Splitting of singular fibers & topological monodromies

Takayuki OKUDA (Kyushu University)

Tohoku Gakuin University Feb. 24, 2015

Degeneration of Rieman surfaces

Topological monodromy

plitting deformation for degeneration of Riemann surfaces

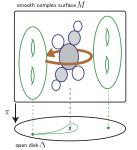
Degeneration of Rieman surfaces

smooth complex surface M

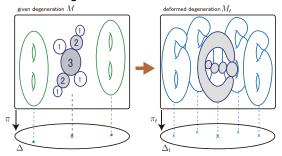
Topological monodromy

plitting deformation for degeneration of Riemann surfaces

Degeneration of Rieman surfaces



Splitting deformation for degeneration of Riemann surfaces



Topological monodromy

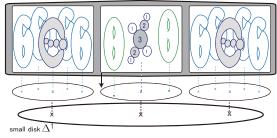
Degeneration of Rieman surfaces

smooth complex surface M

Topological monodromy

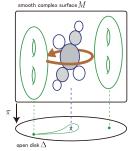
Splitting family for degeneration of Riemann surfaces

complex 3-manifold ${\cal M}$



Fopological monodromy

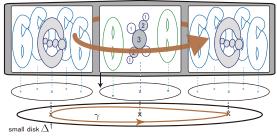
Degeneration of Rieman surfaces



Topological monodromy

Splitting family for degeneration of Riemann surfaces

complex 3-manifold ${\cal M}$

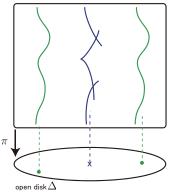


Topological monodromy

M: a smooth complex surface Δ : an open disk in \mathbb{C} $\pi: M \to \Delta$: a proper surjective holomorphic map i.e. a family of (compact) complex curves over Δ

$$\label{eq:product} \begin{split} \pi: M \to \Delta \text{ is called a degeneration of Riemann surfaces} \\ & \stackrel{\mathrm{df}}{\longleftrightarrow} \text{ it has a unique singular value } \mathbf{0} \in \Delta. \end{split}$$

smooth complex surface ${\cal M}$



 X_s := π⁻¹(s) (s ≠ 0) are all smooth fibers.
 X₀ := π⁻¹(0) is a singular fiber.

 $rac{\mathbf{Local\ model}}{m{\pi}(m{z},m{w})}=m{z}m{w}$ (or, z^2+w^2) : a Lefschetz singular point

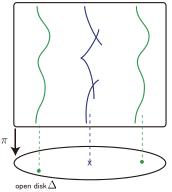
M : a smooth complex surface $-\Delta$: an open disk in $\mathbb C$

 $\pi: M \to \Delta$: a proper surjective holomorphic map

i.e. a family of (compact) complex curves over Δ

$$\label{eq:phi} \begin{split} \pi: M \to \Delta \text{ is called a degeneration of Riemann surfaces} \\ \stackrel{\mathrm{df}}{\longleftrightarrow} \text{ it has a unique singular value } 0 \in \Delta. \end{split}$$

smooth complex surface M



 X_s := π⁻¹(s) (s ≠ 0) are all smooth fibers.
 X₀ := π⁻¹(0) is a singular fiber.

 $rac{ extsf{Local model}}{m{\pi}(m{z},m{w})} = m{z}m{w}$ (or, z^2+w^2) : a Lefschetz singular point

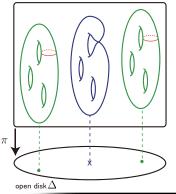
 $M: \text{a smooth complex surface} \quad \Delta: \text{ an open disk in } \mathbb{C}$

 $\pi: M \to \Delta$: a proper surjective holomorphic map

i.e. a family of (compact) complex curves over Δ

$$\label{eq:product} \begin{split} \pi: M \to \Delta \text{ is called a degeneration of Riemann surfaces} \\ & \overset{\mathrm{df}}{\longleftrightarrow} \text{ it has a unique singular value } 0 \in \Delta. \end{split}$$

smooth complex surface M



 X_s := π⁻¹(s) (s ≠ 0) are all smooth fibers.
 X₀ := π⁻¹(0) is a singular fiber.

 $rac{ extsf{Local model}}{m{\pi(m{z},m{w})}=m{z}m{w}}$ (or, z^2+w^2) : a Lefschetz singular point

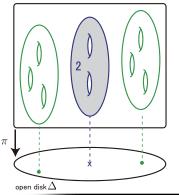
 $M: \text{a smooth complex surface} \quad \Delta: \text{ an open disk in } \mathbb{C}$

 $\pi: M \to \Delta$: a proper surjective holomorphic map

i.e. a family of (compact) complex curves over Δ

$$\label{eq:phi} \begin{split} \pi: M \to \Delta \text{ is called a degeneration of Riemann surfaces} \\ \stackrel{\mathrm{df}}{\longleftrightarrow} \text{ it has a unique singular value } 0 \in \Delta. \end{split}$$

smooth complex surface M



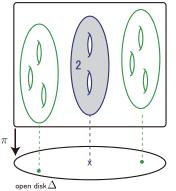
$$X_s := \pi^{-1}(s) \ (s
eq 0)$$

are all smooth fibers.
 $X_0 := \pi^{-1}(0)$ is a singular fiber

M : a smooth complex surface $-\Delta$: an open disk in $\mathbb C$

- $\pi: M \to \Delta$: a proper surjective holomorphic map
 - i.e. a family of (compact) complex curves over Δ
- $$\label{eq:phi} \begin{split} \pi: M \to \Delta \text{ is called a degeneration of Riemann surfaces} \\ \stackrel{\mathrm{df}}{\longleftrightarrow} \text{ it has a unique singular value } 0 \in \Delta. \end{split}$$

smooth complex surface M

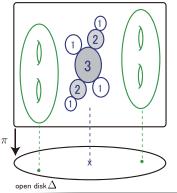


Regard X_0 as the divisor defined by π and express as $X_0 = \sum m\Theta$, where Θ is an irreducible component with **multiplicity** m.

M : a smooth complex surface $-\Delta$: an open disk in $\mathbb C$

- $\pi: M \to \Delta$: a proper surjective holomorphic map
 - i.e. a family of (compact) complex curves over Δ
- $$\label{eq:phi} \begin{split} \pi: M \to \Delta \text{ is called a degeneration of Riemann surfaces} \\ \stackrel{\mathrm{df}}{\longleftrightarrow} \text{ it has a unique singular value } 0 \in \Delta. \end{split}$$

smooth complex surface M



Regard X_0 as the divisor defined by π and express as $X_0 = \sum m\Theta$, where Θ is an irreducible component with **multiplicity** m.

 $rac{ ext{Local model}}{\pi(z,w)} = z^2 w^3$

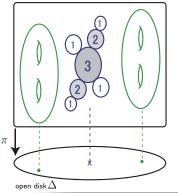
 $M: \text{a smooth complex surface} \quad \Delta: \text{ an open disk in } \mathbb{C}$

 $\pi: M \to \Delta$: a proper surjective holomorphic map

i.e. a family of (compact) complex curves over Δ

$$\label{eq:phi} \begin{split} \pi: M \to \Delta \text{ is called a degeneration of Riemann surfaces} \\ & \overset{\mathrm{df}}{\longleftrightarrow} \text{ it has a unique singular value } 0 \in \Delta. \end{split}$$

smooth complex surface M



Regard X_0 as the divisor defined by π and express as $X_0 = \sum m\Theta$, where Θ is an irreducible component with **multiplicity** m.

Note:

The self-intersection number of Θ is

$$(\Theta \cdot \Theta) = -rac{\sum_{\Theta \cap \Theta_j
eq \emptyset} m_j}{m}$$

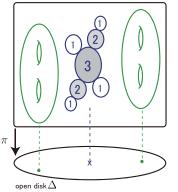
M : a smooth complex surface $-\Delta$: an open disk in $\mathbb C$

 $\pi: M \to \Delta$: a proper surjective holomorphic map

i.e. a family of (compact) complex curves over Δ

$$\label{eq:phi} \begin{split} \pi: M \to \Delta \text{ is called a degeneration of Riemann surfaces} \\ \stackrel{\mathrm{df}}{\longleftrightarrow} \text{ it has a unique singular value } 0 \in \Delta. \end{split}$$

smooth complex surface M



 X_0 is relatively minimal

 $\stackrel{\mathrm{df}}{\longleftrightarrow} X_{0}$ contains no (-1)-curves.

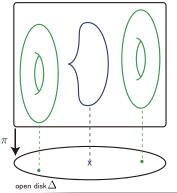
M : a smooth complex surface $-\Delta$: an open disk in $\mathbb C$

 $\pi: M \to \Delta$: a proper surjective holomorphic map

i.e. a family of (compact) complex curves over Δ

$$\label{eq:phi} \begin{split} \pi: M \to \Delta \text{ is called a degeneration of Riemann surfaces} \\ \stackrel{\mathrm{df}}{\longleftrightarrow} \text{ it has a unique singular value } 0 \in \Delta. \end{split}$$

smooth complex surface M



 $egin{aligned} & \mathbf{X_0} \text{ is relatively minimal} \ & \stackrel{\mathrm{df}}{\longleftrightarrow} \mathbf{X_0} \text{ contains no } (-1) \text{-curves.} \end{aligned}$

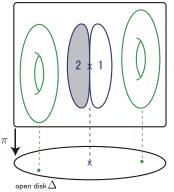
 $rac{ ext{Local model}}{\pi(z,w)} = z^3 + w^2$

M : a smooth complex surface Δ : an open disk in \mathbb{C} $\pi: M \to \Delta$: a proper surjective holomorphic map

i.e. a family of (compact) complex curves over Δ

 $\begin{aligned} \pi: M \to \Delta \text{ is called a degeneration of Riemann surfaces} \\ & \stackrel{\mathrm{df}}{\longleftrightarrow} \text{ it has a unique singular value } 0 \in \Delta. \end{aligned}$

smooth complex $\mathrm{surface}M$



$oldsymbol{X_0}$ is normally minimal $\stackrel{ ext{df}}{\Longleftrightarrow}$

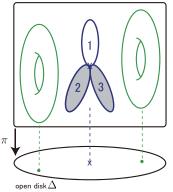
- **\mathbf{X}_0** has at most normal crossings.
- An irreducible component of X₀, if it is a (-1)-curve, intersects other components at at least 3 points.

M : a smooth complex surface Δ : an open disk in \mathbb{C} $\pi: M \to \Delta$: a proper surjective holomorphic map

i.e. a family of (compact) complex curves over Δ

$$\label{eq:phi} \begin{split} \pi: M \to \Delta \text{ is called a degeneration of Riemann surfaces} \\ \stackrel{\mathrm{df}}{\longleftrightarrow} \text{ it has a unique singular value } 0 \in \Delta. \end{split}$$

smooth complex $\mathrm{surface}M$



$oldsymbol{X_0}$ is normally minimal $\stackrel{ ext{df}}{\Longleftrightarrow}$

- **\mathbf{X}_0** has at most normal crossings.
- An irreducible component of X₀, if it is a (-1)-curve, intersects other components at at least 3 points.

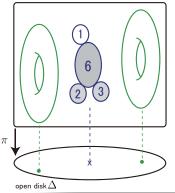
M : a smooth complex surface Δ : an open disk in $\mathbb C$

 $\pi: M \to \Delta$: a proper surjective holomorphic map

i.e. a family of (compact) complex curves over Δ

$$\label{eq:phi} \begin{split} \pi: M \to \Delta \text{ is called a degeneration of Riemann surfaces} \\ \stackrel{\mathrm{df}}{\longleftrightarrow} \text{ it has a unique singular value } 0 \in \Delta. \end{split}$$

smooth complex surface M



X_0 is normally minimal $\stackrel{ m df}{\Longleftrightarrow}$

- **\mathbf{X}_0** has at most normal crossings.
- An irreducible component of X₀, if it is a (-1)-curve, intersects other components at at least 3 points.

M : a smooth complex surface Δ : an open disk in $\mathbb C$

 $\pi: M \to \Delta$: a proper surjective holomorphic map

i.e. a family of (compact) complex curves over Δ

- $\label{eq:phi} \begin{array}{l} \pi: M \to \Delta \text{ is called a degeneration of Riemann surfaces} \\ \stackrel{\mathrm{df}}{\longleftrightarrow} \text{ it has a unique singular value } 0 \in \Delta. \end{array}$
 - **1** Genus $1 \rightsquigarrow "8"$ types of min degenerations (Kodaira, 63)
 - 2 Genus $2 \rightarrow$ about "120" types of min degenerations (Namikawa-Ueno, 73)
 - 3 Genus $3 \rightarrow$ about "1600" types of min degenerations (Ashikaga-Ishizaka, 02,

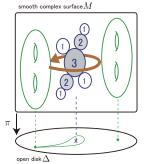
via Matsumoto-Montesinos' theorem)

Theorem (Matsumoto-Montesinos, 91/92)

 $\left\{ \begin{array}{l} \text{top. equiv. classes of} \\ \text{minimal degenerations of} \\ \text{Riemann surfs. of genus } g \end{array} \right\} \xleftarrow{1:1} \left\{ \begin{array}{l} \text{conj. classes in } \operatorname{MCG}_g \text{ of} \\ \text{pseudo-periodic mapp. classes} \\ \text{of negative twist} \end{array} \right\}$

via topological monodromy, for $g \ge 2$.

Given degeneration

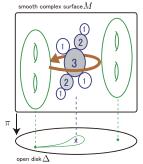


Theorem (Matsumoto-Montesinos, 91/92)

 $\left\{ \begin{array}{l} \text{top. equiv. classes of} \\ \text{minimal degenerations of} \\ \text{Riemann surfs. of genus } g \end{array} \right\} \xleftarrow{1:1} \left\{ \begin{array}{l} \text{conj. classes in } \operatorname{MCG}_g \text{ of} \\ \text{pseudo-periodic mapp. classes} \\ \text{of negative twist} \end{array} \right\}$

via topological monodromy, for $g \ge 2$.

Given degeneration



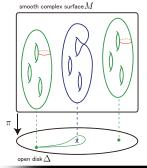
Take a base point $s \in \Delta \setminus \{0\}$ and consider a reference fiber X_s . \rightsquigarrow a monodromy homeom. $f : X_s \to X_s$ \rightsquigarrow an isotopy class $[f] \in MCG_g$ (topological monodromy)

Theorem (Matsumoto-Montesinos, 91/92)

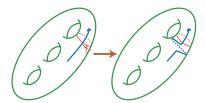
 $\left\{ \begin{array}{l} \text{top. equiv. classes of} \\ \text{minimal degenerations of} \\ \text{Riemann surfs. of genus } g \end{array} \right\} \xleftarrow{1:1} \left\{ \begin{array}{l} \text{conj. classes in } \operatorname{MCG}_g \text{ of} \\ \text{pseudo-periodic mapp. classes} \\ \text{of negative twist} \end{array} \right\}$

via topological monodromy, for q > 2.

Lefschetz fiber



Right-handed Dehn twist

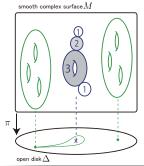


Theorem (Matsumoto-Montesinos, 91/92)

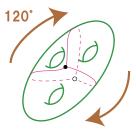
 $\left\{ \begin{array}{l} \text{top. equiv. classes of} \\ \text{minimal degenerations of} \\ \text{Riemann surfs. of genus } g \end{array} \right\} \xleftarrow{1:1} \left\{ \begin{array}{l} \text{conj. classes in } \operatorname{MCG}_g \text{ of} \\ \textbf{pseudo-periodic mapp. classes} \\ \text{of negative twist} \end{array} \right\}$

via topological monodromy, for q > 2.

Stellar fiber



Periodic mapping class

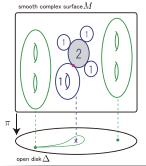


Theorem (Matsumoto-Montesinos, 91/92)

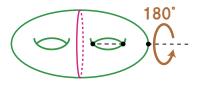
 $\left\{ \begin{array}{l} \text{top. equiv. classes of} \\ \text{minimal degenerations of} \\ \text{Riemann surfs. of genus } g \end{array} \right\} \xleftarrow{1:1} \left\{ \begin{array}{l} \text{conj. classes in } \operatorname{MCG}_g \text{ of} \\ \text{pseudo-periodic mapp. classes} \\ \text{of negative twist} \end{array} \right\}$

via topological monodromy, for q > 2.

Constellar fiber

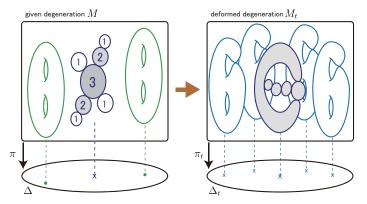


Pseudo-periodic mapping class



Splitting of Singular fibers

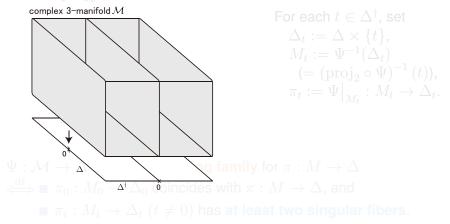
 $\{\pi_t : M_t \to \Delta_t\}_t$: a "family of families of complex curves" s.t. $\pi : M \to \Delta$ coincides with $\pi_0 : M_0 \to \Delta_0$



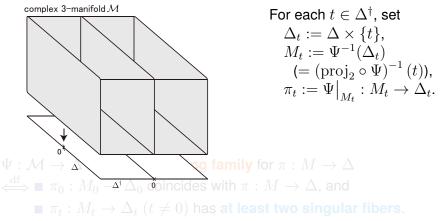
If $\pi_t : M_t \to \Delta_t \ (t \neq 0)$ has k singular values s_1, s_2, \ldots, s_k , i.e. k singular fibers $X_{t,s_1}, X_{t,s_2}, \ldots, X_{t,s_k}$ appear, \implies we say X_0 splits into $X_{t,s_1}, X_{t,s_2}, \ldots, X_{t,s_k}$.

$$\begin{split} \mathcal{M}: \text{a complex 3-manifold} \quad \Delta^{\dagger}: \text{a sufficiently small open disk} \\ \Psi: \mathcal{M} \to \Delta \times \Delta^{\dagger}: \text{a proper flat surjective holomorphic map} \\ \text{i.e. a family of (compact) complex curves over } \Delta \times \Delta^{\dagger} \end{split}$$

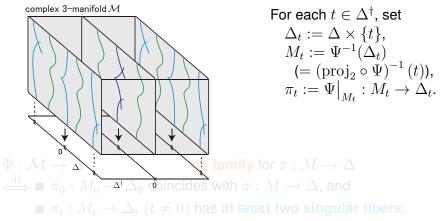
Assume $\operatorname{proj}_2 \circ \Psi : \mathcal{M} \to \Delta^{\dagger}$ is a submersion.



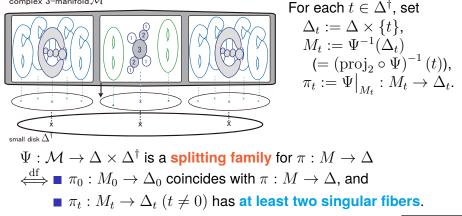
$$\begin{split} \mathcal{M}: \text{a complex 3-manifold} \quad \Delta^{\dagger}: \text{a sufficiently small open disk} \\ \Psi: \mathcal{M} \to \Delta \times \Delta^{\dagger}: \text{a proper flat surjective holomorphic map} \\ \text{i.e. a family of (compact) complex curves over } \Delta \times \Delta^{\dagger} \\ \text{Assume } \operatorname{proj}_2 \circ \Psi: \mathcal{M} \to \Delta^{\dagger} \text{ is a submersion.} \end{split}$$



 $\begin{array}{ll} \mathcal{M}: \text{a complex 3-manifold} & \Delta^{\dagger}: \text{a sufficiently small open disk} \\ \Psi: \mathcal{M} \rightarrow \Delta \times \Delta^{\dagger}: \text{a proper flat surjective holomorphic map} \\ \text{i.e. a family of (compact) complex curves over } \Delta \times \Delta^{\dagger} \\ \text{Assume } \operatorname{proj}_2 \circ \Psi: \mathcal{M} \rightarrow \Delta^{\dagger} \text{ is a submersion.} \end{array}$



 $\begin{array}{ll} \mathcal{M}: \text{a complex 3-manifold} & \Delta^{\dagger}: \text{a sufficiently small open disk} \\ \Psi: \mathcal{M} \rightarrow \Delta \times \Delta^{\dagger}: \text{a proper flat surjective holomorphic map} \\ \text{i.e. a family of (compact) complex curves over } \Delta \times \Delta^{\dagger} \\ \text{Assume } \operatorname{proj}_{2} \circ \Psi: \mathcal{M} \rightarrow \Delta^{\dagger} \text{ is a submersion.} \\ \end{array}$



A singular fiber (or precisely, its degeneration) is atomic $\stackrel{\text{df}}{\longleftrightarrow}$ it does NOT admit any splitting families.

Fact Lefschetz fibers and multiple smooth curves are atomic.

How to construct splitting families

Double covering method

- for degenerations of genus 1 (Moishezon)
- for degenerations of genus 2 (Horikawa)
- for hyperelliptic degenerations (Arakawa-Ashikaga)

a Banking deformation

- for linear degenerations
- whose singular fiber has a simple crust (Takamura)

A singular fiber (or precisely, its degeneration) is atomic $\stackrel{\text{df}}{\longleftrightarrow}$ it does NOT admit any splitting families.

Fact

Lefschetz fibers and multiple smooth curves are atomic.

How to construct splitting families

Double covering method

- for degenerations of genus 1 (Moishezon)
- for degenerations of genus 2 (Horikawa)
- for hyperelliptic degenerations (Arakawa-Ashikaga)
- Barking deformation
 - for linear degenerations
 - whose singular fiber has a simple crust (Takamura)

A singular fiber (or precisely, its degeneration) is atomic $\stackrel{\text{df}}{\longleftrightarrow}$ it does NOT admit any splitting families.

Fact

Lefschetz fibers and multiple smooth curves are atomic.

How to construct splitting families

Double covering method

- 1 for degenerations of genus 1 (Moishezon)
- **2** for degenerations of genus 2 (Horikawa)
- 3 for hyperelliptic degenerations (Arakawa-Ashikaga)

Barking deformation

for linear degenerations

whose singular fiber has a simple crust (Takamura)

A singular fiber (or precisely, its degeneration) is atomic $\stackrel{\text{df}}{\longleftrightarrow}$ it does NOT admit any splitting families.

Fact

Lefschetz fibers and multiple smooth curves are atomic.

How to construct splitting families

Double covering method

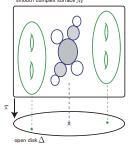
- 1 for degenerations of genus 1 (Moishezon)
- **2** for degenerations of genus 2 (Horikawa)
- 3 for hyperelliptic degenerations (Arakawa-Ashikaga)
- Barking deformation

for linear degenerations

whose singular fiber has a simple crust (Takamura)

Degeneration VS Splitting Family

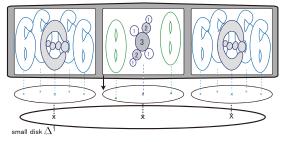
Degeneration of Rieman surfaces



The central fiber is **singular**. General fibers are **smooth**.

Splitting family for degeneration of Riemann surfaces

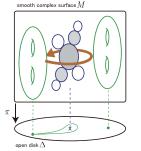
complex 3-manifold ${\cal M}$



The central family has **one singular fiber**. General families have k singular fibers.

Degeneration VS Splitting Family

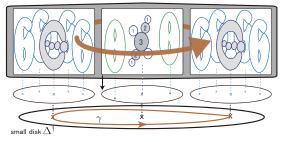
Degeneration of Rieman surfaces



The central fiber is **singular**. General fibers are **smooth**.

Splitting family for degeneration of Riemann surfaces

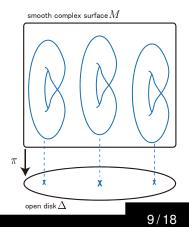
complex 3-manifold ${\cal M}$



The central family has **one singular fiber**. General families have k singular fibers.

Mapping class grps of degenerations

In what follows, we allow **degenerations** to have **finitely many singular fibers**.



Mapping class grps of degenerations

In what follows, we allow

degenerations to have finitely many singular fibers.

 $\pi: M \to \Delta$: a degeneration of Riemann surfaces. with k singular fibers $X_{s_1}, X_{s_2}, \dots, X_{s_k}$

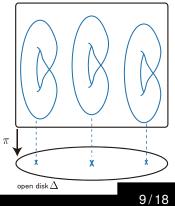
Consider a pair of orientation preserving self-homeomorphisms

 $F: M \to M$ and $\phi: \Delta \to \Delta$ satisfying $\pi \circ F = \phi \circ \pi$. (note: *F* preserves fibers of π .) Such pairs (F, ϕ) are called

topological automorphisms

of the degeneration $\pi :\to \Delta$.

Aut $(\pi) := \{(F, \phi) : \pi \circ F = \phi \circ \pi\}$: the set of topological automorphisms We call $MCG(\pi) := \pi_0(Aut(\pi))$ the mapping class group of $\pi :\to \Delta$. smooth complex surface M



Mapping class grps of degenerations

In what follows, we allow

degenerations to have finitely many singular fibers.

 $\pi: M \to \Delta$: a degeneration of Riemann surfaces. with k singular fibers $X_{s_1}, X_{s_2}, \ldots, X_{s_k}$ Consider a pair of orientation preserving self-homeomorphisms $F: M \to M \text{ and } \phi: \Delta \to \Delta$ smooth complex surface Msatisfying $\pi \circ F = \phi \circ \pi$. (note: F preserves fibers of π .) π

open disk Δ

Mapping class grps of degenerations

In what follows, we allow

degenerations to have finitely many singular fibers.

 $\pi: M \to \Delta$: a degeneration of Riemann surfaces. with *k* singular fibers $X_{s_1}, X_{s_2}, \dots, X_{s_k}$

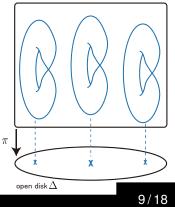
Consider a pair of orientation preserving self-homeomorphisms

 $\begin{array}{l} F: M \rightarrow M \text{ and } \phi: \Delta \rightarrow \Delta \\ \text{satisfying } \pi \circ F = \phi \circ \pi. \\ \text{(note: } F \text{ preserves fibers of } \pi.\text{)} \\ \text{Such pairs } (F, \phi) \text{ are called} \\ \text{topological automorphisms} \end{array}$

of the degeneration $\pi :\to \Delta$.

$$\operatorname{Aut}(\pi) := \{ (F, \phi) : \pi \circ F = \phi \circ \pi \}$$

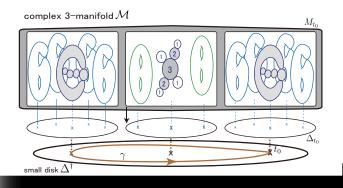
: the set of topological automorphisms We call $MCG(\pi) := \pi_0(Aut(\pi))$ the mapping class group of $\pi :\to \Delta$. smooth complex surface ${\cal M}$



 $\Psi: \mathcal{M} \to \Delta \times \Delta^{\dagger}$: a splitting family

Take a base point $t_0 \in \Delta^{\dagger} \setminus \{0\}$, and a loop γ in $\Delta^{\dagger} \setminus \{0\}$ with base point t_0 that goes once around 0 in the counterclockwise direction.

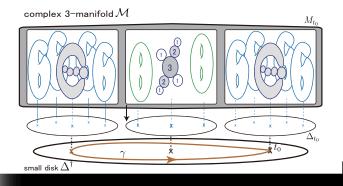
We regard $\pi_{t_0}: M_{t_0} \to \Delta_{t_0}$ as a "reference degeneration".



 $\Psi: \mathcal{M} \to \Delta \times \Delta^{\dagger}$: a splitting family

Take a base point $t_0 \in \Delta^{\dagger} \setminus \{0\}$, and a loop γ in $\Delta^{\dagger} \setminus \{0\}$ with base point t_0 that goes once around 0 in the counterclockwise direction.

We regard $\pi_{t_0}: M_{t_0} \to \Delta_{t_0}$ as a "reference degeneration".

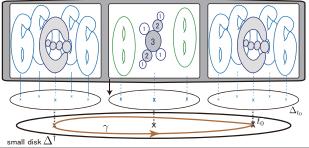


Consider the diagram

$$W := \Psi^{-1}(\Delta \times \gamma) \xrightarrow{\Psi|_{\Delta \times \gamma}} \Delta \times \gamma \xrightarrow{\text{proj}_2} \gamma$$
(!) $W = \bigcup_{t \in \gamma} M_t$ is a real 5-manifold.

∃ a Thom stratification for $\Psi|_{\Delta \times \gamma} : W \to \Delta \times \gamma$ s.t. proj₂ maps each stratum in $\Delta \times \gamma$ onto γ submersively. ⇒ Thom's second isotopy lemma ensures that $W \to \Delta \times \gamma$ is (topologically) leagly trivial ever s

 $\Psi|_{\Delta \times \gamma} : W \to \Delta \times \gamma$ is (topologically) locally trivial over γ .



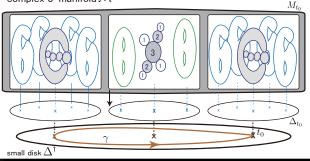
 M_{to}

Consider the diagram

$$\begin{split} W &:= \Psi^{-1}(\Delta \times \gamma) \xrightarrow{\Psi|_{\Delta \times \gamma}} \Delta \times \gamma \xrightarrow{\operatorname{proj}_2} \gamma \\ (!) \ W &= \bigcup_{t \in \gamma} M_t \text{ is a real 5-manifold.} \end{split}$$

 \exists a Thom stratification for $\Psi|_{\Delta \times \gamma} : W \to \Delta \times \gamma$ s.t. proj_2 maps each stratum in $\Delta \times \gamma$ onto γ submersively. \Rightarrow Thom's second isotopy lemma ensures that

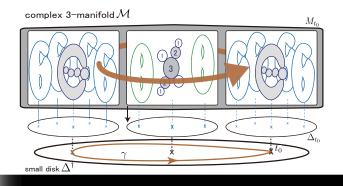
 $\Psi|_{\Delta\times\gamma}:W\to\Delta\times\gamma \text{ is (topologically) locally trivial over }\gamma.$



 $W = \Psi^{-1}(\Delta \times \gamma) \xrightarrow{\Psi|_{\Delta \times \gamma}} \Delta \times \gamma \xrightarrow{\operatorname{proj}_2} \gamma.$

Pasting these trivializations of $\Psi|_{\Delta \times \gamma}$ along γ gives us a topological automorphism (F, ϕ) of $\pi_{t_0} : M_{t_0} \to \Delta_{t_0}$. (F, ϕ) is called the monodromy automorphism.

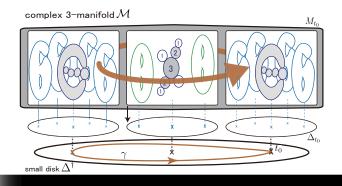
The **topological monodromy** of $\Psi : \mathcal{M} \to \Delta \times \Delta^{\dagger}$ is defined as its homotopy class $[F, \phi] \in MCG(\pi_{t_0})$



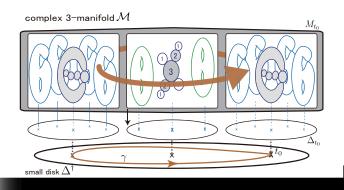
$$W = \Psi^{-1}(\Delta \times \gamma) \xrightarrow{\Psi|_{\Delta \times \gamma}} \Delta \times \gamma \xrightarrow{\text{proj}_2} \gamma.$$

Pasting these trivializations of $\Psi|_{\Delta \times \gamma}$ along γ gives us a topological automorphism (F, ϕ) of $\pi_{t_0} : M_{t_0} \to \Delta_{t_0}$. (F, ϕ) is called the **monodromy automorphism**.

The topological monodromy of $\Psi : \mathcal{M} \to \Delta \times \Delta^{\dagger}$ is defined as its homotopy class $[F, \phi] \in MCG(\pi_{t_0})$



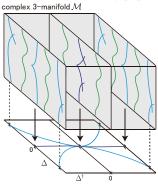
In this talk, we focus on the restrictions of monodromy automorphisms to the union of singular fibers.



10/18

$\mathcal{D} := \Psi(\operatorname{Sing}(\Psi)) : \text{the discriminant of } \Psi : \mathcal{M} \to \Delta \times \Delta^{\dagger}$ (!) It is a plane curve in $\Delta \times \Delta^{\dagger}$ with at most one singularity at $\underline{0}$.

Suppose $\pi_{t_0} : M_{t_0} \to \Delta_{t_0}$ has k singular values s_1, s_2, \ldots, s_k (i.e. it has k singular fibers $X_{s_1,t_0}, X_{s_2,t_0}, \ldots, X_{s_k,t_0}$). \Rightarrow The second projection $\operatorname{proj}_2 : \Delta \times \Delta^{\dagger} \to \Delta^{\dagger}$ induces an unramified k-fold covering $\mathcal{D} \setminus \{\underline{0}\} \to \Delta^{\dagger} \setminus \{0\}$.



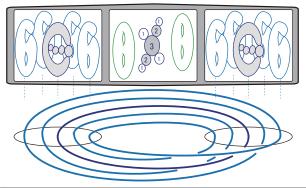
 $\mathcal{D} := \Psi(\operatorname{Sing}(\Psi))$: the discriminant of $\Psi : \mathcal{M} \to \Delta \times \Delta^{\dagger}$ (!) It is a plane curve in $\Delta \times \Delta^{\dagger}$ with at most one singularity at 0. Suppose $\pi_{t_0}: M_{t_0} \to \Delta_{t_0}$ has k singular values s_1, s_2, \ldots, s_k (i.e. it has *k* singular fibers $X_{s_1,t_0}, X_{s_2,t_0}, \ldots, X_{s_k,t_0}$). \Rightarrow The second projection $\mathrm{proj}_2:\Delta\times\Delta^\dagger\to\Delta^\dagger$ induces an unramified k-fold covering $\mathcal{D} \setminus \{0\} \to \Delta^{\dagger} \setminus \{0\}$. complex 3-manifold \mathcal{M} Λ^{\dagger} ö

$$W = \Psi^{-1}(\Delta \times \gamma) \xrightarrow{\Psi|_{\Delta \times \gamma}} \Delta \times \gamma \xrightarrow{\text{proj}_2} \gamma.$$

In the solid torus $\Delta \times \gamma$, $L := \mathcal{D} \cap (\Delta \times \gamma)$ forms a quasi-positive (k-string) closed braid.

 $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2 \cup \cdots \cup \mathcal{D}_\ell$: the irreducible decomposition $\Rightarrow K_i := \mathcal{D}_i \cap L, i = 1, 2, \dots, \ell$, are the knot components of L.

complex 3-manifold ${\cal M}$

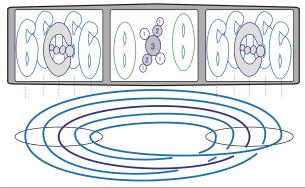


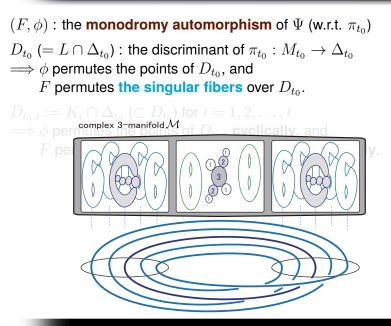
$$W = \Psi^{-1}(\Delta \times \gamma) \xrightarrow{\Psi|_{\Delta \times \gamma}} \Delta \times \gamma \xrightarrow{\text{proj}_2} \gamma.$$

In the solid torus $\Delta \times \gamma$,

 $L := \mathcal{D} \cap (\Delta \times \gamma)$ forms a quasi-positive (*k*-string) closed braid.

$$\begin{split} \mathcal{D} &= \mathcal{D}_1 \cup \mathcal{D}_2 \cup \cdots \cup \mathcal{D}_\ell \text{ : the irreducible decomposition} \\ \Rightarrow K_i := \mathcal{D}_i \cap L, \, i = 1, 2, \dots, \ell \text{, are the knot components of } L. \\ & \text{ complex 3-manifold } \mathcal{M} \end{split}$$





 (F,ϕ) : the monodromy automorphism of Ψ (w.r.t. π_{t_0})

 $D_{t_0} (= L \cap \Delta_{t_0})$: the discriminant of $\pi_{t_0} : M_{t_0} \to \Delta_{t_0}$ $\implies \phi$ permutes the points of D_{t_0} , and

F permutes the singular fibers over D_{t_0} .

 $D_{t_0,i} := K_i \cap \Delta_{t_0} \ (\subset D_{t_0})$ for $i = 1, 2, \dots, \ell$ $\implies \phi$ permutes the points of $D_{t_0,i}$ cyclically, and F permutes the singular fibers over $D_{t_0,i}$ cyclically.

Set $X_i := \prod_{s \in D_{t_0,i}} X_s$, and $f_i := F|_{X_i} : X_i \to X_i$. For $c_i := \#D_{t_0,i}, f_i^{c_i}$ maps each singular fiber to itself. We say f_i is a **polydromy** of a **tassel** X_i of **order** c_i . The projection $\mathcal{D}_i \setminus \{0\} \to \Delta^{\dagger} \setminus \{0\}$ induced by proj_2 is an unramified 1-fold covering (i.e. an automorphism) $\Leftrightarrow f_i$ is a polydromy of order $c_i = 1$. $X_i = X_{s_i}$ (so $f_i : X_{s_i} \to X_{s_i}$).

Theorem (O)

- f_i : a polydromy of $oldsymbol{X}_{oldsymbol{s}_i}$ of order $oldsymbol{c}_i=1$
- Θ : an irreducible component of X_{s_i}
- b: a positive integer satisfying $f_i^b(\Theta) = \Theta$.
- Then $f_i^{b}|_{\Theta}$ is a pseudo-periodic map of negative twist.

Set $X_i := \prod_{s \in D_{t_0,i}} X_s$, and $f_i := F|_{X_i} : X_i \to X_i$. For $c_i := \#D_{t_0,i}, f_i^{c_i}$ maps each singular fiber to itself. We say f_i is a **polydromy** of a **tassel** X_i of **order** c_i . The projection $\mathcal{D}_i \setminus \{0\} \to \Delta^{\dagger} \setminus \{0\}$ induced by proj₂ is an unramified 1-fold covering (i.e. an automorphism) $\Leftrightarrow f_i$ is a polydromy of order $c_i = 1$. $X_i = X_s$, (so $f_i : X_{s_i} \to X_{s_i}$).

Theorem (O)

 f_i : a **polydromy** of X_{s_i} of **order** $c_i = 1$ Θ : an irreducible component of X_{s_i} h: a positive integer satisfying $f^b(\Theta) = \Theta$

Then $f_i^b|_{\Theta}$ is a pseudo-periodic map of negative twist.

Set $X_i := \prod_{s \in D_{t_0,i}} X_s$, and $f_i := F|_{X_i} : X_i \to X_i$. For $c_i := \#D_{t_0,i}, f_i^{c_i}$ maps each singular fiber to itself. We say f_i is a **polydromy** of a **tassel** X_i of **order** c_i . The projection $\mathcal{D}_i \setminus \{\underline{0}\} \to \Delta^{\dagger} \setminus \{0\}$ induced by proj_2 is an unramified 1-fold covering (i.e. an automorphism) $\iff f_i$ is a polydromy of order $c_i = 1$. $X_i = X_{s_i}$ (so $f_i : X_{s_i} \to X_{s_i}$).

Theorem (O)

 f_i : a polydromy of $oldsymbol{X_{s_i}}$ of order $oldsymbol{c_i} = 1$.

 Θ : an irreducible component of X_{s_i}

b : a positive integer satisfying $f_i^b(\Theta)=\Theta_i$

Then $f_i^b|_{\Theta}$ is a pseudo-periodic map of negative twist.

Set $X_i := \prod_{s \in D_{t_0,i}} X_s$, and $f_i := F|_{X_i} : X_i \to X_i$. For $c_i := \#D_{t_0,i}, f_i^{c_i}$ maps each singular fiber to itself. We say f_i is a **polydromy** of a **tassel** X_i of **order** c_i . The projection $\mathcal{D}_i \setminus \{\underline{0}\} \to \Delta^{\dagger} \setminus \{0\}$ induced by proj_2 is an unramified 1-fold covering (i.e. an automorphism) $\iff f_i$ is a polydromy of order $c_i = 1$. $X_i = X_{s_i}$ (so $f_i : X_{s_i} \to X_{s_i}$).

Theorem (O)

 f_i : a polydromy of $oldsymbol{X_{s_i}}$ of order $c_i=1$

 Θ : an irreducible component of X_{s_i}

b : a positive integer satisfying $f_i^b(\Theta) = \Theta$.

Then $f_i^b|_{\Theta}$ is a pseudo-periodic map of negative twist.

Barking deformation

How to construct splitting families

Double covering method

- 1 for degenerations of genus 1 (Moishezon)
- **2** for degenerations of genus 2 (Horikawa)
- 3 for hyperelliptic degenerations (Arakawa-Ashikaga)

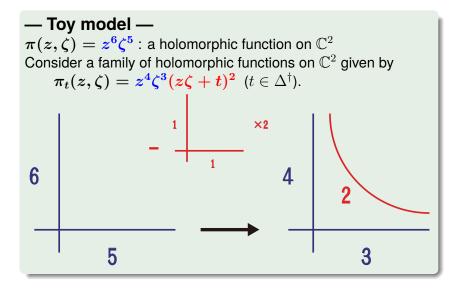
Barking deformation

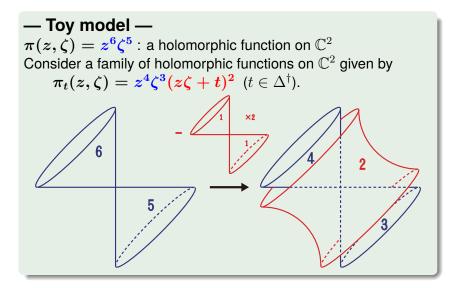
for linear degenerations

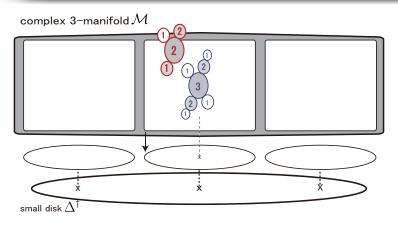
whose singular fiber has a simple crust (Takamura)

— Toy model —

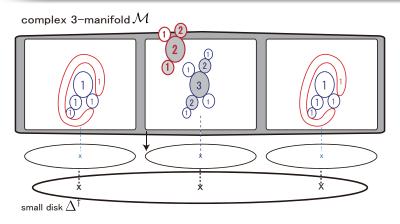
 $\pi(z,\zeta) = z^6 \zeta^5$: a holomorphic function on \mathbb{C}^2 Consider a family of holomorphic functions on \mathbb{C}^2 given by $\pi_t(z,\zeta) = z^4 \zeta^3 (z\zeta + t)^2$ $(t \in \Delta^{\dagger})$.







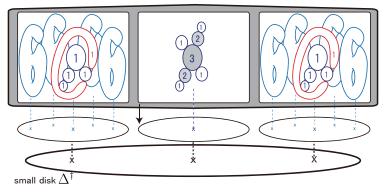
If X₀ contains "simple crust" Y as a subdivisor,
 ⇒ ∃ a deformation family for the given degeneration associated with Y.



X₀ is deformed to the central fiber $X_{t,0}$ of $\pi_t : M_t \to \Delta_t$ in such a way that **Y** looks "barked" off from X_0 .

There exist other singular fibers than $X_{t,0}$, which are called **subordinate fibers**.

complex 3-manifold ${\cal M}$



- **X**₀ is deformed to the central fiber $X_{t,0}$ of $\pi_t : M_t \to \Delta_t$ in such a way that **Y** looks "barked" off from X_0 .
- There exist other singular fibers than X_{t,0}, which are called subordinate fibers.

Main result

The central fiber $X_{t,0}$ forms a **tassel** by itself. i.e. $X_{t,0}$ has a **polydromy** $f: X_{t,0} \to X_{t,0}$ of order 1.

Theorem (O)

 $\Psi: \mathcal{M} \to \Delta \times \Delta^{\dagger}$: a barking family for a linear degeneration associated with a simple crust (Y, ℓ)

- f_0 : a polydromy of The central fiber $X_{t,0}$ (so of order 1)
 - If Θ is a stable component,
 - $\implies f(\Theta) = \Theta$, and $f|_{\Theta}$ is isotopic to the **identity map**.
 - **2** If Θ is a **bark component**,
 - $\implies f(\Theta), f^2(\Theta), \dots, f^b(\Theta) (= \Theta)$ are bark components,

of a degeneration with "the modification of $\frac{1}{b}Y$ " (in particular, a pseudo-periodic map of negative twi

Main result

The central fiber $X_{t,0}$ forms a **tassel** by itself. i.e. $X_{t,0}$ has a **polydromy** $f: X_{t,0} \to X_{t,0}$ of order 1.

Theorem (O)

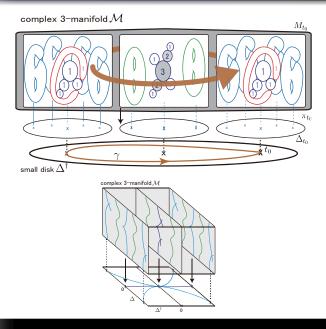
- $\Psi: \mathcal{M} \to \Delta \times \Delta^{\dagger}$: a barking family for a linear degeneration associated with a simple crust (Y, ℓ)
- f_0 : a polydromy of The central fiber $X_{t,0}$ (so of order 1)
 - 1 If Θ is a stable component, $\implies f(\Theta) = \Theta$, and $f|_{\Theta}$ is isotopic to the identity map.
 - $\begin{array}{l} \Longrightarrow f(\Theta), f^{2}(\Theta), \ldots, f^{b}(\Theta) (=\Theta) \text{ are bark components,} \\ \text{ and } f^{b}|_{\Theta} \text{ is a monodromy homeomorphism} \\ \text{ of a degeneration with "the modification of } \frac{1}{b} \boldsymbol{Y}^{"} \\ \text{ (in particular, a pseudo-periodic map of negative twist).} \end{array}$

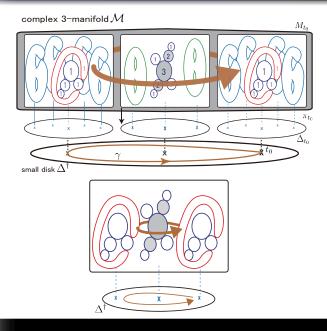
Main result

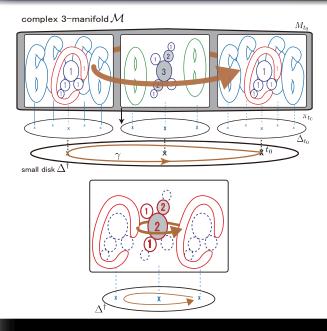
The central fiber $X_{t,0}$ forms a **tassel** by itself. i.e. $X_{t,0}$ has a **polydromy** $f: X_{t,0} \to X_{t,0}$ of order 1.

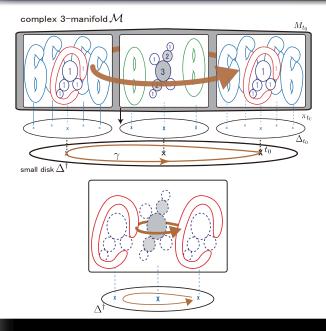
Theorem (O)

- $\Psi: \mathcal{M} \to \Delta \times \Delta^{\dagger}$: a barking family for a linear degeneration associated with a simple crust (Y, ℓ)
- f_0 : a polydromy of The central fiber $X_{t,0}$ (so of order 1)
 - If Θ is a stable component, ⇒ f(Θ) = Θ, and f|_Θ is isotopic to the identity map.
 If Θ is a bark component, ⇒ f(Θ), f²(Θ),..., f^b(Θ)(= Θ) are bark components, and f^b|_Θ is a monodromy homeomorphism of a degeneration with "the modification of ¹/_bY" (in particular, a pseudo-periodic map of negative twist).

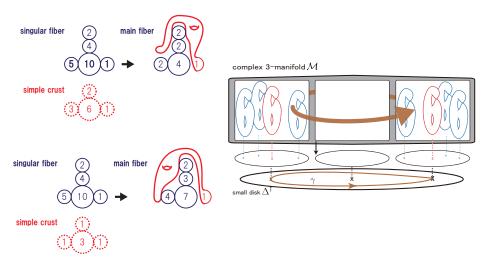








Examples



Thank you for listening!