
p OP

Splitting of singular fibers &
topological monodromies

Takayuki OKUDA
(Kyushu University)

Tohoku Gakuin University
Feb. 24, 2015



p Introduction

Degeneration
p of Rieman surfaces

・・

Topological monodromy

Splitting deformation
for degeneration of Riemann surfaces

2 / 18



p Introduction

Degeneration
p of Rieman surfaces

Topological monodromy

Splitting deformation
for degeneration of Riemann surfaces

2 / 18



p Introduction

Degeneration
p of Rieman surfaces

Topological monodromy

Splitting deformation
for degeneration of Riemann surfaces

・・

2 / 18



p Introduction

Degeneration
p of Rieman surfaces

Topological monodromy

Splitting family
for degeneration of Riemann surfaces

x

・・

Topological monodromy

2 / 18



p Introduction

Degeneration
p of Rieman surfaces

Topological monodromy

Splitting family
for degeneration of Riemann surfaces

x

・・

Topological monodromy

2 / 18



p Degeneration of Riemann surfaces
M : a smooth complex surface ∆ : an open disk in C
π : M → ∆ : a proper surjective holomorphic map

i.e. a family of (compact) complex curves over ∆
π : M → ∆ is called a degeneration of Riemann surfaces

df⇐⇒ it has a unique singular value 0 ∈ ∆.

Xs := π−1(s) (s ̸= 0)
are all smooth fibers.

X0 := π−1(0) is a singular fiber.

Local model
π(z, w) = zw (or, z2 + w2)

: a Lefschetz singular point
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Regard X0 as the divisor defined by π
and express as X0 =

∑
mΘ,

where Θ is an irreducible component
with multiplicity m.
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df⇐⇒ it has a unique singular value 0 ∈ ∆.

・・

Regard X0 as the divisor defined by π
and express as X0 =

∑
mΘ,

where Θ is an irreducible component
with multiplicity m.

Note:
The self-intersection number of Θ is

(Θ · Θ) = −
∑

Θ∩Θj ̸=∅ mj

m
.

3 / 18



p Degeneration of Riemann surfaces
M : a smooth complex surface ∆ : an open disk in C
π : M → ∆ : a proper surjective holomorphic map

i.e. a family of (compact) complex curves over ∆
π : M → ∆ is called a degeneration of Riemann surfaces

df⇐⇒ it has a unique singular value 0 ∈ ∆.

・・
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X0 is normally minimal df⇐⇒
X0 has at most normal crossings.
An irreducible component of X0,
if it is a (−1)-curve,
intersects other components
at at least 3 points.
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p Degeneration of Riemann surfaces
M : a smooth complex surface ∆ : an open disk in C
π : M → ∆ : a proper surjective holomorphic map

i.e. a family of (compact) complex curves over ∆
π : M → ∆ is called a degeneration of Riemann surfaces

df⇐⇒ it has a unique singular value 0 ∈ ∆.

1 Genus 1⇝ “8” types of min degenerations
(Kodaira, 63)

2 Genus 2⇝ about “120” types of min degenerations
(Namikawa-Ueno, 73)

3 Genus 3⇝ about “1600” types of min degenerations
(Ashikaga-Ishizaka, 02,

via Matsumoto-Montesinos’ theorem)
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p Matsumoto-Montesinos’ Theorem
Theorem (Matsumoto-Montesinos, 91/92)top. equiv. classes of
minimal degenerations of
Riemann surfs. of genus g

 1:1←→

conj. classes in MCGg of
pseudo-periodic mapp. classes
of negative twist


via topological monodromy, for g ≥ 2.

pGiven degeneration

・・

Take a base point s ∈ ∆ \ {0}
and consider a reference fiber Xs.
⇝ a monodromy homeom. f : Xs → Xs

⇝ an isotopy class [f ] ∈ MCGg

(topological monodromy)
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pLefschetz fiber Right-handed Dehn twist
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Periodic mapping class
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p Splitting of Singular fibers
{πt : Mt → ∆t}t : a “family of families of complex curves”

s.t. π : M → ∆ coincides with π0 : M0 → ∆0

・・

If πt : Mt → ∆t (t ̸= 0) has k singular values s1, s2, . . . , sk,
i.e. k singular fibers Xt,s1, Xt,s2, . . . , Xt,sk appear,

=⇒ we say X0 splits into Xt,s1, Xt,s2, . . . , Xt,sk .
5 / 18



p Splitting families for degenerations
M : a complex 3-manifold ∆† : a sufficiently small open disk
Ψ :M→ ∆×∆† : a proper flat surjective holomorphic map

i.e. a family of (compact) complex curves over ∆×∆†

Assume proj2 ◦Ψ :M→ ∆† is a submersion.
For each t ∈ ∆†, set
∆t := ∆× {t},
Mt := Ψ−1(∆t)

(= (proj2 ◦Ψ)−1 (t)),
πt := Ψ

∣∣
Mt

: Mt → ∆t.

Ψ :M→ ∆×∆† is a splitting family for π : M → ∆
df⇐⇒ π0 : M0 → ∆0 coincides with π : M → ∆, and

πt : Mt → ∆t (t ̸= 0) has at least two singular fibers.
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p Splittability of singular fibers
A singular fiber (or precisely, its degeneration) is atomic

df⇐⇒ it does NOT admit any splitting families.

Fact
Lefschetz fibers and multiple smooth curves are atomic.

How to construct splitting families
Double covering method

1 for degenerations of genus 1 (Moishezon)
2 for degenerations of genus 2 (Horikawa)
3 for hyperelliptic degenerations (Arakawa-Ashikaga)

Barking deformation
for linear degenerations
whose singular fiber has a simple crust (Takamura)
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p Degeneration VS Splitting Family

Degeneration
p of Rieman surfaces

・・

The central fiber is singular.
General fibers are smooth.

Splitting family
for degeneration of Riemann surfaces

x

・・

The central family has one singular fiber.
General families have k singular fibers.
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p Mapping class grps of degenerations
In what follows, we allow
degenerations to have finitely many singular fibers.
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In what follows, we allow

degenerations to have finitely many singular fibers.
π : M → ∆ : a degeneration of Riemann surfaces.

with k singular fibers Xs1, Xs2, . . . , Xsk

Consider a pair of orientation preserving self-homeomorphisms
F : M →M and ϕ : ∆→ ∆
satisfying π ◦ F = ϕ ◦ π.

(note: F preserves fibers of π.)
Such pairs (F, ϕ) are called

topological automorphisms
of the degeneration π :→ ∆.

Aut(π) := {(F, ϕ) : π ◦ F = ϕ ◦ π}
: the set of topological automorphisms

We call MCG(π) := π0(Aut(π))
the mapping class group of π :→ ∆.
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p Monodromy of splitting families
Ψ :M→ ∆×∆† : a splitting family
Take a base point t0 ∈ ∆† \ {0}, and

a loop γ in ∆† \ {0} with base point t0
that goes once around 0 in the counterclockwise direction.

We regard πt0 : Mt0 → ∆t0 as a “reference degeneration”.
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p Monodromy of splitting families
Consider the diagram

W := Ψ−1(∆× γ)
Ψ|∆×γ−−−−→ ∆× γ

proj2−−−→ γ,
(!)W =

∪
t∈γ Mt is a real 5-manifold.

∃ a Thom stratification for Ψ|∆×γ : W → ∆× γ s.t.
proj2 maps each stratum in ∆× γ onto γ submersively.

⇒ Thom’s second isotopy lemma ensures that
Ψ|∆×γ : W → ∆× γ is (topologically) locally trivial over γ.
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p Monodromy of splitting families
W = Ψ−1(∆× γ)

Ψ|∆×γ−−−−→ ∆× γ
proj2−−−→ γ.

Pasting these trivializations of Ψ|∆×γ along γ gives us
a topological automorphism (F, ϕ) of πt0 : Mt0 → ∆t0 .

(F, ϕ) is called the monodromy automorphism.
The topological monodromy of Ψ :M→ ∆×∆†

is defined as its homotopy class [F, ϕ] ∈MCG(πt0)
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p Monodromy of splitting families

In this talk, we focus on
the restrictions of monodromy automorphisms

to the union of singular fibers.

10 / 18



p Discriminant of splitting families
D := Ψ(Sing(Ψ)) : the discriminant of Ψ :M→ ∆×∆†

(!) It is a plane curve in ∆×∆† with at most one singularity at 0.
Suppose πt0 : Mt0 → ∆t0 has k singular values s1, s2, . . . , sk

(i.e. it has k singular fibers Xs1,t0, Xs2,t0, . . . , Xsk,t0).
⇒ The second projection proj2 : ∆×∆† → ∆† induces

an unramified k-fold covering D \ {0} → ∆† \ {0}.
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p Discriminant of splitting families
W = Ψ−1(∆× γ)

Ψ|∆×γ−−−−→ ∆× γ
proj2−−−→ γ.

In the solid torus ∆× γ,
L := D ∩ (∆× γ) forms a quasi-positive (k-string) closed braid.
D = D1 ∪ D2 ∪ · · · ∪ Dℓ : the irreducible decomposition
⇒Ki := Di ∩ L, i = 1, 2, . . . , ℓ, are the knot components of L.
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p Polydromy of splitting families
(F, ϕ) : the monodromy automorphism of Ψ (w.r.t. πt0)
Dt0 (= L ∩∆t0) : the discriminant of πt0 : Mt0 → ∆t0

=⇒ ϕ permutes the points of Dt0 , and
F permutes the singular fibers over Dt0 .

Dt0,i := Ki ∩∆t0 (⊂ Dt0) for i = 1, 2, . . . , ℓ
=⇒ ϕ permutes the points of Dt0,i cyclically, and

F permutes the singular fibers over Dt0,i cyclically.
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p Polydromy of splitting families
Set Xi :=

⨿
s∈Dt0,i

Xs, and fi := F
∣∣
Xi

: Xi → Xi.
For ci := #Dt0,i, f

ci
i maps each singular fiber to itself.

We say fi is a polydromy of a tassel Xi of order ci.
The projection Di \ {0} → ∆† \ {0} induced by proj2

is an unramified 1-fold covering (i.e. an automorphism)
⇐⇒ fi is a polydromy of order ci = 1.

Xi = Xsi (so fi : Xsi → Xsi).

Theorem (O)
fi : a polydromy of Xsi of order ci = 1
Θ : an irreducible component of Xsi

b : a positive integer satisfying f b
i (Θ) = Θ.

Then f b
i

∣∣
Θ

is a pseudo-periodic map of negative twist.
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b : a positive integer satisfying f b
i (Θ) = Θ.

Then f b
i

∣∣
Θ

is a pseudo-periodic map of negative twist.
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p Barking deformation

How to construct splitting families
Double covering method

1 for degenerations of genus 1 (Moishezon)
2 for degenerations of genus 2 (Horikawa)
3 for hyperelliptic degenerations (Arakawa-Ashikaga)

Barking deformation
for linear degenerations
whose singular fiber has a simple crust (Takamura)
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p What is barking?

— Toy model —
π(z, ζ) = z6ζ5 : a holomorphic function on C2

Consider a family of holomorphic functions on C2 given by
πt(z, ζ) = z4ζ3(zζ + t)2 (t ∈ ∆†).
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p What is barking?

x

If X0 contains “simple crust” Y as a subdivisor,
=⇒ ∃ a deformation family for the given degeneration

associated with Y .
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X0 is deformed to the central fiber Xt,0 of πt : Mt → ∆t

in such a way that Y looks “barked” off from X0.
There exist other singular fibers than Xt,0,
which are called subordinate fibers.
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p Main result
The central fiber Xt,0 forms a tassel by itself.
i.e. Xt,0 has a polydromy f : Xt,0 → Xt,0 of order 1.

Theorem (O)
Ψ :M→ ∆×∆† : a barking family for a linear degeneration

associated with a simple crust (Y, ℓ)
f0 : a polydromy of The central fiber Xt,0 (so of order 1)

1 If Θ is a stable component,
=⇒ f(Θ) = Θ, and f

∣∣
Θ

is isotopic to the identity map.
2 If Θ is a bark component,
=⇒ f(Θ), f 2(Θ), . . . , f b(Θ)(= Θ) are bark components,

and f b
∣∣
Θ

is a monodromy homeomorphism
of a degeneration with “the modification of 1

b
Y ”

(in particular, a pseudo-periodic map of negative twist).
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p Idea of proof
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p Examples
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p Ending

Thank you for listening!


