Reidemeister torsion and exceptional surgeries along the figure eight knot

Yoshikazu YAMAGUCHI

Akita University

Branched Coverings, Degenerations, and Related Topics 2016

Reidemeister torsion

Definition $($ R-trosion $\operatorname{Tor}(W ; \rho))$

$$
\begin{array}{cl}
W & : \text { a finite CW-complex, } \\
\rho: \pi_{1}(W) \rightarrow \mathrm{SL}_{n}(\mathbb{C}) & : \text { SL }_{n}(\mathbb{C}) \text {-representation of } \pi_{1} \\
C_{*}\left(W ; \mathbb{C}_{\rho}^{n}\right) & : \\
=\mathbb{C}^{n} \otimes_{\rho} C_{*}\left(\widetilde{W} ; \mathbb{Z}\left[\pi_{1}\right]\right) & (\widetilde{W}: \text { universal cover system given by } \rho \\
& v \otimes \gamma \sigma=\rho(\gamma)^{-1} v \otimes \sigma
\end{array}
$$

Under $H_{*}\left(W ; \mathbb{C}_{\rho}^{n}\right)=0$,

$$
\operatorname{Tor}(W ; \rho):=\prod_{i \geq 0} \operatorname{det}\left(\partial \boldsymbol{b}_{i+1} \cup \boldsymbol{b}_{i} / \boldsymbol{c}_{i}\right)^{(-1)^{i+1}}
$$

via the decomposition
$C_{i}\left(W ; \mathbb{C}_{\rho}^{n}\right)=\operatorname{Ker} \partial_{i} \oplus\left(\mathrm{a} \mathrm{lift} \mathrm{of} \operatorname{Im} \partial_{i}\right)=\operatorname{Im} \partial_{i+1} \oplus\left(\right.$ a lift of $\left.\operatorname{Im} \partial_{i}\right)$.

Example of Reidemeister torsion

Local system for S^{1}

$$
\begin{aligned}
\rho: \pi_{1} S^{1}=\langle\gamma\rangle & \rightarrow \mathrm{SL}_{2}(\mathbb{C}), \\
\gamma & \mapsto A
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{C}^{2} \simeq C_{1}\left(S^{1} ; \mathbb{C}_{\rho}^{2}\right) \xrightarrow{\partial_{1}} C_{0}\left(S^{1} ; \mathbb{C}_{\rho}^{2}\right) \simeq \mathbb{C}^{2} \\
\quad v \otimes \widetilde{e}^{1} \mapsto v \otimes \gamma \tilde{e}^{0}-v \otimes \widetilde{e}^{0}=\left(A^{-1}-l\right) v \otimes \widetilde{e}^{0}
\end{aligned}
$$

C_{0} has the new basis $\left(A^{-1}-I\right)\binom{1}{0} \otimes \widetilde{e}^{0},\left(A^{-1}-I\right)\binom{0}{1} \otimes \widetilde{e}^{0}$.
R-torsion for (S^{1}, ρ)

$$
\operatorname{Tor}\left(S^{1} ; \rho\right)=\frac{1}{\operatorname{det}\left(A^{-1}-l\right)}\left(=\left(\operatorname{det} \partial_{1}\right)^{-1}\right)
$$

Sequence of R-torsion

We can make a sequence by the following procedure:

1. Choose an $\mathrm{SL}_{2}(\mathbb{C})$-rep. $\rho: \pi_{1}(M) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$.
2. Take composition with $\sigma_{n}: \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \mathrm{SL}_{n}(\mathbb{C})$,

$$
\rho=\rho_{2}, \quad \rho_{3}, \quad \ldots, \quad \rho_{n}=\sigma_{n} \circ \rho, \quad \ldots \text { (a seq. of reps.) }
$$

3. Consider $\operatorname{Tor}\left(W ; \rho_{n}\right)$ if $H_{*}\left(W ; \mathbb{C}_{\rho_{n}}^{n}\right)=0 \quad\left(\forall \rho_{n}\right)$, i.e., $\operatorname{Tor}\left(M ; \rho_{2}\right), \operatorname{Tor}\left(M ; \rho_{3}\right), \ldots, \operatorname{Tor}\left(M ; \rho_{n}\right), \ldots$ (a seq. of invs.)

Remark
The behavior of $\left\{\left|\operatorname{Tor}\left(W ; \rho_{n}\right)\right| \mid n=1,2, \ldots\right\}(n \rightarrow \infty)$ is related to the geometric feature of W.

Example of $\operatorname{Tor}\left(W ; \rho_{n}\right)$

$\sigma_{n}(A)$: the action of A on $\{p(x, y) \mid$ homog., $\operatorname{deg} p=n-1\}$.

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot p(x, y)=p\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}\binom{x}{y}\right)=p(d x-b y,-c x+a y)
$$

For example, if $A=\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)$, then

$$
\sigma_{3}(A)=\left(\begin{array}{ccc}
a^{-2} & & \\
& 1 & \\
& & a^{2}
\end{array}\right), \quad \sigma_{4}(A)=\left(\begin{array}{llll}
a^{-3} & & & \\
& a^{-1} & & \\
& & a & \\
& & & a^{3}
\end{array}\right) .
$$

$$
\operatorname{Tor}\left(S^{1} ; \rho_{2 N}\right)=\left\{\operatorname{det}\left(\sigma_{2 N}(A)-I\right)\right\}^{-1}
$$

$$
=\left\{\prod_{k=1}^{N}\left(a^{2 k-1}-1\right)\left(a^{-2 k+1}-1\right)\right\}^{-1}
$$

Previous work I for the asymptotics of R-torsion

The asymptotics for Hyperbolic manifolds
by W. Müller, P. Menal-Ferrer \& J. Porti
M : a hyperbolic 3-manifold of finite volume

$$
\begin{aligned}
& \rho: \pi_{1}(M) \rightarrow \mathrm{SL}_{2}(\mathbb{C}) \quad \text { (holonomy rep.) } \\
& \quad \Rightarrow \rho_{2 N}=\sigma_{2 N} \circ \rho \text { satisfies } H_{*}\left(M ; \rho_{2 N}\right)=0(\forall N)
\end{aligned}
$$

Moreover

$$
\lim _{N \rightarrow \infty} \frac{\log \left|\operatorname{Tor}\left(M ; \rho_{2 N}\right)\right|}{(2 N)^{2}}=\frac{\operatorname{Vol}(M)}{-4 \pi}\left(=\frac{v_{3}\|M\|}{-4 \pi}\right)
$$

$\operatorname{Vol}(M)$: hyperbolic vol. of $M, \quad\|M\|$: simplicial vol. of M

Previous work I for the asymptotics of R-torsion

The asymptotics for Hyperbolic manifolds
by W. Müller, P. Menal-Ferrer \& J. Porti
M : a hyperbolic 3-manifold of finite volume

$$
\begin{aligned}
& \rho: \pi_{1}(M) \rightarrow \mathrm{SL}_{2}(\mathbb{C}) \quad \text { (holonomy rep.) } \\
& \quad \Rightarrow \rho_{2 N}=\sigma_{2 N} \circ \rho \text { satisfies } H_{*}\left(M ; \rho_{2 N}\right)=0(\forall N)
\end{aligned}
$$

Moreover

$$
\lim _{N \rightarrow \infty} \frac{\log \left|\operatorname{Tor}\left(M ; \rho_{2 N}\right)\right|}{(2 N)^{2}}=\frac{\operatorname{Vol}(M)}{-4 \pi}\left(=\frac{v_{3}\|M\|}{-4 \pi}\right)
$$

$\operatorname{Vol}(M)$: hyperbolic vol. of $M, \quad\|M\|$: simplicial vol. of M

Previous work II for the asymptotics of R-torsion

Asymptotic behavior for a Seifert fibered space (Y)
M : a Seifert fibered space with m exceptional fibers

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\log \left|\operatorname{Tor}\left(M ; \rho_{2 N}\right)\right|}{(2 N)^{2}}=0 \\
& \left.\lim _{N \rightarrow \infty} \frac{\log \left|\operatorname{Tor}\left(M ; \rho_{2 N}\right)\right|}{2 N}=\log \right\rvert\,\left.\operatorname{Tor}(\text { regular fiber; } \rho)\right|^{-\chi^{\prime}} \\
& \rho_{2 N}=\sigma_{2 N} \circ \rho: \pi_{1}(M) \xrightarrow{\rho} \mathrm{SL}_{2}(\mathbb{C}) \xrightarrow{\sigma_{2 N}} \mathrm{SL}_{2 N}(\mathbb{C}) \\
& \text { s.t. regular fiber } \mapsto-I \mapsto-I_{2 N},
\end{aligned}
$$

g : the genus of the base orbifold,
$2 \lambda_{j}$: the order of the 2×2-matrix corresponding to j-th exceptional fiber

Previous work II for the asymptotics of R-torsion

Asymptotic behavior for a Seifert fibered space (Y)
M : a Seifert fibered space with m exceptional fibers

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\log \left|\operatorname{Tor}\left(M ; \rho_{2 N}\right)\right|}{(2 N)^{2}}=0 \\
& \lim _{N \rightarrow \infty} \frac{\log \left|\operatorname{Tor}\left(M ; \rho_{2 N}\right)\right|}{2 N}=-\left(2-2 g-\sum_{j=1}^{m} \frac{\lambda_{j}-1}{\lambda_{j}}\right) \log 2 \\
& \rho_{2 N}=\sigma_{2 N} \circ \rho: \pi_{1}(M) \xrightarrow{\rho} \mathrm{SL}_{2}(\mathbb{C}) \xrightarrow{\sigma_{2 N}} \mathrm{SL}_{2 N}(\mathbb{C}) \\
& \text { s.t. } \quad \text { regular fiber } \mapsto-1 \mapsto-I_{2 N},
\end{aligned}
$$

g : the genus of the base orbifold,
$2 \lambda_{j}$: the order of the 2×2-matrix corresponding to j-th exceptional fiber

Motivations of this research

1. $M=M_{1} \cup_{T^{2}} \cdots \cup_{T^{2}} M_{k}$: a graph manifold

What is the limit of the following?

$$
\lim _{N \rightarrow \infty} \frac{\log \left|\operatorname{Tor}\left(M ; \rho_{2 N}\right)\right|}{2 N}
$$

2. What happens about R-torsion
when a hyperbolic structure $\rho: \pi_{1}\left(E_{K}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ moves to a degenerate one?

Exceptional surgeries along 4_{1} (Figure eight knot)

Fact (Exceptional surgeries along 41)

$$
\begin{array}{ccccc}
1 / 0 & 0 & \pm 1 & \pm 2 & \pm 3 \\
S^{3} & T^{2}-\text { b'dle }^{\prime} & S^{2}(2,3,7) & S^{2}(2,4,5) & S^{2}(3,3,4)
\end{array}
$$

± 4 : Graph manifold M
$M=$ Exterior of $3_{1} \cup$ twisted I-b'dle over the Klein's bottle

$$
\left(\begin{array}{cccc}
M_{1} & \cup_{T^{2}} & M_{2}
\end{array}\right)
$$

± 4-slope $=$ the boundary of punctured Klein' bottle by checkerboard coloring

Main result

Theorem (the limit of leading coefficient)

- $M=$ Exterior of $3_{1} \cup$ twisted I-b'dle over the Klein's bottle
- $\bar{\rho}: \mathrm{SL}_{2}(\mathbb{C})$-representation induced from

$$
\rho: \pi_{1}\left(E_{K}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})
$$

Then

$$
\lim _{N \rightarrow \infty} \frac{\log \left|\operatorname{Tor}\left(M ; \bar{\rho}_{2 N}\right)\right|}{2 N}=\frac{2}{5} \log 3-\frac{1}{5} \log 2
$$

Our approach

Fact

- In the case of $K=4_{1}$, the set of $\rho: \pi_{1}\left(E_{K}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ is well-known.
- $\operatorname{Tor}(M)=\operatorname{Tor}\left(E_{K}\right) \cdot \operatorname{Tor}\left(D^{2} \times S^{1}\right)=\operatorname{Tor}\left(M_{1}\right) \cdot \operatorname{Tor}\left(M_{2}\right)$

This is useful to observe the local systems for M_{1} and M_{2}.

- $\operatorname{Tor}\left(M_{1}\right)$ and $\operatorname{Tor}\left(M_{2}\right)$ are also well-known.

We will see the behavior of $\operatorname{Tor}\left(M_{1}\right)$ and $\operatorname{Tor}\left(M_{2}\right)$ by

$$
\rho: \pi_{1}\left(E_{K}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C}), \operatorname{Tor}\left(E_{K}\right) \text { and } \operatorname{Tor}\left(D^{2} \times S^{1}\right)
$$

Toroidal surgery and Representation

Induced representation $\bar{\rho}: \pi_{1}(M) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$
M : resulting manifold by ± 4-surgery along $K=4_{1}$

Therefore

$$
\rho(m)^{ \pm 4} \rho(\ell)=I \Leftrightarrow \bar{\rho} \text { is induced }
$$

Problem
Which $\rho: \pi_{1}\left(E_{K}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ induces $\bar{\rho}:: \pi_{1}(M) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$?

Equivalence condition for reps. related to ± 4-surgery

Necessary condition for $\rho(m)^{ \pm 4} \rho(\ell)=1$
For $K=4_{1}$,

$$
\begin{aligned}
\rho(m)^{ \pm 4} \rho(\ell)=I & \Rightarrow \operatorname{tr} \rho(m)^{4}=\operatorname{tr} \rho(\ell) \\
& \Leftrightarrow \operatorname{tr} \rho(m)=0 .
\end{aligned}
$$

$(\because) \quad \operatorname{tr} \rho(\ell)=(\operatorname{tr} \rho(m))^{4}-5(\operatorname{tr} \rho(m))^{2}+2$.
Sufficient condition for $\rho(m)^{ \pm 4} \rho(\ell)=I$
For $K=$ any two-bridge knot,

$$
\begin{aligned}
\operatorname{tr} \rho(m)=0 & \Leftrightarrow \rho(m) \stackrel{\text { conj. }}{\sim}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad \rho(\ell)=1 \\
& \Rightarrow \rho(m)^{ \pm 4} \rho(\ell)=1
\end{aligned}
$$

Representation for our graph manifold

$$
\begin{array}{lr}
M=E_{K} \cup_{ \pm 4} D^{2} \times S^{1} & \pi_{1}\left(E_{K}\right) \xrightarrow{\rho} \mathrm{SL}_{2}(\mathbb{C}) \\
\rho \text { induces } \bar{\rho} \Leftrightarrow \operatorname{tr} \rho(m)=0, & \downarrow
\end{array}
$$

$M=$ Exterior of $3_{1} \cup$ twisted I-b'dle over the Klein's bottle $\left(\begin{array}{lll}M_{1} & \cup & M_{2}\end{array}\right)$

- $\left.\bar{\rho}\right|_{\pi_{1}\left(M_{1}\right)}: \pi_{1}\left(M_{1}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C}):$ reducible (abelian),
- $\left.\bar{\rho}\right|_{\pi_{1}\left(M_{2}\right)}: \pi_{1}\left(M_{2}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C}):$ non-abelian.
$(\because) \mathrm{M}$. Teragaito's presentation:
$\pi_{1}(M)=\left\langle a, b, x, y \mid a^{2}=b^{3}, x^{-1} y x=y^{-1}, \mu=y^{-1}, h=y^{-1} x^{2}\right\rangle$ and R-torsions.

R -torsion for a graph manifold

Result by surgery formula

$$
\operatorname{Tor}(M ; \bar{\rho})=\operatorname{Tor}\left(E_{K}\right) \operatorname{Tor}\left(D^{2} \times S^{1}\right)=\frac{-2(\operatorname{tr} \rho(m)-1)}{2-\operatorname{tr} \rho(m)}=1
$$

$(\because) \quad \operatorname{tr} \rho(m)=0$.
Result by JSJ-decomposition

$$
\begin{aligned}
\operatorname{Tor}(M ; \bar{\rho}) & =\operatorname{Tor}\left(M_{1} ; \bar{\rho}\right) \cdot \operatorname{Tor}\left(M_{2} ; \bar{\rho}\right) \\
& =\frac{\Delta_{3_{1}}(\zeta) \Delta_{3_{1}}\left(\zeta^{-1}\right)}{(\zeta-1)\left(\zeta^{-1}-1\right)} \cdot 1
\end{aligned}
$$

where $\Delta_{3_{1}}(t)=t-1+t^{-1}$.

$$
\operatorname{Tor}(M ; \bar{\rho})=1 \Rightarrow \zeta=\exp (\pi \sqrt{-1} / 5): 10 \text {-th root of unity. }
$$

R-torsion for 2 N -dim representations

$M=M_{1} \cup M_{2}: J S J$-decomposition,

$$
\left.\bar{\rho}\right|_{\pi_{1}\left(M_{1}\right)} \text { :abelian, }\left.\quad \bar{\rho}\right|_{\pi_{1}\left(M_{2}\right)}: \text { :non-abelian }
$$

Result by JSJ-decomposition
$\operatorname{In} \operatorname{Tor}\left(M ; \bar{\rho}_{2 N}\right)=\operatorname{Tor}\left(M_{1} ; \bar{\rho}_{2 N}\right) \cdot \operatorname{Tor}\left(M_{2} ; \bar{\rho}_{2 N}\right)$,

$$
\begin{aligned}
\operatorname{Tor}\left(M_{1} ; \bar{\rho}_{2 N}\right) & =\frac{\prod_{k=1}^{N} \Delta_{3_{1}}\left(\zeta^{2 k-1}\right) \Delta_{3_{1}}\left(\zeta^{-2 k+1}\right)}{\prod_{k=1}^{N}\left(\zeta^{2 k-1}-1\right)\left(\zeta^{-2 k+1}-1\right)} \\
\operatorname{Tor}\left(M_{2} ; \bar{\rho}_{2 N}\right) & =1
\end{aligned}
$$

where
$\Delta_{3_{1}}(t)=t-1+t^{-1}, \zeta=\exp (\pi \sqrt{-1} / 5)$: 10-th root of unity.
Remark

$$
\Delta_{3_{1}}\left(\zeta^{ \pm 1}\right)=\frac{-1+\sqrt{5}}{2}, \Delta_{3_{1}}\left(\zeta^{ \pm 3}\right)=\frac{-1-\sqrt{5}}{2}, \Delta_{3_{1}}\left(\zeta^{ \pm 5}\right)=-3
$$

The asymptotic behavior for a graph manifold

Theorem (the limit of leading coefficient)

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\log \left|\operatorname{Tor}\left(M ; \bar{\rho}_{2 N}\right)\right|}{2 N} \\
& =\frac{2}{5} \log \left|\left(\frac{-1+\sqrt{5}}{2}\right)^{2}\left(\frac{-1-\sqrt{5}}{2}\right)^{2}(-3)\right|-\frac{1}{5} \log 2 \\
& =\frac{2}{5} \log 3-\frac{1}{5} \log 2
\end{aligned}
$$

Remark

- M: a Seifert fibered space
\Rightarrow the limit of leading coeff. $=(\ldots) \log 2$
- $\frac{ \pm 1+\sqrt{5}}{2}$: the square roots of $\frac{3 \pm \sqrt{5}}{2}$ which is the root of $\Delta_{4_{1}}(t)=t^{2}-3 t+1$.

