THE RIEMANN Ξ-FUNCTION UNDER REPEATED DIFFERENTIATION

Haseo Ki

ABSTRACT. Differentiation causes the small gaps between zeros of a given real entire function with order 1 to become larger and the larger gaps to become smaller. I show that for the Riemann Ξ -function there exists $\langle A_n \rangle$ and $\langle C_n \rangle$ with $C_n \to 0$ such that

$$\lim_{n \to \infty} A_n \Xi^{(2n)}(C_n z) = \cos z$$

uniformly on compact subsets of \mathbb{C} . With the method one can prove the same result for the analogues of the Riemann Ξ -function from automorphic *L*-functions. Also I apply the method to the Fourier transform of $\varphi(t)$ where $\varphi(t)$ is even, continuous from \mathbb{R} to \mathbb{R} , and $\varphi(t) = Q(t)e^{P(t)}e^{bt}(1+o(1))$ ($t \to \infty$) such that *b* is real, P(t), $Q(t)(\not\equiv 0)$ are even polynomials with real coefficients, and the leading coefficient of P(t) is negative. For these Fourier transforms I have the similar results as the Riemann Ξ -function.

Department of Mathematics, Yonsei University, Seoul 120–749, Korea E-mail address: haseo@yonsei.ac.kr

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

²⁰⁰⁰ Mathematics Subject Classification. 11M06