·¤ÐÍѤ¤¤é¤ì¤Æ¤¤¤ë¡£¤·¤«¤·¡¢Î㤨¤Ð¡¢¥Ç¡¼¥¿¤Ëɸ½àŪ¤Ê»þ·ÏÎó¥â¥Ç¥ë¤òÅö¤Æ¤Ï¤á¤Æ¡¢¤½¤Î»Äº¹¥×¥í¥Ã¥È¤ò¸«¤Æ¤ß¤ë¤È¡¢¥Ü¥é¥Æ¥£¥ê¥Æ¥£¤¬Â礭¤¤Éôʬ¤ä¾®¤µ¤¤Éôʬ¤¬»¶ºß¤·¡¢»þ´Ö¤È¶¦¤ËÊÑÆ°¤·¤Æ¤¤¤ëÍͻҤ¬±®¤ï¤ì¤ë¡£¤³¤¦¤·¤¿¥Ü¥é¥Æ¥£¥ê¥Æ¥£¤Î»þ´ÖÊÑÆ°¤ò¥â¥Ç¥ë²½¤¹¤ëÍÍ¡¹¤Ê»î¤ß¤¬¤¢¤ë¤¬¡¢º£²ó¤Ï¡¢¥Ü¥é¥Æ¥£¥ê¥Æ¥£¤Î´Ø¿ô·Á¤òͽ¤áÆÃÄꤹ¤ë¤³¤È¤Ê¤¯¡¢¥Ç¡¼¥¿¤«¤é¤½¤ì¤ò¿äÄꤹ¤ëÊýË¡¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ë¡£

Âè4²ó

Æü»þ¡§ 5·î27Æü(²Ð)¡¤13:00 - 14:00
¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
¹Ö»Õ¡§º´Æ£¼þͧ »á¡Ê̾¸Å²°Âç³Ø¡¡Âç³Ø±¡Â¿¸µ¿ôÍý²Ê³Ø¸¦µæ²Ê ¡Ë
ÂêÌÜ¡§p¿Ê¿ôÂξå¤Î¿ÍÍÂΤÎ0¥µ¥¤¥¯¥ë¤ÎÍ­¸ÂÀ­¤Ë¤Ä¤¤¤Æ
Tea Time: 14:00 -
Í׻ݡ§
¥³¥ó¥Ñ¥¯¥È¥ê¡¼¥Þ¥óÌ̤ΰø»ÒÎà·²¤Ï·ÐÏ©ÀÑʬ¤Ë¤è¤Ã¤Æ¥ä¥³¥Ó¿ÍÍÂÎ ¤È¸Æ¤Ð¤ì¤ë¥¢¡¼¥Ù¥ë¿ÍÍÂΤÈƱ·¿¤Ë¤Ê¤ë¡£¤³¤ì¤¬¸ÅŵŪ¤Ê¥¢¡¼¥Ù¥ë ¤ÎÄêÍý¤Ç¤¢¤ë¤¬¡¢Ê£ÁÇ¿ôÂξå¤ÎÂå¿ô¶ÊÌ̤Î0¥µ¥¤¥¯¥ë¤Î¥Á¥ã¥¦ ·²¤ÇÎà»÷¤òé¤ë¤È¾õ¶·¤Ï¤â¤Ã¤ÈÊ£»¨¤Ë¤Ê¤ë¤³¤È¤¬1970ǯÂå¤Ë ¥Þ¥ó¥Õ¥©¡¼¥É¤Ë¤è¤Ã¤ÆÌÀ¤é¤«¤Ë¤µ¤ì¤¿¡£¤³¤Î¹Ö±é¤Ç¤Ï¤³¤ì¤é¤Î»ö¼Â ¤Î³µÀâ¤Ë»Ï¤Þ¤Ã¤Æ¡¢p¿Ê¿ôÂξå¤ÎÂå¿ô¿ÍÍÂΤǤÎÎà»÷¤Ë´Ø¤¹¤ë ºÇ¶á¤Î¿ÊŸ¤Ë¤Ä¤¤¤Æ¾Ò²ð¤¹¤ë¡£

Âè5²ó

Æü»þ¡§ 6·î3Æü(²Ð)¡¤13:00 - 14:00
¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
¹Ö»Õ¡§Ser Peow Tan »á¡ÊNational University of Singapore ¡Ë
ÂêÌÜ¡§On the SL(2,C) character variety of the one-holed torus
Tea Time: 14:00 -
Í׻ݡ§
The SL(2,C) character variety of the one-holed torus has rich connections with various branches of mathematics including hyperbolic geometry, Teichm\"uller theory, low dimensional topology, dynamical systems and mathematical physics. We will talk about some of the analytic, geometric/topological and dynamical aspects of this subject, and survey some of the recent results obtained by various authors including Bowditch; Akiyoshi, Miyachi and Sakuma; McShane; Goldman; and work of the speaker with Wong and Zhang; and Sakuma and Yamashita.

Âè6²ó

Æü»þ¡§ 6·î24Æü(²Ð)¡¤13:00 - 14:00
¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
¹Ö»Õ¡§ÀÐÀî¾»¼£ »á¡ÊÅìËÌÂç³Ø¡Ë
ÂêÌÜ¡§Â¿ÍÍÂΤΥª¡¼¥×¥ó¥Ö¥Ã¥¯Ê¬²ò¤ÈÀÜ¿¨¹½Â¤¤Ë¤Ä¤¤¤Æ
Tea Time: 14:00 -
Í׻ݡ§
£³¼¡¸µÂ¿ÍÍÂΤΥª¡¼¥×¥ó¥Ö¥Ã¥¯Ê¬²ò¤ÈξΩ¤¹¤ëÀÜ¿¨¹½Â¤¤È¤¤¤¦³µÇ°¤Ï W.P.Thurston ¤È H.Winkelnkemper ¤Ë¤è¤êƳÆþ¤µ¤ì¡¢Y.Eliashberg ¤ä E.Giroux ¤é¤Î¸¦µæ¤ò·Ð¤Æ¡¢¥ª¡¼¥×¥ó¥Ö¥Ã¥¯Ê¬²ò¤Î¸¦µæ¤Ë¤ª¤±¤ë°ì¤Ä¤ÎÆ»¶ñ¤È¤·¤ÆÄêÃ夷¤¿¡£ Ê£ÁÇ¿¹à¼°¼ÌÁü¤ÎÆðÛÅÀ¤Î¥ê¥ó¥¯¤Ë¤Ï¼«Á³¤ÊÀÜ¿¨¹½Â¤¤¬Äê¤Þ¤ë¡£¤Þ¤¿¡¢Ê¿Ì̶ÊÀþ ÆðÛÅÀ¤Î¾ì¹ç¤Ë¤Ï¡¢¤½¤Î¥ß¥ë¥Ê¡¼Â«¤Ï £³¼¡¸µµåÌ̾å¤Î tight ¤ÊÀÜ¿¨¹½Â¤¤ÈξΩ ¤¹¤ë¤³¤È¤¬ÃΤé¤ì¤Æ¤¤¤ë¡£¹Ö±é¤Ç¤Ï¡¢ÆðÛÅÀ¤Î¥È¥Ý¥í¥¸¡¼¤ò¸¦µæ¤·¤Æ¤¤¤ëΩ¾ì¤È ¤·¤ÆÀÜ¿¨¹½Â¤¤Ë¶½Ì£»ý¤ÄÆ°µ¡¤È¡¢¥ª¡¼¥×¥ó¥Ö¥Ã¥¯Ê¬²ò¤ÈÀÜ¿¨¹½Â¤¤Ë´Ø¤¹¤ëºÇ¶á¤Î ¸¦µæ¤Ë¤Ä¤¤¤Æ³µÀ⤷¤¿¤¤¡£

Âè7²ó

Æü»þ¡§ 7·î29Æü(²Ð)¡¤13:00 - 14:00
¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
¹Ö»Õ¡§Xiuxiong Chen »á¡Ê¥¦¥£¥¹¥³¥ó¥·¥óÂç³Ø¡Ë
ÂêÌÜ¡§On the space of Kaehler metrics
Tea Time: 14:00 -
Í׻ݡ§
On the infinite dimensional space of Kaehler metrics, Mabuchi, Semmes and Donaldson introduce a Weil-Peterson type metric. Under this metric, this space becomes an infinite dimensional symmetric space of non-compact type with semi-negative curvature. Donaldson made several important conjectures concerning the geometric structure of this space; and the resolution of these conjectures of Donaldson has important consequences on Kaehler geometry. For instance, the well known problem of uniqueness of "best metric" in each Kaehler class is settled in recent years through this and related program. In this lecture, I will give an expository account of this program as well as some recent updates on Kaehler geometry.

Âè8²ó

Æü»þ¡§ 9·î2Æü(²Ð)¡¤13:00 - 14:00
¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
¹Ö»Õ¡§Eberhard Knobloch »á¡Ê¥Ù¥ë¥ê¥ó¹©²ÊÂç³Ø¡Ë
ÂêÌÜ¡§Leibniz's theory of elimination and determinants
Tea Time: 14:00 -
Í׻ݡ§
From 1678 forward Gottfried Wilhelm Leibniz (1646-1716) occupied himself with 'a new type of notation' (novum designationis genus) which would prove to have great benefit in the analytical and combinatorial art. Apart from two hidden references made by him in 1700 and 1710 Leibniz never published anything about his related researches. Nobody could guess that, in reality, Leibniz laid the foundation of the theory of determinants in Europe between 1678 and 1713. The 68 most important, Latin written studies regarding elimination and determinant theory were published in 1972, 1974, and 1980, respectively. Since then, historians of science came to realize, at least to some extent, what Leibniz had achieved in this field. His interest in the solution of systems of inhomogeneous, linear equations was essentially motivated by his conviction that the solution of the quintic equation could be reduced to the solution of such systems. To that end he invented a suitable index notation, coined the term 'resultant', invented a symbol for this resultant, formulated basic general theorems about resultants, and deduced important results in elimination theory. In January 1684, Leibniz found the completely correct so-called 'Cramer's rule' for solving systems of linear equations. He anticipated important results that were re-discovered by J. J. Sylvester, L. Euler, and E. B«±zout only decades later.

Âè9²ó

Æü»þ¡§ 10·î14Æü(²Ð)¡¤13:00 - 14:00
¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
¹Ö»Õ¡§Sungbok Hong »á¡ÊKorea University¡Ë
ÂêÌÜ¡§Smale conjecture for elliptic 3-manifolds
Tea Time: 14:00 -
Í׻ݡ§
Smale proved that for the standard 2-sphere $S^2$, the inclusion of the isometry group $O(3)$ into the diffeomorphism group $Diff(S^2)$ is a homotopy equivalence. He conjectured that the analogous result holds true for the 3-sphere. The conjecture was proved by Hatcher. Gabai proved Smale conjecture also holds for closed hyperbolic 3- manifolds. We will discuss about Smale conjecture for elliptic 3-manifolds.

Âè10²ó

Æü»þ¡§ 10·î28Æü(²Ð)¡¤13:00 - 14:00
¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
¹Ö»Õ¡§·§Ã«Î´ »á¡ÊµþÅÔÂç³Ø¡Ë
ÂêÌÜ¡§Sierpinski carpet¾å¤Î¥Ö¥é¥¦¥ó±¿Æ°¤Î°ì°ÕÀ­¤Ë¤Ä¤¤¤Æ
Tea Time: 14:00 -
Í׻ݡ§
Ê£»¨¤Ê·Ï¤Î¾å¤ÇÇ®¤¬¤É¤Î¤è¤¦¤ËÅÁ¤ï¤ë¤«¡¢¤È¤¤¤¦ÌäÂê¤ò²òÌÀ¤¹¤ë¤¿¤á¡¢£¸£°Ç¯Âå °Ê¹ß¡¢Ê£»¨¤Ê·Ï¤Îŵ·¿Îã¤Ç¤¢¤ë¥Õ¥é¥¯¥¿¥ë¾å¤Ë¼«Á³¤Ê³È»¶²áÄø¡Ê´·Îã¤Ë½¾¤¤¤³¤ì ¤ò¥Ö¥é¥¦¥ó±¿Æ°¤È¸Æ¤Ö¡Ë¤ò¹½À®¤·¡¢¤½¤ÎÀ­¼Á¤òÄ´¤Ù¤ë¸¦µæ¤¬¿Ê¤ó¤Ç¤­¤¿¡£¥Õ¥é¥¯ ¥¿¥ë¿Þ·Á¾å¤Î³È»¶²áÄø¤Ï¡¢¥Õ¥é¥¯¥¿¥ë¤ò¶á»÷¤¹¤ë¥°¥é¥Õ¤ä¿ÍÍÂΤξå¤Ë¼«Á³¤Ëºî ¤é¤ì¤ë¥é¥ó¥À¥à¥¦¥©¡¼¥¯¤ä¥Ö¥é¥¦¥ó±¿Æ°¤Î¥¹¥±¡¼¥ë¶Ë¸Â¤È¤·¤Æ¹½À®¤µ¤ì¤ë¤¬¡¢¤³ ¤Î¥¹¥±¡¼¥ë¶Ë¸Â¤¬°ì°Õ¤ËÄê¤Þ¤ëÊݾڤϲ¿¤â¤Ê¤¤¡£Åµ·¿Åª¤Ê¥Õ¥é¥¯¥¿¥ë¤Î°ì¤Ä¤Ç¤¢ ¤ëSierpinski carpet¤Ë¤Ä¤¤¤Æ¡¢¤³¤Î°ì°ÕÀ­¤ÎÌäÂê¡ÊÊ̤θÀ¤¤Êý¤ò¤¹¤ì¤Ð¥Ö¥é¥¦ ¥ó±¿Æ°¤ÎÆÃħ¤Å¤±¤ÎÌäÂê¡Ë¤Ï¡¢Ä¹¤¤´ÖÅö³ºÊ¬Ìî¤Î´ðËÜŪ¤Ê̤²ò·èÌäÂê¤Ç¤¢¤Ã¤¿¡£ Ëֱܹé¤Ç¤Ï¡¢¤³¤ÎÌäÂê¤ò¹ÎÄêŪ¤Ë²ò·è¤·¤¿¡¢¹Ö±é¼Ô¤È¶¦Æ±¸¦µæ¼Ô¤ÎºÇ¶á¤Î·ë²Ì¤Ë ¤Ä¤¤¤ÆÊó¹ð¤¹¤ë¡£ÌäÂê¤ÎÇطʤä²ò·è¤òº¤Æñ¤Ë¤·¤Æ¤­¤¿Íýͳ¤Ê¤É¤â¾Ò²ð¤·¡¢Á´ÂÎÁü ¤¬Ê¬¤«¤ë¤è¤¦¤Ë¹©Éפ·¤¿¤¤¡£¡¡

Âè11²ó

Æü»þ¡§ 11·î11Æü(²Ð)¡¤13:00 - 14:00
¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
¹Ö»Õ¡§¾®ÅçÄêµÈ »á¡ÊÅìµþ¹©¶ÈÂç³Ø¡Ë
ÂêÌÜ¡§3¼¡¸µÂ¿ÍÍÂÎ¤Î¥È¥Ý¥í¥¸¡¼¤È´ö²¿¡¡¡¼¥Ý¥¢¥ó¥«¥ìͽÁۤȴö²¿²½Í½Áۤβò·è¡¼
Tea Time: 14:00 -
Í׻ݡ§
G. Perelman ¤Ë¤è¤ë¥Ý¥¢¥ó¥«¥ìͽÁÛ¤ª¤è¤Ó ´ö²¿²½Í½Áۤβò·è¤Î³µÍפò¾Ò²ð¤¹¤ë¡¥

Âè12²ó

Æü»þ¡§ 11·î25Æü(²Ð)¡¤13:00 - 14:00
¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
¹Ö»Õ¡§»³ÅÄ͵»Ë»á¡Ê²¬»³Âç³Ø¡Ë
ÂêÌÜ¡§¥·¥å¡¼¥¢È¡¿ô¤È¤È¤â¤Ë»ÍȾÀ¤µª
Tea Time: 14:00 -
Í׻ݡ§
¹­ÅçÂç³Ø¤ÎÂç³Ø±¡À¸¤Ç¤¢¤Ã¤¿º¢¤Ë¡¤º´Æ£´´É×ÀèÀ¸¤ÎKPÍýÏÀ¤Î¹ÖµÁ¤òÄ°¤­¡¤¥¿¥¦È¡ ¿ô¤È¤·¤Æ¤Î¡Ö¥·¥å¡¼¥¢È¡¿ô¡×¤Ë¿¨¤ì¤Æ¤«¤é£²£µÇ¯°Ê¾å¤¬²á¤®¤¿¡¥¤½¤·¤Æ»ä¤âǯ¤ò ¤È¤Ã¤¿¡¥¥ô¥£¥é¥½¥íÂå¿ô¤ÎÆðۥ٥¯¥È¥ë¡¤¥¢¥Õ¥£¥ó¥ê¡¼´Ä¤Î¥¦¥¨¥¤¥È¥Ù¥¯¥È¥ë Åù¡¹¡¤¥·¥å¡¼¥¢È¡¿ô¤ÏÍÍ¡¹¤Ê¾ìÌ̤˴é¤ò¤Î¤¾¤«¤»¤ë¡¥ÃÌÏòñ¤Ç¤Ï»ä¤¬¼ÂºÝ¤Ë¿¨¤Ã ¤¿¥·¥å¡¼¥¢È¡¿ô¤Ë¤Ä¤¤¤Æ¡¤¸Ä¡¹¤Î»×¤¤½Ð¤È¤È¤â¤Ë¸ì¤ê¤¿¤¤¡¥Æä˺Ƕá¤Î»Å»ö¤Ç¤¢ ¤ë¡Ö¿¹à¼°´Ä¤Îº®¹ç´ðÄì¡×¤Ë¤Ä¤¤¤Æ¾Ü¤·¤¯Ï佤¦¡¥¤½¤·¤Æ¸½ºß¤Ï¥·¥å¡¼¥¢È¡¿ô¤Î ¥â¥¸¥å¥é¡¼ÈǤ˶½Ì£¤ò»ý¤Ã¤Æ¤¤¤ë¡¥¤Þ¤ÀÍýÏÀ¤Ë¤Ê¤Ã¤Æ¤¤¤Ê¤¤½é´üÃʳ¬¤Î¼Â¸³·ë²Ì ¤Ë¤Ä¤¤¤Æ¤â¤ªÏä·¤·¤¿¤¤¤È»×¤Ã¤Æ¤¤¤ë¡¥µ¤·Ú¤ËÄ°¤¤¤Æ¤¤¤¿¤À¤­¤¿¤¤¡¥

Âè13²ó

Æü»þ¡§ 12·î9Æü(²Ð)¡¤13:00 - 14:00
¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
¹Ö»Õ¡§Æ£²ÈÀãϯ»á¡Êʼ¸Ë¸©Î©Âç³Ø¡Ë¡¡
ÂêÌÜ¡§¥Ð¥ê¥¢¥È¥Ã¥×¤Ç¤ÎWKB²ò¤ÎÀܳ¤È½à¸Åŵ»¶ÍðÌäÂê¤Ø¤Î±þÍÑ
Tea Time: 14:00 -
Í׻ݡ§
¥·¥å¥ì¥Ç¥£¥ó¥¬¡¼ÊýÄø¼° $$ -h^2\Delta u+V(x)u=zu $$ ¤ò¹Í¤¨¤ë¡£¤³¤ÎÊýÄø¼° ¤Ï $p(x,\xi)=|\xi|^2+V(x)$ ¤ò¥Ï¥ß¥ë¥È¥Ë¥¢¥ó¡ÊÁ´¥¨¥Í¥ë¥®¡¼¡Ë¤È¤¹¤ë¸ÅŵÎÏ ³Ø·Ï¤ÈÂбþ¤·¤Æ¤¤¤ë¡£$h$ ¡Ê¥×¥é¥ó¥¯Äê¿ô¡Ë¤ò¾®¤µ¤ÊÁ²¶á¡Ê½à¸Åŵ¡Ë¥Ñ¥é¥á¡¼¥¿ ¤È¤ß¤Ê¤·¤Æ 0 ¤Ë¶á¤Å¤±¤¿¤È¤­¤Î¥·¥å¥ì¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤Î²ò¤ÎÁ²¶áŪ¿¶¤ëÉñ¤¤ ¤ò¡¢¸ÅŵÎϳطϤδö²¿³ØŪÎ̤Çɽ¸½¤¹¤ë¤Î¤¬½à¸Åŵ²òÀϤǤ¢¤ë¡£$h$ ¤Ë´Ø¤¹¤ëÁ² ¶á²ò¤ò WKB ²ò¤È¤¤¤¦¡£WKB ²ò¤ÏÁ²¶á²ò¤Ç¤¢¤ë¤¬¸Î¤Ë¸ÅŵÎϳطϤΥ³¡¼¥¹¥Æ¥£¥Ã ¥¯¤äÉÔÆ°ÅÀ¤ÇÆðÛÀ­¤òÀ¸¤º¤ë¡£¤³¤³¤Ç¤ÏÆäˡ¢¥Ý¥Æ¥ó¥·¥ã¥ë¤Î¶ËÂçÅÀ¡ÊÁжʷ¿ÉÔ Æ°ÅÀ¡Ë¤Î¶á˵¤Ç¤É¤Î¤è¤¦¤ËWKB²ò¤òÀܳ¤¹¤ë¤«¤ò³µÀ⤷¡¢¤½¤Î»¶ÍðÌäÂê¤Ø¤Î±þÍÑ ¤ò½Ò¤Ù¤ë¡£

Âè14²ó

Æü»þ¡§ 1·î13Æü(²Ð)¡¤13:00 - 14:00
¾ì½ê¡§Âç³Ø±¡Íý³Ø¸¦µæ²Ê B707¹æ¼¼
¹Ö»Õ¡§À¹ÅÄ·òɧ »á¡Ê¹­ÅçÂç³Ø¡Ë
ÂêÌÜ¡§Ï¢Ê¬¿ôÊÑ´¹¤Î°ìÈ̲½¤È¤½¤ÎÎϳطϥ¼¡¼¥¿´Ø¿ô
Tea Time: 14:00 -
Í׻ݡ§
¡¡¤ª¤è¤½£¸Ç¯¤Û¤ÉÁ°¤ÎÃÌÏòñ¤Ç Renormalized Rauzy inductions and Teichm\"uller closed geodesis¤È¤¤¤¦ÂêÌܤÇÏäò¤µ¤»¤Æ¤¤¤¿¤À¤­¤Þ¤·¤¿¡¥º£²ó¤ÎÏäÎÆâÍƤΤ«¤Ê¤ê¤ÎÉôʬ¤Ï¤½¤Î¤È¤­¤Î¤â¤Î¤È½Å¤Ê¤Ã¤Æ¤¤¤Þ¤¹¡¥
¡¡£±¼¡¸µÊÑ´¹ $T_{G}: (0,1]\to (0,1]$ $T_{G}x = \frac{1}{x}-\left[\frac{1}{x}\right]$ ¤Ï¡¤¿ô $x\in(0,1)$ ¤ÎϢʬ¿ôŸ³«¤Î¥¢¥ë¥´¥ê¥º¥à¤òÍ¿¤¨¤Æ¤ª¤êϢʬ¿ôÊÑ´¹(¥¬¥¦¥¹ÊÑ´¹)¤È¤è¤Ð¤ì¤Æ¤¤¤Þ¤¹¡¥°ìÊý¡¤£±¼¡Ê¬¿ôÊÑ´¹¤Î·² $PSL(2, \Bbb{R})/\{ -I, I \}$ ¤Ï¥Ý¥¢¥ó¥«¥ì·×Î̤˴ؤ¹¤ëÅùĹÊÑ´¹·²¤È¤·¤ÆÊ£ÁǾåȾʿÌÌ $\Bbb{H}=\{ z\in \Bbb{C} : \text{Im }z >0 \}$ ¤ËºîÍѤ·¡¤¤½¤ÎÉôʬ·²¤Ç¤¢¤ë¥â¥¸¥å¥é¡¼·² $\Gamma_1 = PSL(2, \Bbb{Z})$ ¤ÎºîÍѤˤè¤ë¾¦¶õ´Ö $M_1 = \Bbb{H}/ \Gamma_1$ ¤Ï¥â¥¸¥å¥é¡¼¶ÊÌ̤ȸƤФì¤Æ¤¤¤Þ¤¹¡¥¥â¥¸¥å¥é¡¼¶ÊÌ̤ϡ¤Ê¬´ôÅÀ¤ò¤â¤Ä¤³¤È¤òµö¤·¤¿°ÕÌ£¤Ç¥ê¡¼¥Þ¥óÌ̤ˤʤäƤ¤¤Þ¤¹¡¥Ï¢Ê¬¿ôÊÑ´¹¤Î£²²ó¹çÀ® $T_{G}^{2}$ ¤Î¼þ´üµ°Æ» $PO(T_{G}^{2})$¡¤¥â¥¸¥å¥é¡¼¶ÊÌ̾å¤Î¬ÃÏή¤ÎÊĵ°Æ» $CG(M_{1})$¡¤¥â¥¸¥å¥é¡¼·²¤Î¸¶»ÏŪÁжʸµ¤Î¶¦ÌòÎà $HC(\Gamma_{1})$ ¤Î´Ö¤Ë¤Ï¡¤¼«Á³¤Ê 1:1 Âбþ¤¬¤¢¤ê¡¤$\Gamma_{1}$ ¤Î¥»¥ë¥Ð¡¼¥°¥¼¡¼¥¿´Ø¿ô¤ò£±¼¡¸µÎÏ³Ø·Ï $T_{G}^{2}$ ¤Ë´Ø¤¹¤ëžÁ÷ºîÍÑÁDz¤Î¥Õ¥ì¥Ã¥É¥Û¥ë¥à¹ÔÎ󼰤Ȥ·¤Æ½ñ¤­É½¤ï¤¹¤³¤È¤¬¤Ç¤­¤Þ¤¹¡¥¤³¤Î»ö¼Â¤Î°ìÈ̲½¤È¤·¤Æ¤Ï¼¡¤Î£²¤Ä¤ÎÊý¸þ¤¬¹Í¤¨¤é¤ì¤Þ¤¹¡¥
¡¡Â裱¤Î°ìÈ̲½¤Ï¡¤¤¹¤Ù¤Æ¤Î²òÀÏŪͭ¸Â¤ÊÁжÊŪ¥ê¡¼¥Þ¥óÌ̤¬¾åȾÊÄÌ̤òÂ裱¼ï¥Õ¥Ã¥¯¥¹·² $\Gamma < PSL(2, \Bbb{R})/\{-I , I \}$ ¤ÎºîÍѤdzä¤ë¤³¤È¤ÇÆÀ¤é¤ì¤ë¤³¤È¤ËÃíÌܤ·¤Æ¡¤$M_1$ ¤ò°ìÈ̤βòÀÏŪͭ¸Â¤Ê¥ê¡¼¥Þ¥óÌ̤ˤ¹¤ë¤È¤¤¤¦¤â¤Î¤Ç¡¤Â裲¤Î°ìÈ̲½¤Ï¡¤$M_1$ ¤òñ¤Ë¥ê¡¼¥Þ¥óÌ̤Ȥ·¤Æ¸«¤ë¤Î¤Ç¤Ï¤Ê¤¯¼ï¿÷ $1$ ¤ÎÊĥ꡼¥Þ¥óÌ̤Υ⥸¥å¥é¥¤¶õ´Ö¤È¤·¤ÆÊá¤é¤¨¡¤¼ï¿ô£²°Ê¾å¤Î¥â¥¸¥å¥é¥¤¶õ´Ö¤ò°·¤ª¤¦¤È¤¤¤¦¤â¤Î¤Ç¤¹¡¥
¡¡ÃÌÏòñ¤Ç¤Ï¡¤Â裱¤Î°ìÈ̲½¤Ë¤ª¤¤¤Æ¤Ï¤¢¤ë¼ï¤Î¥Þ¥ë¥³¥Õ¼ÌÁü¤¬Ï¢Ê¬¿ôÊÑ´¹¤ÎÌò³ä¤ò²Ì¤¿¤¹ÊÑ´¹¤Ç¤¢¤ë¤³¤È¤«¤é»Ï¤á¡¤Â裲¤Î°ìÈ̲½¤Îº¤Æñ¤µ¤Ë¤Ä¤¤¤Æ¤âºÇ¶á¤ÎÏÃÂê¤â´Þ¤á¾Ò²ð¤·¤Æ¤ß¤è¤¦¤È»×¤¤¤Þ¤¹¡¥

2007ǯÅÙ°ÊÁ°


Date: 2008.4.4
ÃÌÏòñ°Ñ°÷Ĺ¡¡ÅçÅÄ, ºî´Ö, µÈÌî, ¼ÆÅÄ, ¹â¶¶

Âç³Ø±¡Íý³Ø¸¦µæ²Ê¿ô³ØÀ칶